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ABSTRACT

In this paper we will present an efficient logical and computational framework for dis-
tributed reason maintenance systems (DRMS), part of our implementation of a CKBS-
shell based upon results from distributed and deductive databases. We define a logic pro-
gramming based foundation onto which paraconsistent, uncertain, temporal and all kinds
of distributed reason maintenance capabilities coping with uncertain and temporal infor-
mations as well can be added modularly. Compared to previous approaches, we remove
limitations on the number of components and the need to define scheme-specific seman-
tics and resolution procedures. Our theoretical issues in this paper are backed by an on-
going implementation exploiting results from distributed databases.

1 INTRODUCTION

With the transition from isolated to cooperating knowledge bases, there is an urgent
need for sound computational reasoning with a variety of circumstancial information.
Tracking of sources and circumstances as well as revising distributed knowledge bases
according to the foundations theory [7] of belief revision requires reason maintenance
capabilities. Where it is not possible or desirable to remove inconsistencies, paracon-
sistent reasoning is needed. A unifying approach has to be defined in a way that is ac-
cessible from the logical viewpoint as well as applicable to the concurrent, transaction
centered execution model of distributed databases. With such a conceptually complex
task, modularity becomes indispensable. We propose that a little algebraic effort goes
a long way in understanding and solving the task of providing such a framework.

Technically our approach is based upon generalized annotated logic (GAP) [12]
which is briefly introduced in the next section. In the subsequent section we will briefly
mention some possible features of GAP useful in Multi-Agent Computing. In section
four we first introduce the building blocks of our unit-construction and provide two dif-
ferent algebraic products useful in combining them. We then extend the original notions
of two-valued logic reason-maintenance systems (RMS) to multi-valued logic based
distributed RMS. The paper is concluded by two examples and a final section which
relates our approach to existing work and describes possible future research directions.
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2 GENERALIZED ANNOTATED LOGIC

In this section we informally sketch some of the interesting features of the logical fra-
mework introduced by M. Kifer and coworkers. Besides the capability of providing an
efficient approach to paraconsistent reasoning, this logic allows to formalize and to im-
plement a flexible inference machine incorporating temporal and uncertain reasoning
methods. For a comprehensive description the reader may refer to [12, 11].
Annotated clause:

p : l p1 : l1^ : : :^pk : lk ^ not(Bk+1 : lk+1) : : :^ not(Bk+n : lk+1)

The literals p;pi are from a function-symbol free language L. The li’s are called anno-
tations and are constants or variables from a complete lattice T 1 of truth values.
Semantics: Annotations could be understood as the degree of belief in a proposition,
e.g. p : [0:5] means that the belief in the truth of A is at least 0:5 2 [0;1]. Let H be
the Herbrand base of the program. An annotated logic interpretation I is a mapping I :
H!T from the base onto a lattice. An annotated atom p : l is satisfied byI iffI(A)� l
where A is a strictly ground instance2 pi : li of p : l. The other logical connectives as
_;^ and are defined in the usual sense.
Fixed-point operator RP : Let P be a GAP, I a GAP interpretation and T a complete
lattice. An operator RP (I) which maps interpretations to interpretations is defined as
follows RP (I)(p) := tf� j p : � p1 : l1; : : :pn : ln is a strict ground instance of a
clause in P and I j= p1 : l1; : : :pn : lng.

RP may reach the least fixed point (lfp) if for all strict ground instances A,
lfp(RP (A)) is reached after a finite number of iterations. This condition holds for
many GAP: if the clause bodies of a program contain only variable- or constant-
annotations, or if only finite or decreasing monotone functions3 appear in the program.
Negation: There are basically two different kinds of negation in GAP, the k-monotonic
epistemic (or explicit) negation : and the non-monotonic Closed World Assumption
based not. : requires the symmetry between true and false provided by bilattices [8],
for example :A : t =A : f. For a proposal on how to handle not by adapting the stable
and well-founded semantics to GAP the reader may refer to [15].

3 GAP IN MULTI-AGENT COMPUTING

In a situation where several knowledge base systems cooperate more or less tightly, and
have a varying portion of their knowledge in common, two approaches may be used to
map them into an integrated view (a single KB which is equivalent to the group of KBs,

1A complete lattice (T ;�) is a partial ordering with a least upper boundt and a greatest lower bound
u for every subset of T .

2A strictly ground instance is a ground instance as in classical first-order logic and furthermore all
annotation variables and functions are evaluated to constants of the lattice.

3A function f is finite if ff(x)jx2DOM (f)g is finite and f is decreasing if for arbitrary arguments
x1; : : :xn f(x1; : : :xn)� xi for all 1� i � n.
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at least model-theoretically). One possibility is to annotate the predicates with sets of
KB ids stemming from the lattice (P(fAg1; : : :;Agng);�), the powerset of KB ids. In
this case the disagreement of KBs increases notational complexity. Rules common to
multiple KBs require the least effort. Connections between same-named predicates are
implied by the structure of subset lattice. Or one could simply rename the predicates
such that the alphabets of the different agents are disjoint. Any identities between pre-
dicates in different KB must then be reestablished explicitly. Where KBs agree, rules,
inference steps and results may be duplicated. Rules for mediation may be written as
clauses whose bodies consist of multiple instances of a predicate. In the rest of this sec-
tion we provide some examples of how GAP can be used in the context of distributed
knowledge bases:
Paraconsistent reasoning. Definite Horn-clauses used in ordinary logic programming
languages lack the capability to express logical inconsistencies, inherent to collabora-
tive environment. Using bilattices like FOUR [11] we are able to explicitly represent
clauses which state how to deal with conflicting knowledge, e.g.

buy stock(IBM) : [f] buy stock opinions(IBM) : [>]

if there is any inconsistency concerning the idea of buying stocks from IBM then we
should better not buy it.
Majority decision-making. For example expressing a majority of two in a group of three
requires three clauses:

pmaj : [v] p1 : [v]; p2 : [v]

pmaj : [v] p1 : [v]; p3 : [v]

pmaj : [v] p2 : [v]; p3 : [v]

Which of the former two transformations is advantageous obviously depends on the
similarity and coherence of KB’s. Also, the rules established for the mediation of di-
sagreements may be more easily expressed in one or in an other form.
Preference of agents. The variety of reasoning modes beyond local or global consi-
stency applicable to mediation suggests that it may be better not to build a single mode
of mediation into the RMS, but to provide the means to write clauses for mediation.
In the following clause we are able to express a preference of agent one for a single
proposition:

buy Stock : [v;Agent3] buy Stock : [w;Agent2]

^ buy Stock : [v;Agent1]

This kind of reasoning is particularly useful for result recomposition as in the
contract-net.
Reasoning with temporal data. In [12] it was shown how some kinds of temporal rea-
soning could be subsumed by GAP, e.g. clauses of the form

Buy HK Dollar : succ(T ) US Dollar low : T
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where succ() denotes a function which increases every member of the set T , e.g.
succ(f1;2;3g) = f2;3;4g. There are furthermore some interval-based temporal rea-
soning formalisms which could be expressed in GAP [12].

4 DISTRIBUTED REASON MAINTENANCE

An alternative approach to paraconsistent knowledge is to compute maximal consistent
subsets by a reason maintenance system. The key idea in redefining ATMS as GAPs is
to write labels as a form of annotation, i.e. defining a suitable lattice of labels. Our sy-
stem departs therefore from most other RMS since it amalgamates inference machine
and the RMS. On one hand, it appears tempting to have a separation between the rea-
son maintenance system and the inference machine leading to a reusable RMS system
and a gain in concurrence between the RMS and the inference machine. On the other
hand, following the argumentation of [17] a RMS itself should be able to detect incon-
sistencies and to compute automatically the dependencies of new beliefs on older ones,
instead of just passively recording them. Besides, the amount of time spent for recor-
ding the assumptions is reduced since this is done without any extra costs during the
inference process. In our implementation we are not recording the annotated literal in
the labels, but just a pointer to the according clauses which allows a more compact re-
presentation as in systems where the RMS component is separated from the inference
machine. For these reasons we decided to rely on the above sketched framework to for-
malize the operational semantics of the reason maintenance process. We believe that
the building block nature of our framework makes up well for the loss of overall mo-
dularity. In fact, one might say that in our proposal the former RMS component has
become just one of the factors of the annotation lattice.

In some application domains one would like to reason paraconsistently and further-
more to record the assumptions leading to inconsistency, without propagating such a
Nogood through all labels, causing high complexity. In the example at the end of this
section we show how a third agent may draw conclusions from mutually contradicting
facts from two other agents and record these facts in his own label as ordinary assump-
tions.

4.1 Basic Components

As mentioned above the truth values a GAP interpretation assigns to a proposition stem
from a complete lattice. In the context of distributed reason maintenance the following
lattices appear to be useful:

The lattice ([0;1];�) with the max function as lub represents degrees of certainty.
A sufficiently well-behaved family of subsets of R+, e.g. all sets made up of points

and closed and open intervals, or finite sets of time points, with the usual subset ordering
and the set-union [ as least upper bound is used to represent temporal extents. Actual
temporal reasoning, such as taking into account possible and impossible sequences of
events, is outside the interest of this report, and presumably requires extensions to the
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GAP.

4.2 Products

Next, we introduce two kinds of products of lattices which we use to describe composite
annotation lattices.

First, the usual cross-product of lattices with componentwise ordering, least upper
bound and greatest lower bound. Let (T1;�1;u1;t1) : : :(Tn;�n;un;tn) be lattices
and (x1 : : :xn); (y1 : : :yn) 2 T1��� ��Tn.

� (x1; : : :;xn)� (y1; : : :; yn) , 8i2 f1; : : :;ng xi�i yi

� (z1; : : :; zn) = (x1; : : :;xn)u (y1; : : :; yn) , 8i 2 f1; : : :;ng zi = xiui yi

� (z1; : : :; zn) = (x1; : : :;xn)t (y1; : : :; yn) , 8i 2 f1; : : :;ng zi = xiti yi

For example [0;1]� [0;1] is of use in uncertain reasoning where the first component
refers to the certainty that a proposition is true and the second to its falsehood. Consider
as another example the lattice FOUR, which may be written as the cross-product of
f?; tg and f?; fg.

?

I

�

�

I

tf

>

Figure 1: The lattice FOUR

Second, the free product, written
, which is similar to the cross product except that
the lub is not defined pointwise but as a formal operation with the rules

(at b)
 c = (a
 c)t (b
 c)

a
 (bt c) = (a
 b)t (a
 c)

and additional rules which express commutativity and associativity of t and distribu-
tivity of t with u.

Definition 4.1 An expression of the form a
 b is called a term. An arbitrary element
of A
B is the lub of a finite number of terms, i.e. x=

Fn
i=1 ai
 bi. Terms with ? as

one of the factors may be omitted because ?
x= x
?=?A
B .

The set of time-uncertainty annotations [5] is a typical example. It can be written

as [0;1]
2R+

.
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Possibility of truth and falsehood N = [0;1]� [0;1]

Time and uncertainy T 
N

Multiple agents and uncertainty P(1 : : :n)
N

Time, multiple agents and uncertainty T 
P(1 : : :n)
N

Table 1: Selected examples of product lattices

4.3 Mixed variable and constant annotations

In product annotation lattices a specific form of “term annotation” as defined in [12]
is particularly simple and flexible. These are annotations by terms – as defined here –
whose factors are either variables or constants.

Definition 4.2 (m-annotations) An m-annotated literal is a literal p : (a1
a2
�� �

an) where each ai is either a variable or a constant of the appropriate lattice. We shall
use the more conventional notation p : [a1; : : :;an] for p : (a1
�� �
an).

In clauses, variables may not appear in different positions, nor be shared between
annotations and arguments of predicates. Like in general GAPs, a variable that occurs
in the head of the clause is expected to appear in the same position in at least one of the
body literals. Since the individual lattices that make up a product are usually distinct
from each other and from the Herbrand universe, this is not a severe restriction. At
the same time, it is of major help in reducing complexity, especially compared to the
monotonic, computable functions permitted by [12].

4.3.1 Annotated clauses

The following two clauses are interpreted as being equivalent:

p  q1; q2 : : :

p : (�1u�2 u : : :)  q1 : �1; q2 : �2 : : :

This means, that if one simply states that p whenever q1, q2 etc., then p holds under
the meet of all circumstances under which the body literals hold. If annotations are
times, then p holds only at those times at which all qi hold, if they are fuzzy values, p is
guaranteed only to the lowest certainty found in the qi, and if they are environments, p
is justified by the meet of the justifications of the qi, which is, by reversal of order, the
union of the assumptions needed for the qi.

A constant or variable in an annotation overrides this implicit behavior.

Definition 4.3 (partially m-annotated clauses) A clause

p : [a;b; : : :] q1 : [a1; b1; : : :]; q2 : [a2; b2; : : :]; : : :

where a;ai; b; bi : : : are constants, variables or empty, is read as follows:
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(i) Replace each empty a or ai with the same new variable a0, each empty b or bi
with the same b0 etc.

(ii) Each body literal is processed as a subquery, returning, if successful, with a sub-
stitution for each of the variables in the annotation.

(iii) For every variable occurring in annotations in the body, form the meet of all va-
lues substituted for it by the subqueries.

(iv) Substitute this value for any variable in the head annotation. Fail if any of the
variables has the value ?.

This description, which may be used almost directly in a SLD- or OLDT-type pro-
cedure, is equivalent to the usual definition which refers to strictly ground instances of
clauses.

4.4 Assumptions

The basic idea is to code the assumptions under which a proposition holds into its an-
notations. This idea was originally used in Ginsberg’s MVL theorem proving system
[8].

To illustrate how assumption based reason maintenance is in principal in being pro-
cessed let P be the GAP database below and consider the following example:

A : [A]  

D : [D]  

B : V  A : V

C : V  B : V

D : V  C : V

According to the GAP fixed-point operatorRP in section 2, the following computations
are then performed:

RP " 0(;) = fA : [A];D : [D]g

RP " 1(;) = RP " 0(;)[fB : [A]g

RP " 2(;) = RP " 1(;)[fC : [A]g

RP " 3(;) = fA : [A];D : [fDg;fAg];B : [A];C : [A]g

RP " 4(;) = RP " 3(;) = lfp(RP (;))

At this point we should note that departing from most other ATMS our system is
being able to perform reason-maintenance within a backward-chaining inference or a
mixed bottom-up and top-down procedure like OLDT or Magic Sets as well. In our
CKBS implementation the query proof procedure is based upon an adaption of OLDT-
resolution [14] which is basically a top-down search with respect to a certain query
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where already computed subqueries are cached and bottom-up applied to a repeatedly
appearing subquery. The following proof tree shows how assumptions are being hand-
led in a pure backward-chaining procedure:

 D : [V ]

 C : [V ]

 B : [V ]

V =A

V =D

Figure 2: Proof path

4.4.1 Multivalued Assumptions

In an annotated logic database, it is not sufficient to record dependency based only on
predicates. One proof may rely on a predicate being true at one time, while another
proof may rely on the same predicate being false at another. Therefore we record an-
notated literals in labels. This enables in particular the representation of negative as-
sumptions using the explicit negation :.

In forward chaining inference processes, the literals in nodes contain no variables.
If an unbound and thus implicitly universally quantified variable occurs in an annota-
tion, the value> is substituted. Even with backward chaining, labels are only collected
when returning from subqueries and thus contain no variables.

We now define a lattice which, when used in annotations in the way defined in sec-
tion 4.3.1, implements the label calculations of an annotated ATMS.

Definition 4.4 (Annotated Environments) Let L be a (composite) annotation lattice
not including assumptions andHA = fp1 : : :pmg the finite subset of the Herbrand base
which appears in assumptions, and HAG the set of ground elements of HA. We define
the lower semilattice Env = Env(HA;L) of annotated environments as:

� Env = fe :HA! Lg

� An annotated environment e will be written (pi1 : l1; : : :pin : ln) where lj =

e(pij) 6=?, omitting any p 2HA for which e(p) =?.

� The order on Env is the reverse pointwise ordering

Let d;e 2 Env, then d� e iff d(p)� e(p) 8p 2HAG

Likewise, the meet on Env is derived pointwise from the lub on L.
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� >Env = ()

� (?Env)(p) =>L 8p 2HAG

Thus the meet of two sets of assumptions A1;A2 is defined as the minimal set of
assumptions which implies both A1 and A2. Hence the ordering of sets of assumpti-
ons is now based upon the GAP implication and generalizes the usual � ordering of
powersets of assumptions in classical two-valued logic. In other words, if L = ft; fg,
then environments are sets of predicates and u is simply the set union.

Definition 4.5 (Annotated Labels) The set of annotated labels, Lab(HA;L), HA, L
as above, is defined as:

Lab(HA;L) = ffe1; : : :; eng j ei 2 Env(HA;L);8i; j= 1 : : :n : ei 6� ejgg

Write Lab = Lab(HA;L) for short, let D = fd1; : : :; dng, E = fe1; : : :; emgE;D 2 Lab
and let max(X) be the set of maximal elements of X . Then define:

� ?Lab = f?Envg

� >Lab = f( )g

� DuE = max(fdiu ej j di 2D;ej 2 Eg)

� DtE = max(D[E)

With these definitions, Lab is a lattice.

Let now P be a GAP program consisting of literals p : [l1; : : :; ln] and

�i(p : [l1; : : :; ln]) = p : [l1; : : :; li�1; li+1; : : :; ln]; and �i(P ) = f�i(c) j c 2 Pg

Assume that the label occupies the n-th, i.e. last position. That ATMS labels consist of
sets of minimal environments may be expressed in the following integrity constraints:

Lemma 4.1

� 8l 2 Lab(H;L); e 2 l : P `GAP p : [l1; : : :; ln�1; l]) �n(P ) [ feg `GAP p :

[l1; : : :; ln�1])

� 8l 2 Lab(H;L); d 2 Env : �n(P )[fdg `GAP p : [l1; : : :; ln�1])9e 2 l : e� d

� 8�;� 2 (l 2 Lab(H;L)) : � `GAP �) � = �

which state, that every environment in a label is sufficient to prove p, that every envi-
ronment is maximal in that respect, and that within a label no environment subsumes
another.

Following the conventions introduced in section 4.3.1, if the label lattice is part of
the annotation but never explicitly specified in clauses, the meet of the labels in the body
of a clause instance is assigned to the node resulting from the head of that clause. Thus
dependency tracking is performed without one’s having to rewrite existing clauses.
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Lemma 4.2 If P is a GAP with the base H and the annotation lattice L which does
not include labels, then an interpretation of the same set of clauses with the annotation
latticeL
Lab(H;L) contains in the last component of its annotations the ATMS labels.

In order not to jeopardize the integrity of labels it makes sense to completely forbid
explicit specification of labels in clause heads.

4.4.2 Facts and assumptions

Traditionally, it is the responsibility of the RMS component to distinguish facts and
assumptions when initializing nodes. An assumption would result from a query for a
predicate which doesn’t appear anywhere in a clause head, while a fact would result
from a bodiless clause in the KB. In annotated logic, it may be desirable to mark some
extent of a predicate as fact and another as assumption. We also want to integrate the
RMS and inference components as far as possible, thus the KB is the preferable place
to specify assumptions as well as facts. An ATMS will initialize nodes for assumptions
with labels referring only to themselves, i.e. A : [A]. In a GAP with labels, such a node
would also result from a bodiless clause with a head of this form, which is normally not
allowed. However since some form of initialization is necessary and writing initial no-
des syntactically as facts integrates them nicely, we allow this form of explicit labeling
of literals.

Definition 4.6 In a GAP with labels, with the annotation latticeL
Lab(H;L), define:

(i) A fact is a clause a : [�], � 2 L. It has the empty label, i.e. it holds without any
further preconditions.

(ii) An (initial) assumption is a clause a : [�;f(a : [�])g],�2L, or a : [�;�] for short.

(iii) No other bodiless clauses are allowed.

Example. Let L = ([0;1]� [0;1])
T . To specify that p is true at time 0 and may
be assumed anything later, write:

p : [(1;0);f0g]  :

p : [>; (0;1);�]  :

We now have the necessary elements to describe various constructs in a common
framework. Some examples of annotations incorporating justifications are given in ta-
ble 2, where: B = f?; tg, T = time, P = [0;1]� [0;1],A= agents, H = ground literals.

4.5 Nogood computation and detection

Since assumptions themselves are annotated, the original definition that a Nogood is a
minimal set of assumption inconsistent with the knowledge base has to be extended.
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‘Classic’ ATMS [8] FOUR
Lab(H;B)

A distributed ATMS FOUR
A
Lab(H;B
A)
A temporal-possibilistic distributed
ATMS

T 
P 
A
Lab(H;B
A)

A temporal-possibilistic distributed
ATMS with temporal uncertain
justifications

T 
P 
A
Lab(H;T 
P 
A)

Table 2: Composite annotation lattices

In our case, inconsistency depends on the chosen lattices. The same (bi)lattice struc-
ture with different inconsistent sets may express very different views of what lattice
elements mean. For example, the bilattice L = [0;1]� [0;1] where the first compo-
nent indicates some degree of truth and the second falsehood, with the inconsistent set
Inc1(L) = f(x;y) j x > 0^y > 0g is used in possibilistic logic [4] while the same bi-
lattice with Inc2(L) = f(x;y) j x+y > 1g is closer to probabilistic logic.

Definition 4.7 Given lattices L= L1
 : : :
Ln with inconsistent sets Inc(Li), a term
x1
�� �
xn 2 L is inconsistent iff for at least one i, xi 2 Inc(Li).

An element x =
Fk
j=1xj 2 L, with xj = xj1
 �� �
xjn, is inconsistent iff there is

an inconsistent term t� x.

Such an inconsistent term is not necessarily one of the xj. Detection of inconsisten-
cies thus involves finding maximal terms t � x and checking them for inconsistency.
The latter is simple since in most cases only one of the lattices used in product annota-
tions has a non-empty Inc; time, agents etc. are always consistent. The integrity cons-
traints stated above are extended to account for the consistency checks.

Lemma 4.3 Let l be a Nogood, then the following constraints must hold:

� 9p 2H : �n(P )[flg `GAP �i(p : [: : :; lj; : : :]); lj 2 Inc(Lj)

� 8�;� 2 li : � ` �) �= �

� �n(P )[fl
0

ig `GAP) l
0

i � li

Removing just-discovered nogoods from the labels of all nodes has a number of
drawbacks. First and well known is its complexity. Furthermore, we expect that with
removed labels it will be more expensive to add and remove clauses from the know-
ledge base; also removing an environment may not be as easy with arbitrary lattices as
it is with sets of predicates.

The problem of finding maximal terms is of great importance to all lattice compu-
tations and comparisons.

Since we want to allow paraconsistent reasoning to coexist with nogoods within
our framework, an arbitrary mechanism for excluding some predicates from all incon-
sistency checks is needed and presumed to be in place.
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4.6 Hypothetical reasoning

Consider an annotated literal which specifies a label in the body of a clause (� 2 L,
A 2 Lab(H;L)):

q : [�] p : [�;A]

The literal on the right, when interpreted as a subquery according to the GAP rules,
means “can p : [�] be proven from the program and the assumptions in A ?” Such a
statement is separated from the TMS process, since its validity no longer depends on
other assumptions, but only on the clauses used in the proof. It is therefore correct to
assign an empty label to the node q : [�].

The conventions established so far allow this kind of reasoning to coexist with
ATMS type dependency tracking, without violating integrity constraints.

Note that this is only an elementary form of hypothetical reasoning, in that there is
no connection between the hypothetical and the believed environments.

4.7 Database issues

So far we have identified the necessary ingredients to formalize different kinds of distri-
buted assumption-based reason maintenance systems. In the case of Multi-Agent com-
puting we tagged each proposition with an index of its origin. In our implementation
every piece of communicated data will be replicated. The copies are called physical
data items, the original is named logical data item [21]. The location of the logical
data items (propositions) will correspond to the index of it. For example the logical
data items corresponding to the ground instances of a predicate P (X) : [Ag1; l] will al-
ways be in Agent one. Mutual consistency will be maintained by the read-once/write
all protocol which we realize by a distributed two phase primary locking (D2PL) algo-
rithm. We deem this protocol as sufficient since updates will only occur at the location
of the logical data items. We note that this implies a directed communication, since
only the site possessing the logical data item can change it. After such a fact got up-
dated we use the afore mentioned algorithm for incremental maintenance of mediated
views which is capable of handling recursive and non-recursive clauses as well.

It is furthermore important to have an appropriate locking granularity, as only
ground instances of a fact are being locked in simultaneous read/write access on shared
or even local data. This should guarantee a higher level of concurrence among the dif-
ferent RMS. Besides, due to the above mentioned amalgamation of RMS and inference
machine, the locking granularity within a local RMS is of crucial importance.

5 POSSIBLE APPLICATIONS

There is broad spectrum of conceivable applications as abductive reasoning and know-
ledge assimilation [13], to mention a few, to which our framework applies in the dis-
tributed case as well. In the area of planning, temporal probabilistic logics [6] have
gained popularity and we plan in the future to assess the usefulness of our framework
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in this area. The examples in this section are intended to illustrate the effectiveness of
multi-valued assumptions for certain application domains as robots and medical expert
systems. For the purpose of readability we did not include the justification lattice in our
sample knowledge bases.

5.1 Paraconsistent distributed reason maintenance

In this subsection we provide a conceivable scenario, where it appears useful not to re-
move inconsistent information from the knowledge bases like in traditional distributed
RMS, as [10]. Suppose we have two different doctors and one patient consulting both
of them.

KB1: Patient Disease(TBC) : [fAg1g; t] 

KB2: Patient Disease(TBC) : [fAg2g; f] 

KB3:

Find Specialist(X) : [fAg3g; t]  Patient Disease(X) : [fAg1;Ag2g;>]

V isit Specialist(X;Y ) : [fAg3g; t]  Find Specialist(X) : [fAg3g; t];

still hurts(Y ) : [fAg3g; t]
still hurts(Lung)  

Suppose agent 3 queries for V isit Specialist(X;Y ) : [fAg3g; t]. According to the
proof procedure of GAP he receives the answer

V isit Specialist(TBC;Lung) : [fAg3g; t;

f(Patient Disease(TBC) : [fAg1g; t];

Patient Disease(TBC) : [fAg2g; f];
still hurts(Lung) : [fAg3g; t])g]

which states that he should visit a lung specialist under the assumptions that the two
family doctors he usually visits disagree and his lung still hurts. Suppose now Doctor
(Agent) 1 changes his opinion and updates his database to Patients Disease(TBC) :

[fAg1g; f] . In this case the replica of this fact in Agent 3 becomes invalid and gets
updated according to the update contract which has been established during the infe-
rence with Agent 1. Although this a very simple example it shows the usefulness of our
incremental view maintenance algorithm [20] for maintaining the knowledge-bases of
Agent 1 and 3 after an update.

5.2 Temporal possibilistic reason maintenance

To illustrate how temporal and possibilistic information can be handled within our re-
ason maintenance system consider the following scenario consisting of three mobile
robots. The annotations consist of origin, certainty and time resp.:
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KB1:

Robot at(X;Y ) : [fAg1g;u(V1;V2);T +2]  Robot at(X;Y ) : [fAg2g;V1;T ];

Part at(X;Y ) : [fAg3g;V2;T ]

Call supervisor(X;Y ) : [fAg1g;1;V ]  Robot at(X;Y ) : [fAg1g;0:2;V ];

Robot at(X;Y ) : [fAg2g;0:2;V ]

KB2: Robot at(1;1) : [fAg2g;1;f2;3g] 

KB3:

Robot at(1;1) : [fAg3g;1;f2;3g]  

Part at(X;Y ) : [fAg3g;0:9;V ]  Robot at(X;Y ) : [fAg3g;1;V ]

Suppose Robot 1 queries now for Robot at(X;Y ) : [fAg1g;V;W ], he then receives
the answer

 Robot at(1;1) : [fAg1g;0:9;f4;5g; f Robot at(1;1) : [fAg2g;1;f2;3g];

Robot at(1;1) : [fAg3g;1;f3;4g] g ]

which states that under the assumptions that robot 2 is at time points 2;3 and robot 3
is at time points 3;4 at location (1;1), Robot 1 will be there with a certainty of at least
0:9 at time points 4;5. Note that robot 1 is also able to perform simple kinds of hypo-
thetical reasoning, as “if robot 2 were with a certainty of at least 0:75 at time point 3
at location (1;1) at what location with which certainty should I be” by adding the fact
Robot at(1;1) : [fAg2g;0:75;f3g] to its own local knowledge base, independently
if this fact really holds in robot 2. In this case all changes of the real position of robot 2
are not being propagated to robot 1 since Robot at(1;1) : [fAg2g;0:75;f3g] is not a
replicated fact and therefore no update contract between robot 1 and robot 2 has been
established.

6 CONCLUSION AND OUTLOOK

In this paper we have described several distributed assumption-based RMS within a sin-
gle framework and showed that distributed reason maintenance has a well-understood
semantics. Using two kinds of lattice products and well known lattices for time, un-
certainty and assumptions we can handle distributed belief revision within the context
of distributed deductive databases. Though it is based upon the ideas of [8] our work
departs in several points from theirs. We use a different inference machine, annota-
ted logics is more expressive which has been shown in [12]. To summarize, bilattice-
based logic programming could be subsumed be GAP. [8] does not deal with distribu-
ted knowledge bases and uncertain and temporal assumptions, the free product has not
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been addressed. More similar to our ideas is the work of [2], though it does not deal
with time, uncertainty or distributed knowledge bases.

There are several other distinctions to former approaches of DRMS. As stated pre-
viously there is a distinction between distributed RMS and cooperating RMS. There is
a true distributed realization of an ATMS downwards compatible to the original ATMS
in [1] which has recently been extended to include simple temporal informations. But
there is neither a fixpoint semantics for distributed reason maintenance provided nor
there are temporal and uncertain assumptions expressible.

The first approach to distributed reason maintenance [10] was based upon Doyle’s
justification based truth maintenance system. We emphasize that our framework is also
capable of simulating distributed justification-based truth maintenance if we do not pro-
pagate the base assumptions through the clauses of our logic program but all antece-
dents of a derived fact. The annotation will then represent the footprint of a proof. The
different levels of well-foundedness and (in)consistency as defined in [10, 1] can the-
refore be captured within our framework as well. According to our experiences one
should not rely on a single method in dealing with inconsistent knowledge, but use se-
veral different strategies. Due to the high complexity of assumption-based RMS [19]
only in some small parts of a CKBS where a set of solutions is absolutely required, a
distributed assumption based RMS might be useful. In other parts the higher efficiency
of a justification based RMS could be of greater use. Paraconsistent reasoning on the
other hand has its place too, since computing maximal consistent subsets of knowledge-
bases removes useful information. In some cases one would prefer to draw conclusions
from inconsistent knowledge rather than throwing it away.

While GAP is capable of first-order logic, our DRMS is currently based on a
function-symbol free, Datalog-like language. We have to investigate appropriate ge-
neralizations along the lines of Ginsberg’s first-order ATMS [8].

It has been shown in [3] that GAP could be viewed as certain instance of constraint
logic programming (CLP) which allows to express certain lattice-based constraints in
a more compact and natural manner than in CLP. From viewpoint of generality our ap-
proach appears similar to that of [18] whose system allowed arbitrary boolean cons-
traints on propositions. We plan in the future to permit non-ground annotated assump-
tions since there is a non-ground fixpoint semantics for CLP [9] which could probably
forwarded to GAP.

For practical applications, the expressivity needs to be enhanced to allow more
forms of hypothetical reasoning. There are some indications that this is only a spe-
cial case of a more differentiated query capability which is already implicitly in use at
some points. We will also address the practical need for some monotonic functions in
annotations.

We furthermore plan to develop strategies to minimize the costs for communication
and to develop some networking strategies for re-routing informations through other
agents. In our current system data could only be received from the original source. In
some cases it might be useful to ask a third agent for data which he has already received,
e.g. if the agent is closer. In the case of link-failures voting based protocols might be
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of interest. Even if an agent is currently not available, if a majority of agents agrees on
certain propositions from this agent, all conclusions based upon these facts may be still
considered as valid. Besides, investigations in possible distributed reliability protocols
such as the three-phase commit protocol [21] have to be carried on.
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