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Abstract

An approach to integrate explanation-based learning into computer algebra systems is

given. Schemata are learned by generalizing explanations of a teacher and by generalizing

numbers. We outline the architecture of an intelligent environment for learning mathe-

matics and its advantages. A uni�ed treatment of mathematical rules and schemata of

an application leads to more powerful problem solving capabilities.
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1 Introduction

Problem solving in mathematics and mathematical applications requires sophisticated knowl-

edge acquisition and reasoning techniques on the underlying mathematical laws. These ca-

pabilities were not provided by classical computer algebra systems, which o�er a powerful

collection of algebraic algorithms and usually a primitive programming language. Although

Axiom allows the de�nition of new abstract data types including properties of operators

and started a new generation of systems, no AI methods (e.g. automated theorem proving,

learning) are provided.

We report on the integration of machine learning into computer algebra systems (CAS),

which is one task in the development of an intelligent environment for symbolic mathematical

computations called �����1. The paradigm of explanation-based learning (EBL) was chosen

because it o�ers:

� construction of composed objects by analyzing how components can be combined,

� aid to formulate the solution to a given problem,

� improvement of performance by experience,

� consideration of user de�nitions,

� explanations of solution steps.

1
Learning Environment for Mathematic and Mathematical Applications



These features couldn't be integrated into classical CAS because their mathematical know-

ledge was given implicitly within complex implemented algorithms. The �rst step in the

proposed approach is to build a comprehensible representation of the mathematical knowledge

in terms of abstract computational structures [BaWo84, CaTj90] and schemata [Chaf75,

Shav90].

Several approaches to learning in mathematically based domains have been developed.

They cover learning by heuristics, empirical learning, learning by testing, inductive learn-

ing, learning by analogies, and explanation-based learning. However, none of them (except

[Shav90]) generalized the structure of explanations or generalized numbers. An inference rule

resulting from generalizing numbers subsumes an in�nite class of rules learned by standard

EBL and describes the situation after an inde�nite number of inferences. The more general

task is generalizing the structure of explanations where the order of the applied schemata or

the schemata themselves are generalized.

On the other hand, the automated theorem proving community o�ered many reasoning

systems for mathematics (e.g. Ontic, Nuprl,: : : ) and completion algorithms. None of them

tried to learn rules incrementally by EBL, where one can avoid the undecidability problems

of the underlying algorithm (e.g. Knuth-Bendix [KnBe67]).

2 EBL in Mathematically-Based Domains

Figure 1 gives a brief insight into some of the schemata used by a simpli�er. Mathematical

schemata, user de�nitions, domain knowledge, and algebraic algorithms form the background

knowledge of a computer algebra system.
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Figure 1: Mathematical Schemata

A simple equation schema is de�ned as an inference rule consisting of a list of variables,

a precondition, and a rewrite equation. Equation schemata can be applied by unifying the

preconditions and the left hand sides with a given expression and substituting the right hand

sides. Given problems are solved by applying schemata to eliminate obstacles [Shav90] in

the calculation of unknown properties of a variable. An explanation why this is an appropri-

ate solution to this problem is generated, the achieved schema is generalized to solve other

problems, and �nally, the knowledge base of all schemata is updated by the new generalized

schema.

Example

We illustrate this by giving an example of an application to physics (see [Shav90] for further

details). The initial physical knowledge consists of the de�nition of velocity, acceleration and

Newton's laws.



When a problem can't be solved, the teacher is asked for a detailed solution. The allowed

steps are: giving an instance of a known expression, de�ning a new variable, transforming a

previous expression (e.g. evaluation at a given mapping), and introducing new dependencies

between variables. Learning new equations is the result of generalizing explanations when

verifying the last step.

Given three balls with their velocity and mass at time A, the problem is to determine V1
at time B, when V2 and V3 are given (no external forces).

The problem solver stops after one blind substitution and the teacher has to give a solu-

tion. Suppose that the �rst step of this solution is

Mi1 Vi1;x(A) +Mi2 Vi2;x(A) +Mi3 Vi3;x(A) = Mi1 Vi1;x(B) +Mi2 Vi2;x(B) +Mi3 Vi3;x(B) :

After verifying the equation, an explanation why it holds is evaluated and generalized to get

the �nal result shown in �gure 3. Comparing to the result of standard EBL (�gure 2) one

can note that the structure as well as the numbers could be generalized.

Variables: c; t; i1; i2; i3
Precondition: IsaComponent(c) ^ IsaTime(t) ^

Not(ZeroValued(Mi1)) ^ Not(ZeroValued(Mi2)) ^ Not(ZeroValued(Mi3)) ^

IndependentOf(Mi1 ; t) ^ IndependentOf(Mi2 ; t) ^ IndependentOf(Mi3 ; t) ^

i1 6= i2 ^ i1 6= i3 ^ i2 6= i3 ^ Permutation(fi1; i2; i3g; ObjectsInWorld) ^

ZeroExpression(ValueOf(Fext;i1;c) + ValueOf(Fext;i2;c) + ValueOf(Fext;i3;c))

Mi1 Vi1;c(t) +Mi2 Vi2;c(t) +Mi3 Vi3;c(t) = constant

Figure 2: Learned Schema with Standard EBL

Variables: c

Precondition: IsaComponent(c) ^ 8i 2 ObjectsInWorld : Not(ZeroValued(Mi)) ^

8i 2 ObjectsInWorld : IndependentOf(Mi ; t)
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Figure 3: Learned Generalized Schema

3 Integration into CAS

To extend the mathematical capabilities of EBL and to bene�t from the knowledge and

algorithms of CAS, we give a schematic overview of the resulting architecture in �gure 4.

The integration leads to some theoretical and technical problems:

� common representation of variables, equations, expressions in a mathematical knowl-

edge base (e.g. additional indexing of variables in the explanations),

� explicit separation of calculation schemata and algebraic algorithms,
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Figure 4: Schematic Integration of a Learning Subsystem into the Architecture of CAS



� representation of generalized schemata as well as special cases (generality versus oper-

ationality).

The user interface is extended to provide frames and graphs for handling schemata. It can

display the explanations about solutions of speci�c problems. These problems are solved by

the evaluator by applying schemata (learning subsystem) or algebraic algorithms (symbolic

calculator) making use of the de�nitions in the symbol tables of the mathematical knowledge

base. This knowledge base also consists of the normal forms of the simpli�er, the algebraic

algorithms of the symbolic calculator, as well as initial and derived schemata. The learning

component, consisting of a schema-based problem solver, a verifyer, and functions to generate

explanations and their generalization, derives schemata in both general and special form.

Some promising advantages of this approach are:

� learning mathematical schemata of CAS by EBL,

� schema-based problem solving using the symbolic calculator (e.g. symbolic integration,

di�erential equations),

� modifying EBL to incrementally complete the properties of operators in ACS,

� extraction of mathematical schemata from algebraic algorithms.



4 Conclusion

An insight into EBL in mathematical-based domains is given. The methods presented rely

on a schema-based problem solver, and new schemata are learned by EBL. Integrating this

approach into CAS leads to new promising capabilities.

Among others, further research must be investigated to reformulate the notion of computa-

tional structures including both schemata and algorithms, automated veri�cation of schemata

and algorithms, and new applications of the intelligent environment. This environment should

also allow the integration of automated theorem provers.

We started an application in coding theory, where a source can learn new codes and

schemata, when and why the coding and decoding should automatically change in case too

few or too many errors or burst errors occur.
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