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We generalize the notion of a tableau of a system of partial di�erential equa-
tions. This leads to an intrinsic de�nition of formally well-posed initial value
problems, i.e. problems with exactly the right amount of Cauchy data. We must
allow here that the data is prescribed on a ag of submanifolds. The advantage
of this approach is that even for non-normal systems the data can be chosen
completely arbitrarily and does not need to satisfy any constraints. The exis-
tence and uniqueness of analytic solutions is guaranteed by the Cartan-K�ahler
Theorem. For linear systems the uniqueness is extended to non-analytic solutions
by a generalization of the Holmgren Theorem. We discuss the relation between
the generalized tableaux and �-regularity of the coordinate system and we give a
rigorous de�nition of under- and over-determinacy.

1. Introduction

A natural question to ask about an initial value problem is: \Howmuch Cauchy
data must be prescribed?" If there is not su�cient data, we will not obtain a
unique solution. If we give too much data, it must satisfy compatibility conditions.
We call a problem formally well-posed, if exactly the right amount of data is given.
It is a bit surprising that the answer to this question for general systems of

partial di�erential equations is hardly known. It is obvious for ordinary di�erential
equations and single partial di�erential equations. But if we proceed to systems of
partial di�erential equations, the only well-known result concerns normal systems,
i.e. systems satisfying the conditions of the Cauchy-Kowalevsky Theorem. We
consider the generalization to arbitrary involutive systems using the formal theory
of di�erential equations (Pom78; Sei94a).
Although the Cartan-K�ahler Theorem is well-known, especially in the context

of exterior di�erential systems (BCG+91) where it was originally derived, appar-
ently little attention has been paid to its use in initial value problems. Especially
the unusual form of prescribing Cauchy data implicitly contained in its formula-
tion has (to our knowledge) never been studied in detail.
The standard formulation of initial value problems in a geometric framework
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considers an embedding of a submanifold of the space of independent variables
of codimension 1 into an appropriate jet bundle (Gar69). However, as soon as
we treat non-normal systems, this implies that the Cauchy data must satisfy
compatibility conditions. Such systems are of great importance in physics, as for
instance the �eld equations of a gauge theory can never be normal.
Such compatibility conditions on Cauchy data provide problems in numerical

computations. They make the consistent initialization considerably more di�cult.
Empirical results show that already in the case of a system of ordinary di�erential
equations with algebraic constraints (BCP89) most methods are very sensitive to
even small inconsistencies in the initial data.
In this article we present an intrinsic description of initial value problems where

the Cauchy data is completely unconstrained. This leads us to a formulation
where it is prescribed on a ag of submanifolds of di�erent dimensions. Such
formulations are known from Janet-Riquier Theory (Jan20). But this approach
depends decisively on the coordinate system. In a geometric setting we know
of only two articles (Kor90a; Kor90b) using such an approach. But the author
always assumed that the problem was formally well-posed without studying the
conditions for it.
In the Cauchy-Kowalevsky Theorem one requires that the data is not given

on a characteristic submanifold. We encounter similar conditions. To formulate
them in a concise and intrinsic manner we must introduce a generalization of
the notion of a tableau of a di�erential equation. The classical concept of a non-
characteristic one-form must be extended to non-systatic bases of T �X where X
is the space of independent variables.
Tableaux have other interesting applications, too. We use them to propose

a rigorous de�nition of under- and over-determinacy combining and extending
previous ideas by Olver (Olv86) and Pommaret (Pom78). This de�nition is more
consistent with the intuitive conception of an under-determined system than the
standard one based on a comparison of the number of equations and unknowns.
A central problem in the formal theory is the completion of a given system to

an equivalent involutive one. This requires the Cartan characters of the symbol.
In most coordinate systems their determination is straightforward. But certain
singular systems lead to wrong results. Using the tableaux we present an intrin-
sic way to compute the characters independent of the coordinate system. It is
computationally more e�cient than previously proposed methods.
The word \formal" means in this context that only formal power series are

used without consideration of their convergence. This implies that we tackle the
question of local solvability only for analytic systems. Hence we restrict our at-
tention to integrability conditions and not to problems of the Lewy type (Lew57).
Similarly all our results are purely local, although we usually omit to speak of
neighborhoods etc. to make the notation simpler.
Since the formal theory of di�erential equations is still not very well-known, we

give in the next two sections a somewhat longer introduction to it emphasizing
the properties of involutive symbols and systems. The remainder of the article
is organized as follows: In Section 4 we recall the de�nition of the tableau and
of characteristics and use them to give a precise de�nition of under- and over-
determinacy. Section 5 contains the generalization to k-tableaux and explains
how they are connected with the Cartan characters. The study of initial value
problems starts in Section 6 with the de�nition of formal well-posedness. Section 8
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contains a proof of the Cartan-K�ahler Theorem adapted to our purposes which is
then used to extend the Holmgren Theorem to arbitrary linear systems. Section 9
considers briey the problem of stability, before �nally some conclusions are given.

2. Formal Theory

Formal theory uses a geometric approach to di�erential equations based on
the jet bundle formalism. It is beyond the scope of this article to give a detailed
introduction to the underlying theory. The interested reader is referred to the lit-
erature (Pom78; Sau89). Our presentation here is a shortened version of (Sei94a).
We will always work in a local coordinate system, although the whole theory

can be expressed in a coordinate free way. Let x1; : : : ; xn denote the independent
and u1; : : : ; um the dependent variables. Together they form bundle coordinates
for some bundle E over some base space X . Derivatives are written in multi-index
notation p�� = @j�ju�=@(x1)�1 � � �@(xn)�n where j�j = �1+ � � �+�n is the length of

the multi-index � = [�1; : : : ; �n] : Adding the derivatives p�� up to order q de�nes
a local coordinate system for the q-th order jet bundle JqE .
The main goal of this formalism is to identify a di�erential equation with an

intrinsic geometric object. We de�ne a di�erential equation of order q as a �bered
submanifold Rq of the q-th order jet bundle JqE . This allows us to obtain results
independent of any particular way of writing the equations. Rq can be considered
as the kernel of some mapping � : JqE ! E

0 for some other bundle E 0. Thus locally
it is described by a system of equations

Rq : ��
�
xi; u�; p��

�
= 0 ;

�
�=1;:::;p ;

j�j6q :
(2.1)

In this geometric framework a solution is a (local) section � 2 �loc(E) of the
bundle E such that its q-th prolongation satis�es jq(�) � Rq.
At least some of the ideas behind the concept of involution can be understood

best by considering the order by order construction of a formal power series
solution. We make a power series ansatz for the general solution of the di�erential
equationRq by expanding it around some point x0. Then we substitute this ansatz
into the equations (2.1) and evaluate at x0. This yields a system of algebraic
equations for the Taylor coe�cients up to order q.
For the coe�cients of order q+r we use the prolonged equations Rq+r obtained

by di�erentiating each equation in Rq r times with respect to all independent
variables. Since they are quasi-linear, substituting the power series ansatz into
Rq+r and evaluating at x0 yields an inhomogeneous linear system for the Taylor
coe�cients of order q + r. Those of lower order appear in its matrix and in its
right hand side. Thus we can express the coe�cients of order q+r through them.
This is the precise meaning of constructing a power series order by order.
This construction fails, if integrability conditions occur. Such equations arise

usually by cross-di�erentiating. They are detected only after some prolongations,
but pose additional conditions on the coe�cients of lower order. Hence they must
be known to pursue the above described procedure.
Geometrically we can see integrability conditions by considering the natural

projections �q2q1 from the jet bundle Jq2E of order q2 onto the jet bundle Jq1E of
the lower order q1. If an integrability condition of order q is occurring, for some



D
R

A
FT

4 Werner M. Seiler

order q + r the projection of Rq+r on Rq is not surjective, i.e.

R
(r)
q = �q+rq (Rq+r) � Rq : (2.2)

We call a di�erential equation formally integrable, if at any order all projections
are surjective, i.e. integrability conditions never arise.
For such equations it is possible to construct order by order a formal power

series solution. In each step we can by the Implicit Function Theorem solve for
some of the derivatives of the corresponding order. These are called principal
derivatives. All other derivatives of the same order are parametric ones.
Formally integrable equations are often called involutive. This is not correct.

Involution comprises formal integrability but requires additional properties which
are of a more algebraic nature. To give an exact de�nition we have to introduce
the symbol of a di�erential equation which is closely connected with the above
presented order by order construction of power series solutions.

De�nition 1. Let the di�erential equation Rq be locally described by (2.1). The
solution spaceMq of the following system of linear equations in the unknowns v��
with � = 1; : : : ; m; j�j = q

Mq :

8<
:
X

�;j�j=q

 
@��

@p��

!
v�� = 0 ; � = 1; : : : ; p (2.3)

is called the symbol of Rq. (By abuse of language, we will often also call the linear
system symbol instead of its solution space).

Di�erential geometrically seen the symbol represents a family of vector spaces
over Rq. It can be de�ned intrinsically as Mq = VRq \ (SqT

�X 
 V E) where
Sq denotes the q-fold symmetric product, T �X the cotangent bundle of X and V
the verticle bundley. Alternatively we can use the local representation (2.1) of Rq

and introduce the symbol map

� :

8>><
>>:
SqT

�X 
 V E �! V E 0

v�� 7�!

X
�;j�j=q

 
@��

@p��

!
v��

: (2.4)

This map is intrinsically de�ned, i.e. independent of the choice of the local repre-
sentation �, and its kernel is Mq. We make the assumption that Mq is a vector
bundle over Rq, i.e. the rank of the symbol map � is constant.
An important property of the symbol is that it allows for an indirect deter-

mination of the dimension of projected equations. Rank de�cits in the symbol
signal the occurrence of integrability conditions or identities.

Theorem 2. (Pom78) If Mq+1 is a vector bundle, then

dimR
(1)
q = dimRq+1 � dimMq+1 : (2.5)

y JqE is an a�ne bundle over Jq�1E modeled on the vector bundle SqT �X 
 V E. This follows easily

from the transformation and symmetry properties of q-th order derivatives (Pom78). One can thus

consider SqT �X 
 V E as the \vector space of all q-th order derivatives".
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The multi-index � = [�1; �2; : : : ; �n] is said to be of class k, if its �rst non-
vanishing entry is �k . We can order the columns of the symbol by the class of
the multi-index of the corresponding v�� (the ordering within a class is of no

importance) and then compute a row echelon form. In this form, the class of each
row is given by the class of its �rst non-vanishing entry, the pivot. We associate
with a row of class k the multiplicative variables x1; x2; : : : ; xk : The symbol is

now in solved form. We denote by �
(k)
q the numberz of rows of class k. We will

study in Section 5 under what conditions this de�nition is intrinsic.
The jet variables corresponding to the pivots represent one possible choice

for the principal derivatives used in the order by order construction of a power
series solution. The point is to �nd a unique way to compute all derivatives of the
principal derivatives. This leads to the notion of an involutive symbol. An intrinsic
de�nition of it can be obtained from the Spencer cohomology (Gol69; Pom78).
We mention here only a simple criterion for involution using the multiplicative
variables. It can be easily applied in concrete computations.

De�nition 3. The symbol Mq is called involutive, if

rankMq+1 =
nX

k=1

k�(k)q : (2.6)

The di�erential equation Rq is called involutive or in involution, if it is formally
integrable and if its symbol Mq is involutive.

This approach to involution via analyzing pivots is inspired by the Janet-
Riquier Theory (Jan20; Rei91). According to the Cartan-Kuranishi Theorem
(Kur57; Pom78), any di�erential equation can be completed to an involutive one
by a �nite number of prolongations and projections. (SSC92; Sei94a) describe an
algorithm for this completion and its implementation in the computer algebra
system AXIOM.

We will later need mainly the �
(k)
q . But to make contact with other results we

recall the de�nition of the Cartan characters �
(k)
q . They di�er from the �

(k)
q by a

simple combinatorial factor

�(k)q = m

 
q + n � k � 1

q � 1

!
� �(k)q k = 1; : : : ; n : (2.7)

�
(k)
q corresponds to the number of principal derivatives of class k and order q,

whereas �
(k)
q denotes the number of parametric derivatives of class k and order q.

3. Involutive Symbols and Multiplicative Variables

De�nition 3 looks at �rst sight rather strange. But it has a straightforward
explanation, which is so important that we will give it in form of a proposition
for easier reference. Its proof follows from a simple analysis of the pivots in Mq

and Mq+1, respectively.

z This number could take di�erent values at di�erent points of Rq. But like we always assume that

Mq is a vector bundle, we always assume that its value is constant on Rq.
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Proposition 4. If the symbolMq of the di�erential equation Rq is involutive,
then we obtain (in a given local representation) all independent equations of
order q + 1 of the prolongation Rq+1 by di�erentiating each equation of Rq with
respect to its multiplicative variables only.

In order to study further properties of involutive symbols, we need a systematic
way to choose the principal derivatives. We de�ne a ranking of derivatives as a
total ordering de�ned on the space of all derivatives p�� satisfying (i) if j�j < j�j,

then p�� < p�� , (ii) if p��1
< p��2

, then p��1+�
< p��2+�

for any multi-index �. If

(i) holds not only for derivatives of the same dependent variable but for all, the
ranking is called a total-degree or orderly ranking. In such a ranking derivatives
are ordered �rst by their order and then by other criteria. A total-degree ranking
respects classes, if p�� < p�� for class p�� < class p�� .
A ranking of derivatives induces a ranking of the unknowns v�� used as place

holders in the symbol. From now on, we assume that the columns of the symbol
are ordered using a ranking that respects classes. An important example is the
inverse lexicographic ranking, a total-degree ranking. If two derivatives have the
same order, we look at the �rst di�ering entry in the multi-index. The one with
the higher entry is taken as higher in the ranking. Of two derivatives with the
same multi-index we take the one as higher which belongs to the dependent
variable with the higher index.

Proposition 5. (Pom78) Let Mq be an involutive symbol in solved form,
where the columns have been ordered according to a class-respecting ranking.
Denote by �� 1i the multi-index obtained by adding (subtracting) 1 to �i.
(i) If v�� is a pivot of class i, v���1i+1j is also a pivot for all j > i.

(ii) If there are pivots v�� of class i, then the entries �i of their multi-indices take
all values between 1 and a maximal value.

Corollary 6. Let M1 be the involutive symbol of a �rst-order system. Then

0 6 �
(1)
1 6 �

(2)
1 6 � � �6 �

(n)
1 6m : (3.1)

Proof. This is a direct consequence of Part (i) of Proposition 5. Let v�� be a
pivot of class k, i.e. �i = �ik. Then v

�
� with � = �� 1k+1k+1, i.e. �i = �i;k+1, is a

pivot of class k + 1 occurring in M1. Thus �
(k+1)
1 > �

(k)
1 . �

(n)
q cannot be greater

than m for any value of q, as only m derivatives of class n exist.

This corollary holds only for �rst-order equations. But the corresponding result
for the Cartan characters is correct at any order.

Corollary 7. Let Mq be the involutive symbol of a di�erential equation of
order q. Then

�(1)q > �(2)q > � � �> �(n)q > 0 : (3.2)

Proof. For q = 1 this follows from (3.1) and the de�nition of the �
(k)
q . For higher

order equations one exploits that every di�erential equation can be transformed
into a �rst-order one with the same Cartan characters (Pom78; Sei94a).

Finally we prove a generalization of an old result by Finzi (Fin47; Olv86) for
systems with the same number of equations and dependent variables.
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Corollary 8. A di�erential equation Rq has either identities or integrability

conditions, if and only if �
(n�1)
q > 0.

Proof. If �
(n�1)
q > 0, equations with non-multiplicative variables exist, as the

only equations without are those of class n. According to Proposition 4 the pro-
longation of these equations with respect to xn leads either to identities or to

integrability conditions. For the converse, we note that if �
(n�1)
q = 0 all �

(k)
q with

k < n � 1 vanish. This can be shown similarly to Corollary 6. Thus Rq contains
only equations of class n and all prolonged equations are independent.

4. The Tableau of a Di�erential Equation

De�nition 9. Let � = �idx
i
2 T �X be an arbitrary one-form overX and let Rq

be a di�erential equation locally de�ned by the map � : JqE ! E
0. The tableau ��

of Rq is the linear mapping

�� :

8>><
>>:
V E

��
�! SqT

�X 
 V E
�
�! V E 0

v� 7�! ��v
�

7�!

X
�;j�j=q

 
@��

@p��

!
��v

� (4.1)

where �� = (�1)
�1 � � � (�n)

�n .

This is a kind of \dual" de�nition to (BCG+91) where �� is called symbol and
its solution space tableau. The associated matrix

T
�
� [�] =

X
j�j=q

 
@��

@p��

!
�� (4.2)

has p rows and m columns, where p is the dimension of E 0. Its entries are homo-
geneous polynomials of degree q in the components of �.
Intuitively we would consider a di�erential equation as under-determined, if

its general solution contains arbitrary functions of all independent variables, as
this implies that the equation poses no restrictions at all for at least one of the
dependent variables u�.

De�nition 10. The involutive equation Rq is said to be under-determined at
P 2 Rq, if no one-form � exists such that �� is injective (in P ). If there exists a
one-form � such that �� is bijective, the equation is well-determined or normal.
Otherwise the equation is called over-determined.

Theorem 11. Let Rq be a di�erential equation with tableau ��. In di�er-

ent coordinate systems we might get di�erent values for �
(n)
q . Let ~�

(n)
q be the

maximum of these values. Then

max
�6=0

rank �� = ~�(n)q : (4.3)
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Proof. By the de�nition of ~�
(n)
q we can �nd a local description (2.1) such that

@��

@p�[0;:::;0;q]
= ��� ; � = 1; : : : ; ~�(n)q : (4.4)

The diagonal elements of the top left ~�
(n)
q � ~�

(n)
q submatrix of T [�] are now of

the form (�n)
q + : : : and the monomial (�n)

q occurs nowhere else. If we choose
� = dxn all entries vanish with the exception of these diagonal elements which

become one. Hence the rank of �� is at least ~�
(n)
q .

Assume now the rank be greater than ~�
(n)
q for some one-form �. We choose in

a neighborhood of a point x0 2 X a new coordinate system �xi =  i(xj) where
the function  n satis�es

@ n

@xi
(x0) = �i : (4.5)

Obviously this is always possible, as � never vanishes. For the derivatives of
class n we obtain

@ ���

@�p�[0;:::;0;q]
=
X
j�j=q

@��

@p��

nY
i=1

�
@ n

@xi

��i
: (4.6)

At the point x0 we can evaluate the derivatives of  and the right hand side

becomes the matrix of the tableau ��. By assumption its rank is greater than ~�
(n)
q

implying that we found a coordinate system in which more than ~�
(n)
q equations

are of class n, a clear contradiction.

The following corollary shows that our de�nition of under-determinacy is con-

sistent with the intuitive one. If �
(n)
q < m, then �

(n)
q > 0 implying that the

general solution of Rq contains arbitrary functions depending on all independent
variables (Sei94b).

Corollary 12. An involutive equation Rq is under-determined, if and only if

~�
(n)
q < m. Rq is normal, if and only if ~�

(n)
q = m and all other ~�

(k)
q = 0.

Proof. By de�nition Rq is under-determined, if and only if no � exists such

that rank �� = m. By Theorem 11 this happens if and only if ~�
(n)
q < m. Similarly

we get the value of ~�
(n)
q for a normal equation. It follows from the bijectivity of

the tableau that the other characters must vanish.

It is important to note that under-determinacy depends only on ~�
(n)
q and not

on the total number p of equations used to describe Rq. Of course, a system
which can be locally described with less equations than unknowns will always be
under-determined, but the converse is not true.

Example 13. Consider the Maxwell equations in two dimensions

utt � vxt = 0 ;
uxt � vxx = 0 :

(4.7)
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The tableau of this system is given by the matrix

T [�] =

0
@(�1)2 ��1�2

�1�2 �(�2)
2

1
A : (4.8)

Obviously its rank is 1 for every non-vanishing one-form �. This yields ~�
(2)
2 = 1

and it is not possible to �nd a coordinate system in which two leading derivatives
of class 2 occur. The tableau is never injective and the system is indeed under-
determined, although there are as many equations as dependent variables. This
is typical for gauge theories and related to the gauge symmetry.

De�nition 14. A non-vanishing one-form � 2 T �X for which the rank of the

tableau is less than ~�
(n)
q is called systatic. � is a characteristic one-form, if �� is

not injective.

The term systatic was apparently coined by Pommaret (Pom78). For equations
which are not under-determined systatic and characteristic are equivalent. The
connection between this de�nition of characteristics and the classical one found
in most textbooks can be seen most easily for �rst-order systems.

Example 15. Let us consider for simplicity a linear �rst-order system

R1 :

8<
:
X
i;�

A�i
� (x)p

�
i +

X
�

B�
�(x)u

� + C�(x) = 0 ; � = 1; : : : ; p (4.9)

and an (n� 1)-dimensional hypersurface � in solved form

� : xn = �(x1; : : : ; xn�1) : (4.10)

Such a surface is usually called characteristic, if prescribing the values of u� on �
does not su�ce to compute all derivatives on the hypersurface (Joh82).
We assume that u� � = f�(x1; : : : ; xn�1). This yields using the chain rule

@u�

@xi �
+
@�

@xi
@u�

@xn �
=
@f�

@xi
; i = 1; : : : ; n� 1 : (4.11)

Substituting these relations into the di�erential equation (4.9) yields a linear
system for the derivatives @u�=@xn � with the matrix

A�n
� �

n�1X
i=1

A�i
�

@�

@xi
: (4.12)

If the rank of this matrix is less thanm, it is not possible to determine all deriva-
tives on �. But then the one-form � = dxn �

Pn�1
i=1 (@�=@x

i)dxi is characteristic
according to De�nition 14. Hence � = d� where �(x) = xn��(x1; : : : ; xn�1) = 0
describes �. De�ning the co-normal variety N�

x� = f! 2 T �xX j!(Tx�) = 0g as
the set of all one-forms annihilating the tangent space of the surface, we see that
it is generated by �.

Finally, Theorem 11 allows us to give a simple proof of the following

Corollary 16. (Pom78) If a one-form � exists such that the tableau �� of the
di�erential equation Rq is surjective, then Rq is involutive.
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Proof. �� can only be surjective, if the number p of equations in Rq is less than
or equal to the number of dependent variables. The maximal rank of the tableau
is then p. It follows from Theorem 11 that all equations are of class n. But this
implies immediately that Mq is involutive and that no integrability conditions
arise; thus Rq is involutive.

5. k-Tableaux and �-Regularity

�-Regularity concerns our criterion (2.6) for involutive symbols. We had to

introduce the class of a derivative to de�ne the �
(k)
q , an obviously coordinate

dependent concept. As the class depends only on the multi-index, it su�ces to
consider changes of the independent coordinates xi. We can even restrict our
attention to linear changes, as a general coordinate transformation a�ects the
symbol only through its Jacobian.
Such a transformation is characterized by a matrix A with constant coe�-

cients aij : If we perform a generic change of coordinates, i.e. without specifying
the matrix A, the aij appear in the symbol in a complicated, non-linear way.
Ordering the columns by class and computing a row echelon form of the symbol

in this generic coordinate system yields the maximal value for �
(n)
q admitted by

the considered di�erential equation called ~�
(n)
q in the last section.

We also obtain the maximal admitted values for the sums
Pn

i=k �
(i)
q . This

characterizes the intrinsically de�ned values of the �
(k)
q . We denote them by

~�
(k)
q . A more direct de�nition of them can be given using the Spencer cohomol-

ogy (Pom78). De�nition 3 and all the results in Section 3 apply only to the ~�
(k)
q .

Let, in given coordinates, �
(k)
q be the number of equations of class k in the sym-

bol Mq. The coordinate system is called �-regular for Mq, if �
(k)
q = ~�

(k)
q for

k = 1; : : : ; n.
For special choices of the coe�cients aij a pivot in the row echelon form may

vanish and a row changes to a lower class. The corresponding matrix A leads
to a �-singular coordinate system. As the aij enter the symbol algebraically, the
set of �-singular systems can be described by an algebraic variety in the space of
n� n-matrices.

Example 17. �-regularity is connected with characteristics. Consider the wave
equation

utt � uxx = 0 : (5.1)

The coordinate system (x; t) is obviously �-regular, no matter how we order x
and t. In a general coordinate system � = �(x; t); � = �(x; t), (5.1) becomes

(�2t � �2x)u�� + 2(�t�t � �x�x)u�� + (�2t � �2x)u�� +

(�tt � �xx)u� + (�tt � �xx)u� = 0 :
(5.2)

Independent of the ordering of the new coordinates, we do not �nd a derivative
of class 2, if �t = ��x and �t = ��x. But these are the equations for the two
characteristics of the wave equation. It is not harmful if one of the coordinates is
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characteristic, as we can always choose the other one as �x2. This comes from the

fact that only the coordinates xk with �
(k)
q > 0 are important for �-regularity.

Since one encounters fairly often di�erential equations which are not given in a
�-regular coordinate system, one needs a practical tool to cope with this problem.
In principle, one could simply compute in a generic coordinate system. In practice
this is not feasible, as the computations simply blow up. By generalizing the
notion of a tableau we obtain a method to compute all characters independent
of the used coordinate system similar to Theorem 11.
The transformation law of derivatives under changes of coordinates looks rather

messy in multi-index notation. We introduce some notations. Let � be a multi-
index of length q. We denote by S� the set of all possible realizations of it with
repeated indices. An element s 2 S� represents a tuple of q integers containing
�i times the value i; e.g. with n = 2 one gets S[1;2] = f(1; 2; 2); (2; 1; 2); (2; 2; 1)g.

We denote the k-th element of s by sk. r(�) is the realization of � as a repeated
index in which the entries are sorted (smallest �rst), i.e. r([1; 2]) = (1; 2; 2).

De�nition 18. Let �(k); : : : ; �(n) 2 T �X be n � k + 1 linearly independent
one-forms for 1 6 k 6 n and let �k : Nk ,! X be a submanifold such that the
one-forms ��k�

(j) span T �Nk. Let the di�erential equation Rq be locally described
by the map � : JqE ! E

0. The k-tableau �[�(k);:::;�(n)] is the linear mapping

�[�(k);:::;�(n)] :

8>>>><
>>>>:
SqT

�Nk

 V E

�[�]
�! SqT

�X 
 V E
�
�! V E 0

v�� 7�!

X
�

C�
�v

�
� 7�!

X
�;�
j�j=q

 
@��

@p��

!
C�
�v

�
�

(5.3)
where � is a multi-index with n entries of length q and class � > k and the factor
C�
� is de�ned by

C�
� =

X
s2S�

qY
i=1

�(si)mi
; m = r(�) : (5.4)

The only di�erence to De�nition 9 lies in the �rst map of (5.3) which is now
parameterized by several one-forms. The multi-index � serves as a convenient
way to get local coordinates in SqT

�Nk

 V E ; one could also say that we choose

local coordinates in X such that Nk is given by x1 = const; : : : ; xk�1 = const.
The matrix of the k-tableau is

T
��
� [�(k); : : : ; �(n)] =

X
j�j=q

 
@��

@p��

!
C�
� ;

�
class � > k ;
j�j = q :

(5.5)

It has p rows indexed by � and mrk columns indexed by � and � where p is again

the dimension of E 0 and rk = dimSqT
�Nk


 V E =
�
n�k+q
n�k

�
. The n-tableau is

the usual one as de�ned in the last section. Since N1 = X , the 1-tableau as the
largest one has the same size as the symbol.

Lemma 19. The matrix of the k-tableau contains the matrices of all `-tableaux
with ` > k as submatrices.
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Proof. The matrix T [�(k); : : : ; �(n)] consists of rk matrices with p rows and
m columns each generated similar to T [�] in Section 4 but with di�erent map-
pings ��. In (5.5) all multi-indices with class � > k are taken into account. This
includes all multi-indices with class � > ` for ` > k. (5.4) shows that for such

multi-indices the entries of the k-tableau do not depend on �(k); : : : ; �(`�1).

Theorem 20. Let Rq be a di�erential equation with characters ~�
(n)
q . Then for

1 6 k 6 n

max
�(k);:::;�(n)

rank �[�(k);:::;�(n)] =
nX

i=k

~�(i)q : (5.6)

Proof. The proof is a simple generalization of the one of Theorem 11. In a
�-regular coordinate system a local description of Rq exists such that the �rst
~�
(n)
q equations are solved for derivatives of class n, the next ~�

(n�1)
q equations for

derivatives of class n�1 and so on. We order the columns of the k-tableau in such
a way that the �rst m columns represent the n-tableau, the �rst mrn�1 columns
the n� 1 tableau etc. This is possible according to Lemma 19.

For �(k) = dxk; : : : ; �(n) = dxn the factors C�
� vanish whenever � 6= � and are

one otherwise. Thus we eliminated all contributions by derivatives of class less
than k. If the principal derivative of equation � is p�� , the column indexed by � and
� contains the �rst non-vanishing entry in row � . Since our local representation
was such that the symbol is in solved form, all leading derivatives are di�erent

and we have at least
Pn

i=k
~�
(i)
q linearly independent rows.

On the other hand assume that one-forms �(k); : : : ; �(n) exist such that the rank
of the k-tableau is larger than the claimed value. Then we apply a coordinate
transformation �xj =  j(x) where the functions  j satisfy in a point x0 2 X

@ j

@xi
(x0) = �

(j)
i ; j = k; : : : ; n : (5.7)

Due to the linear independence of the one-forms �(i) this is always possible. The
e�ect of this transformation on the symbol is determined by the highest order
part of the transformation law for the derivatives of order q. It is given by

@p��

@�p��
=
X
s2S�

qY
i=1

�
@ si

@xmi

�
;

�
j�j = j�j = q;
m = r(�) :

(5.8)

Since we are interested in ~�
(k)
q ; : : : ; ~�

(n)
q , we consider only the derivatives

@ ���

@�p��
=
X
j�j=q

 
@��

@p��

!
@p��

@�p��
; class � > k : (5.9)

But at x0 we can evaluate the derivatives of  j occurring at the right hand side
when we plug in (5.8). Comparing (5.9) and (5.5) we immediately recognize the
k-tableau at the right hand side. Thus we have found a coordinate system in
which we have more equations of class greater than or equal to k than given byPn

i=k
~�
(i)
q . But this contradicts the de�nition of the ~�

(k)
q .
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This theorem provides the searched for intrinsic de�nition of the ~�
(k)
q . From

now on we omit the tilde and always assume that �
(k)
q denotes these values.

De�nition 21. Let �(i) 2 T �X; i = 1; : : : ; n be n linearly independent one-
forms. They de�ne a non-systatic basis of T �X , if

rank �[�(k);:::;�(n)] =
nX

i=k

�(i)q ; k = 1; : : : ; n : (5.10)

Coordinates xi such that dxi = �(i) are called an associated coordinate system.

Note that in this de�nition only the �(k) where �
(k)
q > 0 really matter. For

the remaining one-forms one can choose any which complete to a basis of T �X .
Theorem 20 implies immediately the following

Corollary 22. A coordinate system on X is �-regular, if and only if it is
associated to a non-systatic basis of T �X .

From (5.8) and (5.9) we see that if we write the symbol in a generic linear

coordinate system, i.e. in coordinates �xj =
P
a
j
ix

i, we obtain the 1-tableau by

identifying aji with �
(j)
i . Thus the k-tableaux allow us to introduce these generic

coordinates step by step.

Di�erent associated coordinate systems for the same non-systatic basis di�er
only by constants, namely the choice of an origin. Of course such coordinates
do not exist for every non-systatic basis, as it does not necessarily satisfy the
Frobenius condition. But using the idea of the proof of Theorem 20 one can
transform every non-systatic basis into another one which is integrable. Namely,
every coordinate system satisfying (5.7) for j = 1; : : : ; n is associated to the
non-systatic basis d j. Note that the construction of the functions  j does not
require the solution of di�erential equations, as the condition applies only in one
point x0.

Example 23. The analysis of moving pseudo-spherical surfaces in IR3 leads
to the Bianchi system (JRSS95)

R3 :

8>>>>>>><
>>>>>>>:

uxyt � uytux cotu+ uxtuy tanu = 0 ;�
uxt

cosu

�
x

�K(K sin u)t �
uytuy

sin u
= 0 ;�

uyt

sin u

�
y

+K(K cos u)t �
uxtux

cosu
= 0 ;

(5.11)

where K is a given function of t. Obviously the used coordinate system is not
�-regular no matter how we order the coordinates, for there is no derivative of
class 3. We use the ordering x1 = t, x2 = x and x3 = y. The symbol takes after
some trivial manipulations the simple form

M3 :
n
vxyt = 0 ; vxxt = 0 ; vyyt = 0 : (5.12)
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The matrix of the 3-tableau is readily computed

T [�(3)] =

0
BBB@
�
(3)
1 �

(3)
2 �

(3)
3

�
(3)
1 (�

(3)
2 )2

�
(3)
1 (�

(3)
3 )2

1
CCCA : (5.13)

We �nd two families of characteristic one-forms !1 = �dx1 und !2 = �dx2+dx3.
This implies that all three coordinate forms dx1, dx2, dx3 are characteristic. Thus
it is not surprising that the coordinate system is not �-regular. The maximal rank
of the 3-tableau is 1 and obtained e.g. with the choice �(3) = dx1 + dx3.
There exist four multi-indices of length 3 and class 2, namely [0,0,3], [0,1,2],

[0,2,1] and [0,3,0]. Hence the 2-tableau has four columns:

T [�(2); �(3)] =

0
BBB@
�
(3)
1 �

(3)
2 �

(3)
3 �

(2)
1 �

(3)
2 �

(3)
3 + �

(3)
1 �

(2)
2 �

(3)
3 + �

(3)
1 �

(3)
2 �

(2)
3

�
(3)
1 (�

(3)
2 )2 �

(2)
1 (�

(3)
2 )2 + 2�

(3)
1 �

(3)
2 �

(2)
2

�
(3)
1 (�

(3)
3 )2 �

(2)
1 (�

(3)
3 )2 + 2�

(3)
1 �

(3)
3 �

(2)
3

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�
(2)
1 �

(2)
2 �

(3)
3 + �

(2)
1 �

(3)
2 �

(2)
3 + �

(3)
1 �

(2)
2 �

(2)
3 �

(2)
1 �

(2)
2 �

(2)
3

�
(3)
1 (�

(2)
2 )2 + 2�

(2)
1 �

(2)
2 �

(3)
2 �

(2)
1 (�

(2)
2 )2

�
(3)
1 (�

(2)
3 )2 + 2�

(2)
1 �

(2)
3 �

(3)
3 �

(2)
1 (�

(2)
3 )2

1
CCCA :

(5.14)
One could compute its maximal rank by Gaussian elimination. But it is easier to
substitute the non-characteristic one-form �(3) = dx1 + dx3

T [�(2); dx1 + dx3] =

0
BBB@
0 �

(2)
2 �

(2)
1 �

(2)
2 + �

(2)
2 �

(2)
3 �

(2)
1 �

(2)
2 �

(2)
3

0 0 (�
(2)
2 )2 �

(2)
1 (�

(2)
2 )2

1 �
(2)
1 + 2�

(2)
2 (�

(2)
3 )2 + 2�

(2)
1 �

(2)
3 �

(2)
1 (�

(2)
3 )2

1
CCCA :

(5.15)

The rank of this matrix is 3 whenever �
(2)
2 6= 0. Thus �

(3)
3 = 1 and �

(2)
3 = 2 and

a non-systatic basis of T �X is given by

�(3) = dx1 + dx3 ; �(2) = dx2 ; �(1) = dx1 ; (5.16)

This basis is integrable and an associated �-regular coordinate system is �x3 = y+t,
�x2 = x and �x1 = t. This yields the following form for the symbol

M3 :
n
�v333 + �v331 = 0 ; �v332 + �v321 = 0 ; �v322 + �v221 = 0 ; (5.17)

where one can easily read o� the �
(k)
3 directly.

6. Formally Well-Posed Initial Value Problems

The classical de�nition of a well-posed initial value problem is apparently due
to Hadamard (Joh82). He required that the solution of the problem (i) exists
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for arbitrary Cauchy data, (ii) is determined uniquely by the Cauchy data and
(iii) depends continuously on the Cauchy data. This is still vague, as several key
words are not rigorously de�ned. We give a formal and precise version of this
de�nition omitting, however, the third point.

De�nition 24. An initial value problem is called formally well-posed, if it has a
unique formal power series solution for arbitrary formal power series as Cauchy
data.

In such a problem exactly the right amount of Cauchy data is prescribed. If we
posed more initial conditions, we would obtain compatibility conditions for the
data; with less data the solution would no longer be unique. How the solution
depends on the data is not considered. De�nition 24 implies the existence of a
bijective mapping between the parametric coe�cients of a general formal power
series solution and the Taylor coe�cients of the Cauchy data.
In a given (�xed) coordinate system Janet-Riquier Theory (Jan20) provides

an easy method to �nd formally well-posed problems. Reid (Rei91) developed an
algorithm which constructs such problems automatically. The idea behind this
method is simple. So far we have concentrated on the principal derivatives in our
analysis. According to Proposition 4 they can be obtained in a unique way by
prolonging each equation with respect to its multiplicative variables only. Now
we analyze in a similar way the parametric derivatives.
Reid's algorithm is designed for so-called passive systems. Passivity is a central

concept in the Janet-Riquier Theory and de�ned with respect to a ranking. It
lies somewhat between formal integrability and involution. We can apply the
algorithm to involutive equations provided we use a �-regular coordinate system
and write the system in solved form with respect to a class-respecting ranking,
as then it is also passive with respect to this ranking (Sei94a).
Instead of giving a rigorous description of Reid's algorithm we demonstrate it

on a simple system. It shows that for non-normal systems one cannot prescribe
all initial data on a hypersurface of codimension 1. This might be obvious for
over-determined systems, but here we consider an under-determined equation.

Example 13 (cont.) Take again the Maxwell equations in two dimensions (4.7).
We choose in each equation the u-derivative as principal derivative. Fig. 1 con-
tains the Reid diagram for u. This is a simple graphical representation of the
derivatives: the axes represent the independent coordinates, the dots the di�er-
ent derivatives. The circles indicate the pivots of the equation and the shaded
area contains all principal derivatives. We need such a diagram only for u, as
there are no principal v-derivatives.
In order to get all parametric derivatives, we need three initial conditions

ut(x0; t0) = f ; u(x; t0) = g(x) ; v(x; t) = h(x; t) : (6.1)

Thus we prescribe some data on a zero-dimensional submanifold, a point (x0; t0),
some data on a one-dimensional submanifold, the axis t = t0, and some data on
the whole manifold. Any other way either leads to compatibility conditions for
the Cauchy data or leaves some parametric derivatives arbitrary contradicting
the de�nition of formal well-posedness.
This is a typical feature for non-normal systems. As soon as several pivots

belong to the same dependent variable, the boundary of the area with the prin-
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Figure 1. Reid diagram for the two-dimensional Maxwell equations.

cipal derivatives has a kind of (in general higher-dimensional) echelon form. This
entails the necessity to use submanifolds of di�erent dimensions.

The next example illustrates the importance of �-regularity. Besides the fact
that the system might not be passive, the Janet-Riquier Theory sometimes yields
\initial value problems", one would not necessarily call so.

Example 25. Consider the wave equation in characteristic coordinates

uxy = 0 : (6.2)

Obviously we are not dealing with a �-regular coordinate system, but the system
is nevertheless involutive and passive. Reid's algorithm leads to the \initial value
problem"

u(x; y0) = f(x) ; uy(x0; y) = g(y) : (6.3)

But this represents more a kind of boundary value problem.

7. Intrinsic Description

Classically, Cauchy data are represented by an embedding of a submanifold
of X with codimension 1 in an appropriate jet bundle (Gar69). This also appeals
to physical intuition: the data is prescribed on a space-like manifold and the
di�erential equation determines its evolution. For normal systems this leads to
unique solutions according to the Cauchy-Kowalevsky Theorem.
But the example of the two-dimensional Maxwell equations in the last section

showed that this point of view cannot be for non-normal equations. Physicists
speak then of constrained systems. If Cauchy data is prescribed on a submanifold
of codimension 1, it cannot be chosen arbitrarily but must satisfy constraints.
Janet-Riquier Theory shows how to avoid these constraints: initial data is pre-

scribed on a ag of submanifolds. But it depends on a ranking to pick the prin-
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cipal derivatives and the submanifolds are always coordinate hypersurfaces. The
k-tableaux allow for an intrinsic description of this choice.

We restrict our attention on �rst-order equations. We further assume that no
lower order, i.e. algebraic, equations are present. They could be solved for some
of the dependent variables and thus used to eliminate these. These assumptions
are mainly for notational simplicity. Any system can be transformed into an
equivalent �rst-order one, thus there is no loss of generality.

Let �(k); k = 1; : : : ; n be an integrable non-systatic basis of T �X as de�ned
in Section 5. We associate with it two ags of submanifolds. Let �k : Xk ,! X

be one-dimensional submanifolds (\coordinate axes") such that ��k�
(k)

6= 0. We

introduce Nk = X1
� � � � � Xk�1 (N1 = fx0g for an arbitrary but �xed point

x0 2 X) and Nk = Xk
� � � � �Xn. The Nk were already used in De�nition 18.

We call a ag such as Nk a non-systatic ag of submanifolds.

For �rst-order equations the k-tableau represents a mapping from T �Nk

 V E

to E 0. We are now looking for a ag of �bered submanifolds Mk of E such that
; �M1

� � � � �Mn
�Mn+1 = E and

rank �[�(k);:::;�(n)]
T �Xk
VMk

= �(k)q : (7.1)

The subset condition reects the fact that in a �-regular coordinate system not

the individual values �
(k)
q become maximal but the sums

Pn
i=k �

(i)
q .

Lemma 26. Such a agMk exists for every involutive �rst-order equation R1.

Furthermore one can choose Mk such that dimMk = �
(k)
1 (with �

(n+1)
1 = m).

Proof. We choose a coordinate system associated with the �(k). Let (x0; u0) 2 E

be an arbitrary but �xed point. In a neighborhood of it we can describe the Nk

by the equations xi = xi0 for i = 1; : : : ; k � 1 and we claim that the �bered

submanifolds given by the equations u� = u�0 for � = �
(k)
1 + 1; : : : ; m can be

taken as Mk .

Proposition 5 implies that if we choose the principal derivatives according to
the inverse lexicographic ranking, then with p�k all p�i with i > k are principal
derivatives, too. By the Implicit Function Theorem there exists a local description
of R1 of the form

��
k (x; u; p) = p�k � '

�
k (x

i; u�; p

j ) = 0 ;

8<
:

� = 1;:::;�
(k)

1 ;

j = 1;:::;k ;

 = �
(j)

1 +1;:::;m :

(7.2)

Thus principal derivatives of class k occur only for 1 6 � 6 �
(k)
1 . But restricting

the k-tableau to T �Xk

 VMk means nothing else but taking only the corre-

sponding equations into account for its construction. Its rank is �
(k)
1 . The Mk

de�ne a ag due to Corollary 6 and have the correct dimensions.
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From (7.2) it is easy to read o� the following initial value problem:

u�(x0) = f� (= Const:) ; � = 1; : : : ; �
(1)
1 ;

u�(x1; : : : ; xk; xk+10 ; : : : ; xn0) = f�(x1; : : : ; xk) ;

� = �
(k)
1 + 1; : : : ; �

(k+1)
1 :

(7.3)

In order to give an intrinsic description of these conditions, we introduce the
�bered submanifolds Mk byMk =M1�� � ��Mk . Their dimensions are given by

dimMk = �
(k)
1 ��

(k�1)
1 . Let us denote by �k the natural projection from E toMk .y

Instead of the functions f� we use �ber preserving mappings �k : Nk !Mk . For
a section � 2 �loc(E) (7.3) can be written as

�k(�)
Nk

= �k : (7.4)

Proposition 27. R1 together with (7.4) is a formally well-posed initial value
problem, if and only if the Nk form a non-systatic ag of submanifolds and the
Mk satisfy (7.1).

Proof. The proposition is a straightforward generalization of the usual treat-
ment of characteristic problems. Classically one de�nes a surface to be charac-
teristic, if it is not possible to compute values for all derivatives given the ones
tangent to the surface (cf. Example 15). If the Nk and the Mk do not satisfy the
given conditions, it is similarly not possible to compute values for all derivatives.
Or we must prescribe so much data that some derivatives can be obtained in
di�erent ways leading to compatibility conditions.

Example 13 (cont.) To make this fairly awkward construction more transpar-
ent, we detail the involved submanifolds for the two-dimensional Maxwell equa-
tions. In order to rewrite it as a �rst-order system, we introduce the additional
dependent variables w2 = ut; w

1 = ux and z2 = vt; z
1 = vx to obtain

R1 :

8>>>>>>>>><
>>>>>>>>>:

ut � w
2 = 0 ; ux � w

1 = 0 ;

vt � z
2 = 0 ; vx � z

1 = 0 ;

w2
t � z

1
t = 0 ; w2

x � z1x = 0 ;

w1
t � w

2
x = 0 ;

z1t � z
2
x = 0 :

(7.5)

This yields �
(2)
1 = 5 (left column) and �

(1)
1 = 3 (right column). We take in each

equation the �rst term as principal derivative. A non-systatic basis of T �X is
given by �(1) = dx; �(2) = dt.
We can now choose the submanifolds N3 = X , N2 = ft = t0g, N1 = f(x0; t0)g

and M3 = E , M2 = fz2 = z20g, M
1 = fz2 = z20 ; z

1 = z10 ; w
1 = w1

0g. This can be
seen as follows: The system (7.5) has been set up in such a way that it is preferable

y One should perhaps remark that in general Mk is not a subbundle of E. In principle it makes no

sense at all to speak about global properties of theMk, as they exist in general only locally (like theNk).
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to choose x2 = t; x1 = x. Hence the values of the Nk.M
2 comes from the fact that

there are no principal derivatives involving z2. For all other dependent variables,
we have a principal derivative of class 2. To get M1 we observe that only for
u; v; w2 principal derivatives of class 1 occur.
Summarizing we get the initial value problem

z2(x; t) = f1(x; t) ; z1(x; t0) = f2(x) ; w1(x; t0) = f3(x) ;

w2(x0; t0) = f4 ; v(x0; t0) = f5 ; u(x0; t0) = f6 :
(7.6)

The initial conditions (7.4) are su�cient to select a unique formal power series
solution. The natural question now is under what conditions does this formal
series converge, i.e. we should look for an existence theorem. For general equations
this is only possible, if everything (equations, Cauchy data, solutions) is analytic.
This is the topic of the next section.

8. Cartan-K�ahler and Holmgren Theorem

We restrict now to analytic equations and analytic solutions. This implies that
the Cauchy data as well as the submanifolds on which they are prescribed are
also analytic. The \mother of all existence theorems" in this category is the
Cauchy-Kowalevsky Theorem covering normal equations.

Theorem 28. (Cauchy-Kowalevsky). Let the functions ��(xi; u�; p�j ) and

f�(x1; : : : ; xn�1) where � = 1; : : : ; m, i = 1; : : : ; n, j = 1; : : : ; n � 1 be (real)
analytic functions of all their arguments in a neighborhood of the origin. Then
the initial value problem

p�n = ��(xi; u�; p�j ) ;

u�(x1; : : : ; xn�1; 0) = f�(x1; : : : ; xn�1) ;
(8.1)

has a unique solution that is analytic in a neighborhood of the origin ofX . Unique
meaning that no other analytic solution exists.

It can be extended from normal equations to arbitrary involutive ones. This
generalization is usually known as Cartan-K�ahler Theorem. As the name already
indicates, it stems originally from the Cartan-K�ahler Theory of exterior di�eren-
tial systems (BCG+91). A �rst non-constructive proof within the framework of
formal theory was given by Goldschmidt (Gol69) using the Spencer cohomology.
We give here an adaption of the original proof following (Pom78). It allows us to
generalize the Holmgren Theorem.

Theorem 29. (Cartan-K�ahler). Let the di�erential equation R1 be analytic
and involutive. Then there exists one and only one analytic solution � 2 �loc(E)
of R1 satisfying the initial conditions (7.4) for analytic mappings �k and analytic
ags Mk ; Nk.

Proof. We use the local formulation of this initial value problem given by
(7.2,7.3) and construct the solution step by step. In the �rst step, we treat only
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the equations of class 1:

p�1 = '�1 (x
i; u�; p


1) ;

�
� = 1;:::;�

(1)

1 ;

 = �
(1)

1
+1;:::;m :

(8.2)

If we evaluate (8.2) at xj = x
j
0 for j > 1, we can substitute f� (restricted

to N1) for u� with � > �
(1)
1 and we obtain a normal system with dependent

variables u� for � = 1; : : : ; �
(1)
1 , independent variable x1 and initial conditions

u�(0) = f�. The Cauchy-Kowalevsky Theorem yields a unique analytic solution
U�(x1; x20; : : : ; x

n
0) satisfying U

�(x0) = f�.
The next step takes the equations of class 2 to extend this one-dimensional

solution to a two-dimensional one U�(x1; x2; x30; : : : ; x
n
0) using again the Cauchy-

Kowalevsky Theorem. This inductive process continues until class n. We omit
the details and go directly to step n. The other steps run similarly.
Let U�(x1; : : : ; xn�1; xn0) be a solution for all equations up to class n� 1. The

equations of class n are

p�n = '�n(x
i; u�; p


j ) ;

8<
:

� = 1;:::;�
(n)

1

 = �
(j)

1 ;:::;m ;

j = 1;:::;n :

(8.3)

They form a normal system with dependent variables u� for � = 1; : : : ; �
(n)
1 and

independent variables x1; : : : ; xn. As initial conditions we take

u�(x1; : : : ; xn�1; xn0) =

8<
:U

�(x1; : : : ; xn�1; xn0) if 1 6 � 6 �
(n�1)
1 ;

f�(x1; : : : ; xn�1) if �
(n�1)
1 < � 6 �

(n)
1 :

(8.4)
Since all functions are analytic, we can invoke the Cauchy-Kowalevsky Theorem.

The solution yields the wanted functions U�(x). u� for � > �
(n)
1 is unconstrained

by the system (7.2) and directly given by the initial conditions (7.3).
We must still show that these functions U�(x) solve the full equations of lower

class, as in the previous steps we always treated some independent variables as
constants. Here involution proves to be crucial. If U�(x) satisfy all equations of
system (7.2), the functions

��
i (x) = ��

i (j1(U
�)(x)) (8.5)

must vanish in the considered neighborhood of x0.
Since by assumption R1 is involutive, the prolongation of an equation with

respect to a non-multiplicative variable must lead to a linear combination of
equations obtained by di�erentiating with respect to multiplicative variables only
(Proposition 4). Thus we �nd for i < n (among others) the following relations
between the prolonged equations

Dn�
�
i =

X
16k6n;16l6k

16�6�
(k)

1

Ak
l�(x; u; p)Dl�

�
k +

X
k;�

Bk
�(x; u; p)�

�
k ; (8.6)

as we di�erentiate on the left hand side with respect to a non-multiplicative
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variable. The ranges of the indices on the right hand side are chosen so, that only
prolongations with respect to multiplicative variables are taken into account.
If we substitute the functions U�(x) and their derivatives for the jet variables

u�; p�i ; : : :, we can easily evaluate the formal derivatives

(Dk�
�
i )(j2(U

�)(x)) =
@

@xk
��
i (j1(U

�)(x)) : (8.7)

Now (8.6) becomes a normal system

@

@xn
��

i =
X

Ak
l�

@

@xl
�

�
k +

X
Bk
��

�
k (8.8)

and according to our hypothesis that U�(x1; : : : ; xn�1; xn0) satisfy the equations
up to class n � 1 for xn = xn0 , we get the initial conditions

�
�
j (x

1; : : : ; xn�1; xn0) = 0 : (8.9)

Applying for the last time the Cauchy-Kowalevsky Theorem, we get that this

system has one and only one analytic solution which is trivially ��
j (x) � 0.

Formal integrability is not su�cient for this proof. The �rst part, i.e. the step
by step construction of U�(x1; : : : ; xn) could be done for any di�erential equation
even for a not formally integrable one. It is unclear for such a system, whether the
obtained U� also solve the equations of lower class. Only involution provides the
key to set up the �nal normal system (8.8). Nevertheless, every analytic formally
integrable system has a unique analytic solution, as it will become involutive after
a �nite number of prolongation.
Using a technique apparently introduced by Holmgren (Hol01) it is fairly easily

possible for linear systems to extend the uniqueness to non-analytic solutions.

Theorem 30. (Holmgren). Let L be a normal linear di�erential operator
with analytic coe�cients. Let M � X be a non-characteristic submanifold of
co-dimension 1. Any C1 solution of the initial value problem

Lu = 0 ;
u

M
= 0

(8.10)

vanishes in a neighborhood of M .

Based on our proof of the Cartan-K�ahler Theorem it is straightforward to
extend this theorem to general involutive operators.

Theorem 31. Let L be an involutive linear di�erential operator with analytic
coe�cients. Let x0 = N0 � N1 � � � � � Nn = X be a non-systatic ag of
submanifolds with dimNi = i. Then any C1 solution of the initial value problem

Lu = 0 ;

u�
Nk

= 0 ; � = �
(k)
1 + 1; : : : ; �

(k+1)
1

(8.11)

vanishes in a neighborhood of x0.

Proof. Let u be any solution of the considered initial value problem. u N1
must

satisfy (8.2) with vanishing Cauchy data. Thus according to Theorem 30 u N1
� 0.
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Similarly we can conclude following step by step the construction in the proof of
Theorem 29 that u Nk

� 0 for k = 1; : : : ; n. Each of these intermediate initial
value problems has vanishing Cauchy data as a consequence of the previous step
and the Holmgren Theorem is throughout applicable.

9. Stability

Finally, we make a few remarks on the problem of stability being omitted in
our de�nition of a formally well-posed problem. It is especially of importance for
numerical calculations, for they make sense only if the solutions of problems with
\similar" Cauchy data are \similar". We have constructed in Section 7 a formally
well-posed problem for any involutive di�erential equation. But this problem will
be unstable for many equations.

Example 32. The classical example of an ill-posed problem is the Cauchy
problem for the Laplace equation uxx+ uyy = 0. Hadamard (CH62) was the �rst
to show that the solution of the following sequence of initial value problems does
not depend continuously on the Cauchy data:

u(x; 0) = 0 ; uy(x; 0) = fn(x) =
1

n2
sin(nx) : (9.1)

Obviously each problem is formally well-posed; the formal power series solutions
even converge, as the solution is given by un(x; y) = sin(nx) sinh(ny)=n2. Al-
though fn(x) ! 0 for n ! 1, the solutions un(x; y) do not converge to the
solution of the initial value problem with uy(x; 0) = 0 which is u(x; y) = 0.

The question is how to de�ne rigorously when the Cauchy data of two di�erent
initial value problems are close or similar. One must distinguish here between two
possibilities to deform Cauchy data. In numerical analysis one considers usually
the situation found in Example 32: how is the solution a�ected by a slight vari-
ation in the functions prescribed. But in (7.4) one must also take into account
deformations of the submanifolds on which the data is given.
Shih used in his thesis (Shi94) the fact that it is possible to de�ne topologies

on the space of embeddings (GG73) to introduce a topology on the space of all
Cauchy data for a given equation. He de�ned a problem to be well-de�ned, if it is
an interior point of the subspace of problems having at least one solution. Thus
\small" is de�ned to mean that there exist an open neighborhood in the used
topology such that every problem in it is well-posed.
This approach tackles the second possibility of deformation neglecting the �rst

one. It considers the initial value problem for the Laplace equation as well-posed,
for it only requires the \neighboring" initial value problems have solutions. But
it does not require any relation between their solutions. Shih's formulation is
restricted to the standard problem with all data prescribed on a submanifold of
codimension 1. Its extension to our more general formulation should be straight-
forward.
Restricting ourselves to this concept of stability, we can easily prove that our

formulation is stable under deformation of the ag Nk. As described in Section 7
these nested submanifolds are characterized by a non-systatic basis of T �X . Thus
to study a deformation of them it su�ces to analyze deformations of such bases.
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This avoids the use of complicated topologies, since we can use the standard
topology of IRn.

Proposition 33. A non-systatic basis of T �X is stable under deformations.

Proof. In a given coordinate system the conditions for a basis to be non-systatic
can be expressed by requiring that certain subdeterminants of the k-tableaux
do not vanish. But this implies that systatic bases can be characterized by the
vanishing of certain rational functions of the components of the one-forms. Thus
we can de�ne a homeomorphic mapping f from the space of all bases of T �X into
an IRp such that f�1(0) gives all systatic bases. But the image of a closed set is
again closed, thus the complement of f�1(0), the space of all non-systatic bases is
open. Since transition functions are smooth, this statement holds independently
of the particular coordinate system used.

10. Conclusion

We showed that the formal theory leads naturally to a more general type of
initial value problems than the one usually considered. This is implicitly contained
in the Cartan-K�ahler Theorem. But to our knowledge we have given the �rst
intrinsic description of such initial value problem. New is especially the concept
of a non-systatic ag of submanifolds which generalizes the classical notion of a
non-characteristic surface as it occurs e.g. in the Cauchy-Kowalevsky Theorem.
The basic tool behind this concept are the k-tableaux of a di�erential equation.

They provide the needed independence of the coordinate system and deal with
the problem of �-regularity. Already in the Cauchy-Kowalevsky Theorem one
encounters the problem that it can be applied not only to di�erential equations
in the special solved form of Theorem 28 but also to any system that can be
brought into this form by a coordinate transformation. As one can see from the
proof of Theorem 11, the tableau determines whether this is possible.
The k-tableaux represent a straightforward generalization of this idea. In the

case of Cauchy-Kowalevsky Theorem it su�ces to consider the derivatives of
class n. For our purposes we must proceed further. We have to know how many
equations with a class higher than a given number can be maximally obtained.
This explains the complicated form of the factor C�

� in De�nition 18. It captures
the relevant part of the transformation law for partial derivatives under changes
of coordinates.
We have demonstrated some important properties of the k-tableaux leading

especially to a rigorous de�nition of under- and over-determinacy. It is based on
previous ones by Olver (Olv86) and Pommaret (Pom78). It generalizes in a natu-
ral way the intuitive idea that in an under-determined equation some unknowns
remain completely unconstrained by the di�erential equation.
Note the important di�erence between algebraic and di�erential equations. If in

a linear system of algebraic equations some unknowns can be chosen arbitrarily,
the system consists always of less equations than unknowns after the elimina-
tion of dependent equations. In the case of di�erential equations it is possible
that some unknowns are unconstrained, although we have the same number of
equations and unknowns. This is related to the possibility of gauge symmetries.
Our de�nition of an under-determined equation is more precise than the one

given by Pommaret, as he uses essentially an intrinsic version of the classical
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condition that there are less equations than dependent variables. Olver considers
only systems with the same number of equations and dependent variables. His
de�nition is in so far not satisfactory, as he does not require the equation to
be in involution. Thus it can happen that an over-determined equation becomes
under-determined by adding an integrability condition!
Finally, we comment briey on the problem of consistent initialization in nu-

merical computations already mentioned in the introduction. As the numerical
solution of general systems of partial di�erential equations is still hardly under-
stood, we concentrate on systems of ordinary di�erential equations with algebraic
constraints. According to (LPG91) \the di�culty occurs, because, in general, the
human problem solver does not know which of the variables are determined by the
constraints (or the constraint derivatives) and which are arbitrary."
The tableau formalism presented in this article can be seen as an answer to this

question for arbitrary systems of partial di�erential equations, as it is equivalent
to deciding which are the principal and which are the parametric derivatives. But
this distinction can be �nally done only for at least formally integrable systems.
The problems of the numerical analysts with this type of systems stem mainly
form the fact that they do not render their systems formally integrable. Actually,
initialization methods like the graph-theoretical one presented in (Pan88) can be
seen as a complicated way to analyze the symbol.
In this context it is also interesting to note that the so-called index of a

di�erential-algebraic system (BCP89) can be intrinsically de�ned as the num-
ber of prolongations (and subsequent projections) needed to obtain a formally
integrable system (PT93).
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