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Abstract

The relationship between the strength of a di�erential equation as introduced

by Einstein, its Cartan characters and its Hilbert polynomial is studied. Using

the framework of formal theory previous results are extended to non-linear
equations of arbitrary order and to over-determined systems. The problem of

computing the number of arbitrary functions in the general solution is treated.

Finally, the e�ect of gauge symmetries is considered.

PACS: 02.30.J Partial Di�erential Equations

1 Introduction

Usually, it is not possible to construct the general solution of a non-linear par-

tial di�erential equation. Nevertheless one can often deduce many properties of

solutions and/or the solution space without explicitly solving the equation. In

this paper, we study several methods for measuring the \richness" or arbitrari-

ness of the solution space. For systems with gauge symmetries, we can re�ne

the question by considering only \physically distinguishable" solutions, i.e. we

identify solutions connected by gauge transformations.

To know the arbitrariness of the solution space can be important in many

applications. We cite here just two. A typical problem is to check whether or not

a solution constructed by some technique is the general solution. We will give a

simple criterion for this question using the Hilbert polynomial.

To compute the in�nitesimal symmetries of a di�erential equation requires

us to solve the determining system [1, 2]. Even if it is not possible to construct

the solution explicitly, it is still of considerable interest to know the size of

the symmetry group. In the case of the so-called \non-classical method" [3] the

determining system is no longer linear and usually the known algorithms to

compute the size of the group [4, 5] cannot be applied.

? Permanent address: Institut f�ur Algorithmen und Kognitive Systeme, Universit�at

Karlsruhe, D-7500 Karlsruhe 1, Germany; email: kg04@dkauni2.bitnet
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The notion of strength of a di�erential equation was introduced by Ein-

stein [6] while searching for a uni�ed �eld theory. A discussion of similiar ideas

appeared already in the correspondence between Cartan and Einstein [7]. Since

then it has been applied a few times to physical systems like Maxwell or Ein-

stein equations [8, 9, 10, 11]. Later, Su�e [12] derived an explicit formula for the

strength in terms of the number of equations and \identities".

Cartan developed his theory of involutive systems [14, 13], in which he in-

troduced the Cartan characters, mainly for exterior di�erential systems but also

gave a version for quasi-linear partial di�erential equations [15]. The characters

are related to the number of arbitrary functions in the general solution. It is one

of the main goals of this paper to exhibit this relationship in more detail.

The Hilbert polynomial comes originally from algebraic geometry. It describes

the number of independent polynomial functions of a given order from a variety

into the base �eld in the coordinates of an embedding space. For di�erential

equations this can be translated into the number of free Taylor coe�cients in

the general solution. More about this analogy can be found in [16].

Our approach in this paper will be based on an analysis of formal power series

solutions. In contrast to earlier attempts (see e.g. [8, 12]) we will make strong

use of the formal theory of di�erential equations [17]. This allows us to compute

directly the Cartan characters, the Hilbert polynomial and the strength even for

non-linear systems of arbitrary order. Furthermore the results remain valid for

over-determined systems.

The paper is organized as follows: Section 2 introduces brie
y the notion of

a system in involution and its symbol. Section 3 relates the Cartan characters,

the Hilbert polynomial and the strength of an involutive system. The next two

sections deal with the problem of computing the number of arbitrary functions

in the general solution. Section 6 considers the e�ect of gauge symmetries. Fi-

nally, after a section with detailed examples some conclusions are given. Two

appendices exhibit some technical lemmata.

2 Involutive Systems

Formal theory is based on jet bundle formalism. It is beyond the scope of this

paper to give a detailed introduction to the underlying theory. We must refer to

the literature [17]. Let x1; : : : ; xn and u1; : : : ; um be a local coordinate system

on a bundle E : We de�ne a di�erential equation of order q as a �bred submani-

fold Rq in the jet bundle JqE . Locally, Rq can be described by a system of

equations �� (xi; u�; p��) = 0, where p�� = @j�ju�=@x� :

The prolongation Rq+1 � Jq+1E is obtained by formally di�erentiating all

equations with respect to the independent variables xi. It is well-known that

during prolongation integrability conditions can arise, i.e. the dimension of the

projected system R
(1)
q = �q+1

q (Rq+1) is less than the dimension of the original

system Rq. Such conditions can occur at any prolongation order. A system that

does not generate integrability conditions is called formally integrable, because
it is possible to construct order by order a formal power series solution.
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A formally integrable system is, however, not yet necessarily involutive. We

request further that it has an involutive symbol. The symbolMq of Rq is a

system of linear (algebraic, not di�erential!) equations in some unknowns v��
de�ned by:

Mq :
X

�;j�j=q

@��

@p��
v�� = 0 : (1)

(By abuse of language, we will refer to both the linear system and its solution

space as the symbol).

For a quasi-linear equation the symbol is essentially obtained by substituting

v�� for p�� in the highest-order part of the equation. It is a linear system in a

vector space Vq whose dimension is determined by the number of derivatives of

order q

dimVq = m

�
n+ q � 1

n� 1

�
: (2)

A jet variable p�� with multi-index � = [i1; : : : ; in]
2 is said to be of class k;

if ik is the �rst non-vanishing entry. We order the columns of the symbolMq

by class (highest class �rst) and compute a row echelon form. We de�ne �
(k)
q as

the number of equations where the leading term is of class k. The symbolMq

is called involutive, if

rankMq+1 =

nX
k=1

k�(k)q : (3)

Associating with each equation of class k its so-called multiplicative vari-
ables x1; : : : ; xk and assuming that the symbol is in row echelon form, we see

that if we prolong each equation with respect to its multiplicative variables only,

we get algebraically independent equations. Equation (3) tells us, that in the

case of an involutive symbol no further independent equations exist.

Although this de�nition appears to be coordinate dependent, one can show

that with the exception of certain singular systems every coordinate system

yields the same values for the �
(k)
q . For lack of space, we can not discuss here the

delicate question of this so-called �-regularity of a coordinate system but refer

to the literature [17].

Finally, one should note that any system can be algorithmically completed

to an involutive one [17, 18]. This is ensured by the so-called Cartan-Kuranishi
theorem. Thus it poses no real restriction, if we assume from now on that we

deal only with involutive systems.

3 Cartan Characters, Hilbert Polynomial, and Strength

In the previous section we used the symbol as a criterion for whether a system

is in involution or not. The symbol of an involutive system contains, however,

much more information on the solution space. The Cartan characters will be our

basic tool to extract it.

2 This means p�� = @(i1+���+in)u�

@x
i1
1

��� @x
in

n

:
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De�nition1. The Cartan characters �
(k)
q of the di�erential equation Rq in n in-

dependent and m dependent variables are

�(k)
q = m

�
q + n� k � 1

q � 1

�
� �(k)q k = 1; : : : ; n : (4)

�
(k)
q gives the number of principal derivatives of class k, i.e. derivatives which

can be computed using Rq by solving for them; �
(k)
q is the number of paramet-

ric derivatives of class k, i.e. derivatives which must be provided by initial or

boundary conditions to specify a unique solution.

An important property of the Cartan characters is that they form a descend-

ing sequence [17]:

�(1)
q � �(2)

q � � � � � �(n)
q : (5)

De�nition2. The Hilbert polynomial Hq(r) counts for r � 0 the number of

arbitrary Taylor coe�cients of order q + r in the general formal power series

solution of the di�erential equation Rq .

Thus, the Hilbert polynomial is given by Hq(r) = dimMq+r ; as for a formally

integrable system the Taylor coe�cients of order q+ r can be found as solutions

of an inhomogeneous linear system with the same matrix as the prolonged sym-

bolMq+r . Note that we consider only formal power series. No statement about

the convergence of the series is made.

In Appendix A the following formula for the dimension of a prolonged symbol

is derived using a recursion relation for the Cartan characters:

Hq(r) = dimMq+r =

nX
k=1

�
r + k � 1

r

�
�(k)
q : (6)

To express the coe�cients of Hq(r) in terms of the Cartan characters, we

must write the binomial coe�cients explicitly as polynomials in r. This is most

easily done using the symmetric q-products de�ned in Appendix B. With (40)

we �nd

Theorem3. The Hilbert polynomial of an involutive system Rq with Cartan

characters �
(k)
q is given by

Hq(r) =

n�1X
i=0

 
n�1X
k=i

�
(k+1)
q

k!
s
(k)

k�i(0)

!
ri : (7)

There is obviously a one-to-one correspondence between the coe�cients of

the Hilbert polynomial and the Cartan characters. We omit here the explicit

expressions for the �
(k)
q in terms of the coe�cients of Hq(r).

A system Rq with vanishing Cartan characters is said to be of �nite type as
there are no free Taylor coe�cients of order q or higher. Hence such a system

has a �nite dimensional solution space parametrized by dimRq parameters. We

will assume in what follows that at least one character is non-zero.
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To de�ne the strength of a di�erential equation, we introduce following Ein-

stein [6]
Zq(r) = Hq(r)=

�
n

q+r

�
; (8)

where we have used the notion
�
n

k

�
=
�
n+k�1

k

�
for the number of Taylor coe�-

cients of order k of a function of n variables (cf. (2)).

Zq is a rational function of r. The denominator is of degree n � 1; the nu-

merator has a degree less than or equal to n� 1. Zq describes the growth of the

number of free Taylor coe�cients in the general solution relative to a function

of n variables. We expand Zq(r) in powers of 1=r

Zq(r) = Z(0)
q + Z(1)

q =r +O(1=r2) : (9)

De�nition4. We call Z
(0)
q the compatibility coe�cient and Z

(1)
q the strength

of Rq. A system with Z
(0)
q = 0 is said to be absolutely compatible3.

Using (7) and (40), Z
(0)
q is readily obtained by taking the limit r ! 1 :

Similiarly, multiplying (9) by r and taking again the limit yields Z
(1)
q :

Theorem5. The compatibility coe�cient and the strength of an involutive sys-

tem Rq with Cartan characters �
(k)
q are given by

Z
(0)
q = �

(n)
q ; (10)

Z
(1)
q = (n � 1)

�
1
2
n�

(n)
q + �

(n�1)
q

�
: (11)

In the next section, we will give an alternative description of the strength,

which allows for an easy interpretation of this result.

4 Arbitrary Functions

We will try now to arrange the free coe�cients of the general formal power

series solution into formal series for some arbitrary functions. Again we will not

discuss the question of convergence of these series. Although the Cartan-K�ahler

theorem [19, 17] guarantees the existence of an analytic solution for analytic,

involutive systems, this does not su�ce to conclude that the series for the free

functions converge. Furthermore, the number of these functions is not necessarily

uniquely de�ned, as there may exist many di�erent ways to express the general

solution by some arbitrary functions.

We make two crucial assumptions to get a unique result:

(i) The general formal power series solution can be constructed order by order,

i.e. its principal coe�cients of order q + r depend only on the parametric

coe�cients of order q + r and lower.

3 Einstein introduced the strength only for absolutely compatible systems. It is, how-

ever, well-de�ned for any system.
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(ii) The general solution of the system Rq can be written as an algebraic expres-
sion, i.e. without derivatives or integrations, of the form

u�(x) = 	�
�
x; F0; F1; F2; : : : ; Fn

�
(12)

where Fk denotes a family of fk functions of k arguments and the 	� are

some �xed functions. Functions of zero arguments are of course constants.

A solution in closed form requires explicit expressions for the 	� and for

the arguments of the free functions. A typical example is provided by the wave

equation utt � uxx = 0 with a general solution of the form f(x � t) + g(x + t) ;

i.e. 	 (a; b) = a+ b and F1 = ff; gg; F0 = F2 = fg :

A function of k variables has
�
k

i

�
Taylor coe�cients of order i. Expression (12)

for the general solution yields a total of

Tq(r) =

nX
k=1

fk

�
k

q + r

�
(13)

free Taylor coe�cients of order q + r. Because of assumption (i) Tq(r) must

equal Hq(r) : Expanding both as polynomials in r and equating the coe�cients

leads to a triangular system of linear equations for the fk which can be easily

solved by back-substitution.

The solution of this linear system may, however, contain negative numbers.

Indeed we will see in Section 7 that this happens for example in the case of the

Maxwell equations in the potential formulation. This means one of the assump-

tions was incorrect in this case. The next section will study in detail the e�ect of

dropping assumption (ii). We will stick, however, to assumption (i) throughout

this paper.

Theorem6. If there exists a representation of the general solution of the invo-

lutive system Rq with Cartan characters �
(k)
q satisfying both assumptions, then

it contains fk free functions of k variables, where the fk are determined by the
recursion relation:

fn = �
(n)
q ;

fk = �(k)
q +

nX
i=k+1

(k � 1)!

(i � 1)!

�
�(i)
q s

(i�1)

i�k (0)� fis
(i�1)

i�k (q)
�
; 0 < k < n :

(14)

Such a representation can exist only, if the solution of this recursion relation
contains only non-negative integers.

We can now express the compatibility coe�cient and the strength through

the fk instead of the �
(k)
q :

Z
(0)
q = fn ;

Z
(1)
q = (n� 1)

�
1
2
(n+ 2q)fn + fn�1

�
:

(15)
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Thus a system is absolutely compatible, if its general solution does not con-

tain free functions of n variables. We expect this property from any reasonable

system which is not under-determined, as it poses otherwise no real restrictions

on at least some of the dependent variables. In physical �eld equations this is

not acceptable. For an absolutely compatible system the strength measures the

dominant term in the Hilbert polynomial, the coe�cient of rn�2 :

With the results of Appendix B we can solve the recursion relation (14) ex-

plicitly for �rst-order systems:

fn = �
(n)
1 = m� �

(n)
1 ;

fk = �
(k)
1 � �

(k+1)
1 = �

(k+1)
1 � �

(k)
1 :

(16)

The proof is by descending induction. The case k = n� 1 is obvious from (42).

If we assume that (16) holds for k + 1, we get for k that

fk = �
(k)
1 � �

(k+1)
1 +

(k � 1)!

n�1X
i=k+2

i! �
(i+1)
1

�
i s

(i�1)

i�k (1) + s
(i)

i�k+1(0)� s
(i)

i�k+1(1)
�
:

But (44) implies that the expression in the bracket vanishes for all i; k : It follows

from (5) that the fk are always non-negative. For �rst-order system it is thus

always possible to construct an algebraic expression for the general solution.

It is perhaps interesting to compare (16) with the Cauchy-Kowalevsky theo-

rem. It applies to so-called normal �rst-order systems, i.e. the number of equa-

tions is equal to the number of dependent variables and by a change of the

independent coordinates we can always achieve that all equations are of class n :

Thus �
(n)
1 = m;�

(n�1)
1 = � � � = �

(1)
1 = 0 : This leads to the well-known result

fn = fn�2 = � � � = f1 = 0; fn�1 = m:

5 Integrals in the General Solution

We have seen in the previous section that it may not always be possible to express

the general solution algebraically. But even if Theorem 6 yields only non-negative

values for the fk, it is interesting to study the e�ect of more general expressions

than (12), as many solution methods for di�erential equations lead for example

to integral representations. If we drop assumption (ii), further terms appear in

the de�nition of Tq(r)
4

Tq(r) =
X
j2J

nX
k=1

fk;j

�
k

q + r + j

�
: (17)

4 In order to get a well-de�ned expression for j < �q, we will adopt the convention�
n

k

�
= 0 for k < 0 :
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J is some �nite set of integers. j = 0 gives the algebraic case. Positive values of j

correspond to derivatives; they occur for example in gauge systems. Negative

values denote integrals.

The equality Hq(r) = Tq(r) leads now to the following linear system of

n diophantine equations

X
j2J

n�1X
k=i

n!

k!
s
(k)

k�i(q + j)fk+1;j = n!hi ; i = 0; : : : ; n� 1 (18)

where hi denotes the coe�cients of the Hilbert polynomial. We have multiplied

each equation by n! to avoid rational coe�cients. All coe�cients including the

right hand side are now non-negative integers.

If jJ j > 1, then the system is under-determined, i.e. the number of arbitrary

functions is no longer uniquely de�ned. Even if we disregard how a function

enters the general solution and consider only the total number ~fk =
P

j2J fk;j
of functions with k variables, we get in general no unique results, as we will show

later in this section. There exists, however, one invariant:

Theorem7. Let �
(k0)
q be the highest non-vanishing Cartan character of the in-

volutive equation Rq . Then every non-negative solution ffk;jg of the diophantine
system (18) satis�es

fk;j = 0 ; 8j 2 J ; k > k0 ; (19)

~fk0 =
X
j2J

fk0;j = �(k0)
q : (20)

The proof is simple, as under the assumption of the theorem Hq(r) is a poly-

nomial of degree k0 � 1 : Setting hi = 0 for i = k0; : : : ; n� 1 leads consecutively

to the equations ~fn = 0; : : : ; ~fk0+1 = 0 : Since only non-negative solutions are

allowed, this entails (19). The next order provides (20).

Note that it is essential for this theorem that we still maintain assumption (i).

Otherwise the ansatz Hq(r) = Tq(r) is no longer correct and we can draw no

conclusions. We call �
(k0)
q the degr�e d'arbitraire (or index of generality) of the

di�erential equation Rq . k0 is sometimes called Cartan genus of Rq.

The condition that all fk;j must be non-negative implies that only a �nite

number of solutions can exist, as the right hand sides in (18) can be seen as

bounds on weighted sums of the fk;j : One can readily design an algorithmwhich

generates for any given set J all non-negative solutions of (18).

Since the number of solutions may be very large, it is nevertheless interesting

to study several ways to construct special solutions. The easiest possibility is to

set J = fj0g :The conditionHq(r) = Tq(r) leads then to a well-determined linear

system of equations for the fk;j0 : Its solution is given by recursion relation (14),

if we substitute in the second symmetric q-product the argument q by q + j0 :

For two special values of j0 this modi�ed recursion relation can easily be

solved. Setting j0 = �q gives at once fk;�q = �
(k)
q for k = 1; : : : ; n : Choosing
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j0 = 1�q; we �nd a solution with (q�1)-dimensional integrals generalizing (16):

fn;1�q = �
(n)
q ; fk;1�q = �

(k)
q ��

(k+1)
q : Again (5) implies that it is a non-negative

solution. Note that these two solutions yield the same values for the ~fk only if

�
(n)
q = � � � = �

(2)
q = 0 :

The �rst one corresponds to the representation of the general solution used in

the already above mentioned Cartan-K�ahler theorem. This existence and unique-

ness theorem is proven by considering a special initial value problem and con-

structing a solution through a sequence of normal systems for which the Cauchy-

Kowalevsky theorem yields the existence and uniqueness of a solution. As a �rst

step, however, the system is rewritten as a �rst order system. The arbitrary

functions appear as initial data. Thus the back-transformation to the original

dependent variables makes them to q-dimensional integrals.

Another way to �nd solutions of (18) is to exploit the relation�
n

k

�
=

�
n

k � 1

�
+

�
n� 1

k

�
; (21)

which is an immediate consequence of the Pascal triangle. If now fk is a negative

value in the solution of (14), we can eliminate it through

fk+1

�
k + 1

q + r

�
+ fk

�
k

q + r

�
= (fk+1 + fk)

�
k + 1

q + r

�
� fk

�
k + 1

q + r � 1

�
; (22)

i.e., we \convert" some functions of k + 1 variables into integrals of functions

of k variables! But this may result in a negative value for the new fk+1 : Then

we can apply the same trick again, if k + 1 < n : But if fn becomes negative,

the procedure has failed. Thus this method will only work, if
Pn

i=k fi > 0 : It

can be generalized by iteration of (21) to include higher-dimensional integrals

(see [11]).

Finally, we consider the problem mentioned in the introduction of how to

decide whether a solution constructed by some technique is the general solution.

Under assumption (i) that the corresponding power series can be constructed

order by order, we have simply to count the free functions and to compare the

resulting Tq(r) with the Hilbert polynomialHq(r) of the di�erential equation.

Only for a general solution both polynomials are identical.

6 Gauge Systems

In gauge theories one identi�es solutions connected by a gauge transformation,

as they lead to the same values for the physical observables. Thus one is not in-

terested in the total number of free functions but only in the number of \physical

distinguishable" ones. We will consider gauge relations of the following form:

�xi = 
i
�
xj
�
;

�u� = ��
�
xi; u�; �

(0)
a (x); @�

(1)
a (x); : : : ; @p�

(p)
a (x)

�
;

(23)



10 Werner M. Seiler

i.e., u and �u are related by a gauge transformation � depending on 
0 gauge

functions �
(0)
a (x) entering directly, 
1 gauge functions �

(1)
a (x) entering through

their �rst derivatives etc5.

We assume that all derivatives of order l of �
(l)
a (x) do explicitly occur in (23)

and that all gauge functions depend on n variables. The only reason for these

assumptions is simplicity. The same analysis can be readily performed for more

general situations but leads to much uglier results.

To derive now the number of free functions, we can no longer simply equate

(7) and (13) but must take into account the gauge functions. The gauge rela-

tion (23) implies that at order q + r

Gq(r) =

pX
l=0


l

�
n

q + r + l

�
(24)

Taylor coe�cients can be arbitrarily set by a gauge �xing. Thus we must now

solve the equation Hq(r) � Gq(r) = Tq(r) which yields for the numbers pk of

physical relevant free functions of k variables the following modi�ed form of

Theorem 6:

Theorem8. Let the involutive system Rq with Cartan characters �
(k)
q be invari-

ant under the gauge transformation (23). If the \physical solution space" can be
represented in a form satisfying assumptions (i) and (ii), then it is spanned by
pk = fk � gk free functions of k variables, where the fk are given by Theorem 6
and the gk are determined by the recursion relation:

gn =

pX
l=0


l ;

gk =
(k � 1)!

(n� 1)!

pX
l=0


l s
(n�1)

n�k (q + l) �

nX
i=k+1

(k � 1)!

(i � 1)!
gi s

(i�1)

i�k (q) :

(25)

Such a representation can exist only, if all pk are non-negative integers.

If some of the pk are negative, we need probably integrals to span the physical

solution space. This can again be done with the methods outlined in Section 5.

If we apply, however, the �rst one, i.e. J = fj0g ; we must substitute in (25) in

the argument of the second symmetric q-product q by q + j0 :

The de�nition of the strength should also be changed to re
ect the e�ect of

the gauge symmetry:Zq(r) =
�
Hq(r)�Gq(r)

�
=
�

n

q+r

�
:This is most easily done by

substituting pk for fk in (15). Thus free functions of n variables are now allowed

in an absolutely compatible system provided they are gauge functions, as these

are physically not observable.

5 Obviously �nite-dimensional symmetry groups are of no interest here.
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Independently of any speci�c expansion of the Hilbert polynomial, we can

use the following modi�ed form of Theorem 5:

Theorem9. If the involutive system Rq with Cartan characters �
(k)
q is invari-

ant under the gauge transformation (23), then its gauge corrected compatibility
coe�cient and strength are given by

Z(0)
q = �(n)

q �

pX
l=0


l ;

Z(1)
q = (n� 1)

�
1
2
n�(n)

q + �(n�1)
q �

pX
l=0

(1
2
n+ q + l)
l

�
:

(26)

7 Examples

Many of the e�ects discussed in the previous sections are nicely demonstrated

by the Maxwell equations. There exist two di�erent formulations: Using the

vector potential A� they form a second-order system with n = 4 independent

and m = 4 dependent variables

R2 : f@�@�A� � @�@�A� = 0 ; (27)

using the �eld strength

F�� = @�A� � @�A� (28)

they form a �rst-order system with m = 6 dependent variables

R1 :

�
@�F�� = 0 ;

@[�F��] = 0 :
(29)

(The signature of the metric has no e�ect on the formal analysis.)

We readily obtain �
(4)
2 = 3; �

(3)
2 = 1 for (27) and �

(4)
1 = 6; �

(3)
1 = 2 for (29).

All other �
(k)
q vanish. This yields for the equations in �eld strength formulation

�
(1)
1 = �

(2)
1 = 6; �

(3)
1 = 4 and f1 = f4 = 0; f2 = 2; f3 = 4 : Thus we can

write the general solution as an algebraic expression with four functions of three

variables and two functions of two variables. For the potential formulation (27)

we obtain however �
(1)
2 = 16; �

(2)
2 = 12; �

(3)
2 = 7; �

(4)
2 = 1 and this leads to

f1 = f2 = �1; f3 = 5; f4 = 1 : Consequently no algebraic expression for the

general solution exists.

However, if we also allow one-dimensional integrals, we can �nd the following

solution of the condition H2(r) = T2(r) :

f1;0 = f2;0 = f3;0 = f4;0 = 1 ;

f2;�1 = 2; f3;�1 = 4 :
(30)

But this is an obvious consequence of the de�nition of the �eld strength: The

general solution of (28) considered as a system of di�erential equations for A�
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contains the four functions entering algebraically in (30). The other six functions

are just the free functions occuring in the general solution of Equation (29).

These four functions re
ect the gauge freedom in the potential formulation.

It is well-known that the �eld strength remains unchanged under the gauge

transformation A� ! A� + @��(x) : Indeed, Theorem 8 yields with 
1 = 1 the

gauge corrections g1 = g2 = g3 = g4 = 1: Subtracting them leads to the same

result as for the �eld strength formulation.

We can also try the second method of Section 5. Applying (22) two times

yields

f2;�1 = 1; f3;�1 = 2; f3;0 = 3; f4;0 = 1 : (31)

Since we now have f1;0 = f2;0 = 0 ; the gauge corrections according to Theorem 8

gives p1;0 = p2;0 = �1 : Applying (22) again two times, we arrive at the same

result as above, namely four functions of three and two of two variables all

entering through integrals.

Using only one-dimensional integrals, i.e. setting J = f�1g in (18), results

in the following solution:

f1;�1 = 4; f2;�1 = 5; f3;�1 = 6; f4;�1 = 1 : (32)

The gauge correction must now also be computed with j = �1 :Theorem 8 yields

g1 = 4; g2 = 3; g3 = 2; g4 = 1 and subtraction leads once again to the same �nal

result.

To show that other results are also possible, we consider �nally J = f�2g :

After gauge corrections we end up with

f1;�2 = f2;�2 = 6; f3;�2 = 4 : (33)

The same result is obtained in the �eld strength formulation setting J = f�1g :

Setting J = f0;�1g in this formulation leads to 80 di�erent non-negative solu-

tions of the diophantine system (18) with 25 di�erent sets of values for the ~fk :

Using either the �eld strength or the potential formulation and Theorem 5

and Theorem 9, respectively, shows that the Maxwell equations are absolutely

compatible and have a strength of 12. Generally, all Yang-Mills theories are

absolutely compatible and the strength of a theory with a d-dimensional gauge

group in an n-dimensional space-time is (2n2 � 6n+ 4)d :

8 Conclusions

We see from Theorem 3, that the Hilbert polynomial and the Cartan characters

contain the same information. There is a one-to-one correspondence between

them. The strength (plus the compatibility coe�cient) is a weaker measure, as

it takes only two characters into account. The degr�e d'arbitraire as introduced

in Section 5 is stronger. Firstly, because in general it takes more characters into

account, namely all vanishing ones. In the case of an absolutely compatible

system it uses therefore at least two. Secondly, because Theorem 7 tells us that
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it provides the only true invariant, i.e. the number of free functions of maximal

number of arguments.

Su�e's [12] conclusion of the opposite is somewhat misleading, because he as-

sumed that we do not know which k0 corresponds to the degr�e d'arbitraire.

This is, however, an unrealistic situation. The reason to consider only this one

Cartan character lies of course in Theorem 7 and not in a lack of information.

Furthermore, he compares a gauge corrected strength with an uncorrected degr�e

d'arbitraire.

Generally, we can conclude that it does not make much sense to measure

the arbitrariness of the solution space by the number of arbitrary functions.

We have seen that this approach does not lead to unique and thus comparable

results, as they depend on the chosen representation of the general solution. We

encounter here the typical problem of measuring an in�nite-dimensional space

by some �nite number. The best measure is probably provided by the Hilbert

polynomial, as it counts simply the free Taylor coe�cients independently of any

representation of the solution space.

If we compare our approach with earlier ones, especially by Hoenselaers [8]

and Su�e [12], we note that their ansatz to compute the Taylor coe�cients from

the number of equations and identities leads to problems for over-determined

systems, as these require that an in�nite number of identities be taken into

account (thus they are not \systems of type (D)" as introduced by Su�e).

The trivial example ux = 0; uy = 0 may illustrate this point. It has an in�nite

sequence of identities of the form uxy = uyx etc., which must all be counted. This

can be highly non-trivial for more complicated systems. Equation (6) performs

this counting automatically. It is at this point that involution turns out to be

crucial.

Identities can be recognized by a rank de�cit in the symbol. We must distin-

guish two cases. If the corresponding equations in the full system are functionally

independent, then an integrability condition has occured. This cannot happen

in an involutive system. Otherwise (e.g. in case of the Noether identity for the

Maxwell equations), the identities are related to so-called compatibility condi-
tions. We do not have to consider them, as they drop out automatically during

the construction of the row echelon form of the symbol.

The occurance of negative values for some fk for the Maxwell equations in

the potential formulation has already puzzled several authors [8, 10, 11, 12].

Matthews suspected a connection with gauge symmetries and conjectured that

negative values correspond to gauge functions. But as we have seen, gauge cor-

rections come from an a posteriori identi�cation of some solutions. They can

only be performed after the fk have been computed.

Integrals have implicitly been used by many authors, as they have worked

with functions of di�erent \di�erentiation orders" j. However, these orders were

mostly assigned ad hoc or by physical considerations and their relation to inte-

grals were never clearly pointed out.

There exist other approaches to computing the number of arbitrary functions

in the general solution. One uses Janet-Riquier theory [20, 4] to construct initial

value problems. The arbitrariness is now measured in the amount of necessary
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initial data. Since involution depends in this theory also on the chosen ordering

for the derivatives and since di�erent orderings may lead to di�erent initial value

problems, one can also obtain di�erent expansions of the Hilbert polynomial in

this approach.

Finally we want to comment on Su�e's remark, that the number of free Taylor

coe�cients is well-de�ned only for quasi-linear systems. This is surely not correct!

After prolongation every system becomes quasi-linear, thus problems can arise

only for the coe�cients of order less than q for a di�erential equation Rq . Our

starting assumption that the equation de�nes a �bred submanifold ensures that

locally we can always solve for dimRq derivatives and this provides the needed

distinction between principal and parametric derivatives. But even if we consider

more general equations de�ning algebraic varieties, we can perform the same

operation on each component of the variety. The number of principal derivatives

may vary from component to component but on each component it is a constant,

as it is equal to its codimension.
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A Prolonged Symbols

To calculate dimensions or ranks of prolonged symbols, we need formulae for their

characters. For this purpose we use the important fact that if Mq is involutive,

then all its prolongationsMq+r are involutive, too [17].

Lemma10. If Mq is an involutive symbol with characters �
(k)
q and �

(k)
q ; then

the characters of its prolongation Mq+r are given by

�
(k)
q+r =

nX
i=k

�
r + i � k � 1

r � 1

�
�(i)
q ; (34)

�
(k)
q+r =

nX
i=k

�
r + i � k � 1

r � 1

�
�(i)q : (35)

It su�ces to prove (35), as (34) is then an immediate consequence of (4).

We use an induction over r. By prolonging an equation of class k or higher with

respect to xk, we get an equation of class k. This yields �
(k)
q+1 = �

(k)
q + � � �+ �

(n)
q

and we have proven (35) for r = 1. Note that it is crucial here that Mq is

involutive, because only then all independent equations in Mq+1 are obtained

by prolonging each equation in Mq with respect to its multiplicative variables

only (cf. Section 2).
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Let us now assume that (35) holds for r� 1. Using the formula for r = 1, we

have �
(k)
q+r = �

(k)
q+r�1+� � �+�

(n)
q+r�1 :Well-known properties of binomial coe�cients

yield

�
(k)
q+r =

nX
i=k

iX
l=k

�
r + l � k � 2

r � 2

�
�(i)q =

nX
i=k

�
r + i � k � 1

r � 1

�
�(i)q : (36)

Lemma 10 allows us to compute easily the rank and the dimension of a

prolonged symbolMq+r . By de�nition we have rankMq+r =
Pn

k=1 �
(k)
q+r and

dimMq+r =
Pn

k=1�
(k)
q+r : Substituting (34) and (35) yields

rankMq+r =

nX
k=1

�
r + k � 1

r

�
�(k)q ; (37)

dimMq+r =

nX
k=1

�
r + k � 1

r

�
�(k)
q : (38)

B Symmetric q-Products

De�nition11. The symmetric q-product s
(n)

k (q) is de�ned for non-negative in-

tegers n; k; q with n � k by

s
(n)

k (q) =

�
1 for k = 0 ;

�
(n)

k (q + 1; q+ 2; : : : ; q + n) for 0 < k � n ;
(39)

where we denote by �
(n)

k the elementary symmetric polynomial of degree k in

n unknowns.

These products arise in the expansion of binomial coe�cients as polynomials

�
q + r + n

q + r

�
=

1

n!

nX
i=0

s
(n)
n�i(q) r

i : (40)

The following lemma collects some elementary properties.

Lemma12.

s
(n)
n (q) = (q + n)!=q! ; (41)

s
(n)
1 (q) = 1

2

�
n2 + (2q + 1)n

�
; (42)

s
(n)

k (q) = s
(n�1)

k (q) + (q + n) s
(n�1)

k�1 (q) ; (43)

s
(n)

n�k+1(1) = n s
(n�1)

n�k (1) + s
(n)

n�k+1(0) : (44)
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(41,42) follow immediately from De�nition 11. (43) stems from a similiar pro-

perty of symmetric polynomials.

For k = 1 (44) is an obvious consequence of (41). To proceed from k � 1 to

k we use again an induction. For n = k the proposition follows from (42). To go

from n to n+ 1 we apply (43) to each term and order the result as follows

(n+ 1) s
(n)

n�k+1(1) + s
(n+1)

n�k+2(0) � s
(n+1)

n�k+2(1) =

(n+ 1)
h
n s

(n�1)

n�k (1) + s
(n)

n�k+1(0)� s
(n)

n�k+1(1)
i
+h

n s
(n�1)

n�(k�1)
(1) + s

(n)

n�(k�1)+1
(0)� s

(n)

n�(k�1)+1
(1)
i
+h

s
(n�1)

n�k+1(1) + (n+ 1) s
(n�1)

n�k (1)� s
(n)

n�k+1(1)
i
:

The �rst bracket vanishes because we assume that (44) holds for n ; the second

bracket is our proposition for k � 1 : The last one is just (43).
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