
of Proceedings of the 7th International Conference on Systems Research, Informatics & Cybernetics, pp. 130{135,

Baden-Baden, 1994.

Integrating Explanation-Based Learning in Symbolic Computing

K. Homann

Universit�at Karlsruhe

Institut f�ur Algorithmen und Kognitive Systeme

Am Fasanengarten 5 � D-76131 Karlsruhe � Germany

homann@ira.uka.de

Abstract

An approach to integrate explanation-based learning into computer algebra systems is given.

Schemata are learned by generalizing explanations of a teacher and by generalizing numbers. We

outline the architecture of an intelligent environment for learning mathematics and its advantages.

A uni�ed treatment of mathematical rules and of schemata of an application leads to increased

problem solving capabilities.

Keywords: Explanation-Based Learning, Completion, Symbolic Computations.

Introduction

Problem solving in mathematics and mathematical applications requires sophisticated knowledge

acquisition and reasoning techniques on the underlying mathematical laws. These capabilities are

not provided by classical computer algebra systems, which o�er a powerful collection of algebraic

algorithms and usually a straightforward programming language. Although Axiom allows the

de�nition of new abstract data types including properties of operators and started a new generation

of systems, no AI methods (e.g. automated theorem proving, learning) are provided.

We report on the integration of machine learning into computer algebra systems (CAS), which is

one task in the development of an intelligent environment for symbolic mathematical computations

called �����1. The paradigm of explanation-based learning (EBL) was chosen because it o�ers:

construction of composed objects by analyzing how components can be combined, aid to formulate

the solution to a given problem, improvement of performance by experience, consideration of user

de�nitions, explanations of solution steps.

These features could not be integrated into classical CAS because their mathematical knowledge was

given implicitly within complex implemented algorithms. The �rst step in the proposed approach

is to build a comprehensible representation of the mathematical knowledge in terms of abstract

computational structures (Bauer and Woessner, 1984), (Calmet et al., 1992) and schemata (Chafe,

1975), (Shavlik, 1990).

1
Learning Environment for Mathematics and Mathematical Applications



Several approaches to learning in mathematically-based domains have been developed. They cover

learning by heuristics, empirical learning, learning by testing, inductive learning, learning by analo-

gies, and explanation-based learning. However, none of them (except (Shavlik, 1990)) generalized

the structure of explanations or generalized numbers. An inference rule resulting from generalizing

numbers subsumes an in�nite class of rules learned by standard EBL and describes the situation

after an inde�nite number of inferences. A more general task is to generalize the structure of

explanations where the order of the applied schemata or the schemata themselves are generalized.

On the other hand, the automated theorem proving community o�ers many reasoning systems for

mathematics (e.g. Ontic, Nuprl,: : : ) and completion algorithms. None of them tried to learn

rules incrementally by EBL, where one can avoid the undecidability problems of the underlying

algorithm (e.g. Knuth and Bendix, 1967).

EBL in Mathematically-Based Domains

EBL in mathematically-based domains is a rewriting method for expressions. Unknown properties

of variables are computed by applying rules and generalizing its conditions and consequences.

There is a substantial di�erence to classical EBL in the structure of the explanation graph but

standard generalization techniques can be applied and the same problems arise (e.g. special versus

general schemata). Because of length requisites, this paper only briey describes the methods and

formalisms.

Mathematical schemata, user de�nitions, domain knowledge, and algebraic algorithms build the

background knowledge of a system which is capable of solving problems in mathematically-based

domains. Equation schemata allow the representation of this knowledge, but with the exception

of algebraic algorithms. Therefore, the lack of mathematical algorithms in classical systems led

to ine�cient and inappropriate representation of the underlying mathematics. Figure 1 gives a

brief insight into the hierarchy of some of these mathematical schemata. The next section gives an

architecture which allows the integration of algorithms in a schema-based problem solver.

Simplify

SolveMath

CancelAlgebra

SolveCalculus

SolveArithmetic

SubstIdentities

Integrate
Differentiate

MultiplyNumbers
AddNumbers
RemoveIdentities
MultiplyByZero

SubstAddIdentities
SubstMultIdentities

Figure 1: Hierarchy of Mathematical Schemata

A primitive equation schema is de�ned as an inference rule consisting of a list of variables, precon-

ditions, and a rewrite equation, e.g.

Name ConstantsOutOfCalculus

Variables x; indep; expr

Preconditions IndependentOf(?indep; ?x)

Equation
R
(?indep � ?expr) d?x =?indep �

R
?expr d?x



Name Di�erentiate

Variables x; n; expr

Preconditions Number(x)

Equation d

dx
exprn = n expr d

dx
exprn�1

Equation schemata can be applied by uni�cation of the preconditions and the left hand sides of

an equation with a given expression and by substituting the right hand sides. Given problems are

solved by applying schemata to eliminate obstacles (Shavlik, 1990) in the calculation of unknown

properties of a variable. In the simplest case an obstacle is an unaccaptable variable which, if its

value is known, would permit to solve the problem.

When a problem cannot be solved, the teacher is asked for a detailed solution. The allowed steps

are: to give an instance of a known expression, to de�ne a new variable, to transform a previous

expression (e.g. evaluation at a given mapping), and to introduce new dependencies between

variables. An explanation why this is an appropriate solution to this problem is generated, the

achieved schema is generalized to solve other problems, and �nally, the knowledge base of all

schemata is updated by the new generalized schema.

Learning new equations is the result of generalizing explanations when verifying the introduction of

new dependencies. This generalization is done by introducing and isolating the primary obstacles,

by introducing their cancelers and by cancellation. The adopted algorithm of Shavlik introduces the

generalization of numbers which allows to learn dependencies of an arbitrary number of instances

of variables and the generalization of the explanation structure which allows to learn equations

with much less preconditions (and is thus more general).

Integration into CAS

One of the major drawbacks of this method was the missing algorithmic mathematical knowledge.

However, large collections of powerful algebraic algorithms are provided by CAS. They are di�cult

to use, because their mathematical knowledge, e.g. de�nitions of mathematical structures, proper-

ties of operators of a domain, domains of computation, range of algorithms and their mathematical

speci�cation, is hidden in the algebraic algorithms. They are very e�cient in computing symbolic

solutions by given algorithms but cannot derive new theorems.

It is thus natural to integrate the methods of explanation-based learning in mathematically based

domains in symbolic computing. This allows to use very e�cient algebraic algorithms for mathe-

matical problem solving and schema-based representation and acquisition of learned solutions. We

give a schematic overview of the resulting architecture in �gure 2.

The integration leads to some theoretical and technical problems:

� common representation of variables, equations, expressions in a mathematical knowledge base

(e.g. additional indexing of variables in the explanations),

� explicit separation of calculation schemata and algebraic algorithms,

� introduction of algorithm schemata which provides the meta knowledge for generalizing alge-

braic algorithms in the cancellation graph,

� representation of generalized schemata as well as special cases (generality versus operational-

ity).



Simplifier

Evaluator

Symbolic
Calculator

Learning Subsystem

Problem Solver

Verifyer

Parser Display

GUI
User Interface

Mathematical
Knowledge Base

Normal Forms

Symbol Tables

Algorithms

Derived Schemata

Special Cases

General Schemata

Mathematical Schemata
Domain Knowledge

User Definitions

Initial Schemata

Explanation

Generalization

Figure 2: Schematic Integration of a Learning Subsystem into the Architecture of CAS

The user interface is extended to provide frames and graphs for handling schemata. It can display

the explanations about solutions of speci�c problems. These problems are solved by the evaluator

by applying schemata (learning subsystem) or algebraic algorithms (symbolic calculator) making

use of the de�nitions in the symbol tables of the mathematical knowledge base. This knowledge

base also consists of the normal forms of the simpli�er, the algebraic algorithms of the symbolic

calculator, as well as of the initial and derived schemata. The learning component, consisting

of a schema-based problem solver, a veri�er, and functions to generate explanations and their

generalization, derives schemata in both general and special forms.

A proposed interaction between a symbolic calculator (SC) and a learning component (LC) is

illustrated in �gure 3.

The foreseen bene�ts of this approach are:

� schema-based problem solving using the symbolic calculator (e.g. symbolic integration, dif-

ferential equations).

The main advantage of using the algorithms of the SC to simplify and compute predicates

is a huge extension of the build-in mathematics of the system. Several of the problems of

schema-based computations can be avoided, e.g. use of associativity and distributivity. Ad-

ditionaly, the computations by the symbolic calculator are much more e�cient and powerful,

e.g. equation schemata ConstantsOutOfCalculus and Di�erentiate of the last section compared

to algorithms for integration and di�erentiation of the SC. To preserve the generalization

capability, this kind of interaction requires the explicit representation of conditions and re-

sults of algorithms. We introduced the notion of algorithm schemata which enables this



SC

Evaluator

Knowledge Base

User Interface

LC

Figure 3: Interaction between Symbolic Calculator and Learning Subsystem

representation, e.g. schema for the algorithm gcd

Name gcd(?a; ?b) =?g

Signature ?A � ?A ! ?A

Constraints isa (?A, EuclideanRing)

De�nition (?gj?a) ^ (?gj?b)^ (8c 2?A : (cj?a)^ (cj?b)) (cj?g))

Subalgs

Theorems gcd(u; v) = gcd(v; u)

gcd(u; v) = gcd(v; u mod v)

gcd(u; 0) = u

Function

This reduces the proof of a teacher's solution because mainly substitutions of variables must

be computed by equations, e.g. steps (1){(5), (8){(10) in the veri�cation of the solution to

the energy problem are e�ciently performed by the SC
d

dt
(12 M1 V

2
1;y(t) +M1 gX1;y(t))

(1) SeperateDerivatives = d

dt
(1
2
M1 V

2
1;y(t)) +

d

dt
(M1 gX1;y(t))

(2) ConstsOutOfDerivatives = 1
2
M1

d

dt
(V 2

1;y(t)) +M1 g
d

dt
(X1;y(t))

(3) Di�erentiate = 2
2 M1 V1;y(t)

d

dt
(V1;y(t)) +M1 g

d

dt
(X1;y(t))

(4) MultiplyNumbers = 1M1V1;y(t)
d

dt
(V1;y(t)) +M1 g

d

dt
(X1;y(t))

(5) RemoveIdentities = M1 V1;y(t)
d

dt
(V1;y(t)) +M1 g

d

dt
(X1;y(t))

(6) SubstCalculus = M1 V1;y(t)A1;y(t) +M1 g V1;y(t)

(7) SubstToCancel = M1 V1;y(t)
Fnet;1;y(t)

M1

+M1
Fnet;1;y

M1

V1;y(t)

(8) SubstMultIdentities = 1V1;y(t)Fnet;1;y(t) + 1Fnet;1;y V1;y(t)

(9) RemoveIdentities = V1;y(t)Fnet;1;y(t) + Fnet;1;y V1;y(t)

(10) SubstAddIdentities = 0 kgm
2

s3

Algorithm schemata must support references to input variables in the output which allows to

generalize the application of the algorithms.

� learning mathematical schemata of CAS by EBL.

EBL has shown remarkable success in learning heuristics to guide the application of algorithms

and equations, e.g. Lex2 (Mitchell, 1983) for symbolic integration.



� modifying EBL to incrementally complete the properties of operators in abstract computa-

tional structures (Calmet and Tjandra, 1990).

� extraction of mathematical schemata from algebraic algorithms.

Conclusion

An insight into EBL in mathematically-based domains is given. The methods presented rely on

a schema-based problem solver, and new schemata are learned by EBL. Integrating this approach

into CAS leads to new promising capabilities.

Among others, further research must be conducted to reformulate the notion of computational

structures including both schemata and algorithms, automated veri�cation of schemata and algo-

rithms, and new applications of the intelligent environment. This environment should also allow

the integration of automated theorem provers.

References

Bauer, F.L. and H. Woessner (1984); Algorithmische Sprache und Programmentwicklung (2nd

Edition); Springer

Calmet, J., Homann, K. and I.A. Tjandra (1992); Uni�ed Domains and Abstract Computational

Structures; Proc. International Conference on Arti�cial Intelligence and Symbolic Mathematical

Computing (ed. Calmet, J. and J.A. Campbell); Springer, LNCS 737 (pp. 166{177)

Calmet, J. and I.A. Tjandra (1990); Learning Complete Computational Structures; Proc. 5th

International Symposium on Methodologies for Intelligent Systems (Selected Papers); Knoxville,

TN (pp. 63{72)

Chafe, W. (1975); Some Thoughts on Schemata; Theoretical Issues in Natural Language Process-

ing I; Cambridge, MA (pp. 89{91)

Knuth, D.E. and P.B. Bendix (1967); Simple Word Problems in Universal Algebras; Oxford (pp.

263{298)

Mitchell, T.M. (1983); Learning and Problem Solving; Proc. 8th International Joint Conference on

Arti�cial Intelligence; Karlsruhe, Germany (pp. 1139{1151)

Shavlik, J.W. (1990); Extending Explanation-Based Learning by Generalizing the Structure of

Explanations; Pitman, London


