
Pseudo Di�erential Operators and Integrable

Systems in AXIOM

Werner M. Seiler
?

Institut f�ur Algorithmen und Kognitive Systeme

Universit�at Karlsruhe, D-76128 Karlsruhe, Germany
Email: kg04@dkauni2.bitnet

Abstract

An implementation of the algebra of pseudo di�erential operators in the com-

puter algebra system AXIOM is described. In several examples the application

of the package to typical computations in the theory of integrable systems is

demonstrated.

Program Summary

Title of program: PDO

Computer: IBM RS 6000, SUN

Operating system: AIX, SunOS

Programming language: AXIOM 1.2

Memory required: Depends on complexity of calculation

No. of lines: ca. 1800

Keywords: Pseudo di�erential operators, integrable systems, (generalized) Lax
equation, Zakharov-Shabat equation, hierarchies, conserved densities

Nature of physical problem: Generation of integrable systems solvable by the
Inverse Scattering Method and determination of conservation laws

Method of solution: Pseudo di�erential operators allow one to construct easily
hierarchies of Lax pairs. The formalism yields also automatically an in�nite
number of conserved densities.

Running times: Depends on complexity of calculation

? Supported by Studienstiftung des deutschen Volkes

2 Werner M. Seiler

1 Introduction

Pseudo di�erential operators (sometimes also called micro di�erential operators)
are a useful tool in the theory of integrable system [1]. It is easily possible to
construct with their help whole hierarchies of integrable systems in Lax form
starting with a linear di�erential operator. The problem here is to �nd possible
partners for this operator to build a Lax pair [2].

It is interesting that this problem was already tackled by Schur [3] in 1904,
however, not in the context of integrable systems. He was concerned with the
question, when two linear di�erential operators commute, and was able to give
a complete answer by introducing pseudo di�erential operators.

The original approach to integrable systems with pseudo di�erential opera-
tors [4] was restricted to systems in 1+1 dimensions. Using Sato theory [5] one
can, however, also work in higher dimensions and derive similiarly hierarchies.
In a recent paper, Oevel [6] showed, how pseudo di�erential operators can also
be applied to Darboux transformations. We will, however, consider in this paper
only Lax und Zakharov-Shabat equations.

Pseudo di�erential operators are meanwhile a standard technique in inte-
grable system theory. Some operations like division or extraction of a root are,
although straight forward, fairly tedious. It is thus natural to implement them in
a computer algebra system. We have chosen AXIOM [7] because of its convenient
stream data types which allow for the e�cient manipulation of in�nite series and
for the possibility of generic programming.

Most implementations of in�nite series are based on a truncation at a given,
�xed order. In a stream the coe�cients are also only computed up to a given
order. A stream \knows", however, a rule to calculate additional terms, if they
are needed. This so-called lazy evaluation is especially useful, if it is a priori not
clear, how many terms will be needed. This is for instance the case, if leading
terms may cancel.

Ito [8] presented a REDUCE program for the evaluation of Lax pairs. His pairs
consisted of matrices of di�erential operators and the purpose of his program
was to compute the commutator of generic matrices in order to be able to guess
the Lax pair for a given equation. Our program can also handle easily such
calculations, but it is not its main goal. The idea behind the use of pseudo
di�erential operators is to derive operators which form together with a given
one Lax pairs. Hence our program is much more general than the one of Ito.

This paper is organized as follows: The next section introduces pseudo di�er-
ential operators and their algebraic properties. Section 3 explains their applica-
tion to integrable systems. After a discussion of the implementation in Section 4,
the last section shows some concrete examples, namely the Korteweg-de Vries
and the Boussinesq hierarchy in 1+1 dimensions and the Kadomtsev-Petviashvili
hierarchy in 2+1 dimensions.

Pseudo Di�erential Operators and Integrable Systems in AXIOM 3

2 Pseudo Di�erential Operators

We denote by D the di�erentiation operator @=@x with respect to the variable x.
D can be formally de�ned through the commutation relation

[D; f(x)] = f
0(x) : (1)

We can introduce, again formally, its inverse operator via the corresponding
commutation relation

[D�1
; f(x)] =

1X
k=1

(�1)kf (k)(x)D�k�1
: (2)

Although this de�nition does not �x D
�1 completely, it su�ces completely for

all purely algebraic computations.
We de�ne a pseudo di�erential operator of order n as a formal series

F =

nX
k=�1

fkD
k (3)

where the coe�cients fk are arbitrary (smooth) functions out of some ring. The
pseudo di�erential operators together with the usual addition and multiplication
of operators form a non-commutative algebra over the coe�cient ring [3].

For the coe�cients of a product one can derive a similiar formula as for the
product of two power series. If

F =

nX
k=�1

fkD
k
; G =

mX
k=�1

gkD
k
; (4)

then the product is given by

F �G =

1X
k=0

2
4 kX
i=0

k�iX
j=0

�
n� j

k � i� j

�
fjg

(k�i�j)

i

3
5 D

m+n�k
: (5)

One reason for the introduction of the negative powers in (3) lies in the fact
that (left and right) division by a pseudo di�erential operator can be de�ned,
if division in the coe�cient ring is possible. A closer analysis of the product (5)
reveals that the equation H = F � G leads to a linear system of equations for
the coe�cients of F (or G), if H and G (or H and F) are given. Thus they are
rational functions of the coe�cients of the two given operators.

Similiarly, it is possible to take the k-th root of a pseudo di�erential operator
provided that k divides the order n of the operator. If we make the ansatz Gk = F

where G is of order m = n=k, then we get for the leading coe�cient gkm = fn ;

i.e. it is determined only up to a k-th root of unity. The remaining coe�cients
are again given by linear systems of equations. This means that there exists
k di�erent roots related by multiplication with a primitive k-th root of unity.

4 Werner M. Seiler

Finally, we introduce the residue of a pseudo di�erential operator

Res (F) = f�1 (6)

and its positive and negative part, respectively,

F+ =

nX
k=0

fkD
k
; (7)

F� =

�1X
k=�1

fkD
k
: (8)

F+ is a usual linear di�erential operator. If one assumes that the coe�cients
tend su�ciently fast to zero as jxj ! 1 ; one can show that

Z
1

�1

dxRes [F;G] = 0 (9)

for arbitrary pseudo di�erential operators F;G.

3 Integrable Systems

One interesting application of pseudo di�erential operators is the construction of
Lax pairs [2] and thus of completely integrable systems solvable by the Inverse
Scattering Method. Furthermore, this approach yields conservation laws of the
equation. For simplicity, we start with systems in 1+1 dimension.

The fundamental idea of Lax pairs is to associate with each function u(t; x) a
di�erential operator L[u] such that if u is a solution of the (nonlinear) evolution
equation

ut = K[u] ; (10)

the operators L(t) (L[u] at di�erent times t) are unitarily equivalent. Then the
eigenvalues of L(t) are integrals of the equation (10).

Unitary equivalence means that there exists a family U (t) of unitary opera-
tors with the properties

Ut = M � U ; (11)

U (t) � U (t)y = 1l ; (12)

U (t)�1 � L(t) �U (t) = L(0) ; (13)

where M is a skew-adjoint operator, i.e.M y = �M ; which usually also depends
on u. Note that U has a linear evolution law (11).

Di�erentiating (13) with respect to t and substituting (11) yields the famous
Lax equation

@L

@t
= [M;L] : (14)

L;M are called the Lax pair for the evolution equation (10).

Pseudo Di�erential Operators and Integrable Systems in AXIOM 5

There exists, however, no general method to construct the Lax pair to a
given evolution equation. Conversely, it is not possible to choose any pair of
operators as Lax pair. Pseudo di�erential operators provide a simple method to
generate whole hierarchies of integrable systems starting with a linear di�erential
operator L.

Schur [3] showed that every pseudo di�erential operator M commuting with
a given linear di�erential operator L of order n can be written as

M = f +

mX
k=1

ckL
k=n (15)

where f is an arbitrary function and the ck arbitrary constants. Furthermore, it
is easy to see that for any M of this form order

�
[M+; L]

�
� n holds.

Hence we can use these operators as partner of L in Lax pairs to de�ne a
hierarchy of Lax equations through

@L

@t
=
�
(Lk=n)+; L

�
; k = 1; 2; : : : (16)

The corresponding
ows are called Gelfand-Dikii
ows. Since from (16) follows
@=@t (Lj=n) =

�
(Lk=n)+; L

j=n
�
for all j, we can use (9) and �nd for this hierarchy

an in�nite number of conserved quantities, namely

Qj =

Z
1

�1

dxResLj=n
; j = 1; 2; : : : (17)

It is possible to extend this approach to integrable systems in more than
1+1 dimensions using Sato theory [5]. We introduce the \dressing" operator

P = 1 + w�1D
�1 + w�2D

�2 + � � � (18)

and the di�erential operators

C =
D ; An = �nD
n
; n 2 IN : (19)

The coe�cients wi will be the �elds of the theory satisfying nonlinear evolution
equations. They depend on an in�nite number of \time variables" tk :
; �n are
arbitrary but �xed functions independent of the tk.

We assign now an evolution to the �elds wi by requiring

@P

@tn
= �

�
PAnP

�1
�
�
P : (20)

Since we have on both sides of this equation a pseudo di�erential operator of
order �1, this yields a consistent dynamic. Introducing the operators

L = PCP
�1

; (21)

Bn =
�
PAnP

�1
�
+

(22)

6 Werner M. Seiler

we derive the generalized Lax equation

@L

@tn

= [Bn; L] (23)

and as its compatibility conditions the Zakharov-Shabat equation

@Bm

@tn

�
@Bn

@tm

= [Bn; Bm] : (24)

4 Implementation in AXIOM

For an implementation of pseudo di�erential operators, we have chosen the com-
puter algebra system AXIOM [7] (formerly known as Scratchpad II). It provides
a very powerful, object-oriented programming language which allows one to in-
troduce easily abstract data types for the representation of algebraic structures.

For in�nite series like (3), the stream types [9] with their lazy evaluation
mechanism proved to be very useful. For a stream, it is not necessary to de�ne a
cut-o� order. Every operation is done only up to a prescribed order, which can
be changed any time. If suddenly more terms are needed, they are automatically
computed, as a stream \knows" a rule to determine its next term.

Several domains and packages have been developed for pseudo di�erential
operators and linear di�erential operators. There exists also a package for their
application to integrable systems as indicated in Section 3. Especially for Sato
theory, we have added a domain with functions depending on an in�nite number
of variables.

The fundamental domain is PseudoDifferentialOperator. It takes as pa-
rameters the coe�cient domain, a PartialDifferentialRing, the name of the
di�erential operator and the name of the variable with respect to which this op-
erator di�erentiates. It implements besides some procedures to generate pseudo
di�erential operators the basic algebraic operations of a PartialDifferential-
Ring.

A pseudo di�erential operator is internally represented as a record with three
slots: the coe�cient stream, the highest and the lowest occuring exponent. The
latter one is minus in�nity in the generic case (AXIOM provides the data type
OrderedCompletion Integer which allows for manipulations of �1). It is in-
cluded to faciliate checks whether or not a given pseudo di�erential operator is
�nite.

The only non-trivial operation is the multiplication. Since the number of
terms which have to be computed grows rapidly with each further coe�cient,
a careful management of the lazy evaluation is necessary to avoid super
uous
calculations. We have also implemented a special version which tries to check
whether the result has only a �nite number of non-vanishing terms.

The generation of a hierarchy using (16) requires higher and higher pow-
ers of the same operator M . For e�ciency a special multiplication procedure
repeatedMult is implemented which stores the derivatives of the coe�cients of

Pseudo Di�erential Operators and Integrable Systems in AXIOM 7

this operator. Otherwise they would be recomputed in each step. The output of
repeatedMult(L,M) is the stream (L,L�M,L�M�M,: : :).

The package PDOAlgebra implements division by a pseudo di�erential oper-
ator and extraction of roots. In both cases explicit formulae for the coe�cients
would be very complicated. It is much simpler to compute them as solutions of
systems of linear equations by making a generic ansatz for the wanted pseudo
di�erential operator. In order to be able to set up and solve these systems, the
coe�cient domainmust now belong additionally to the category FunctionSpace
Integer 2.

AXIOM provides in its huge library already a domain for linear di�erential
operators: LinearOrdinaryDifferentialOperator (LODO). It is, however, for
several reasons not convenient for our purposes. Especially awkward is the fact
that it requires as parameter a left module of the coe�cient domain representing
the de�nition domain on which the operators are acting. Since in our applications
these two domains are always identical, we implemented the somewhat strange
domain constructor SelfLeftModuleWithDerivation (SLMD) which turns a dif-
ferential ring into a left module over itself.

Furthermore, a few needed operations are missing in LODO. Consequently,
we have introduced the new domain LinearOrdinaryDifferentialOperator2

(LODO2). It is based on the old one, but takes automatically the same domain
as de�nition and coe�cient domain using the above mentioned constructor SLMD
and is augmented by a few procedures. Especially, it is now easier to see such
an operator as a polynomial in the di�erentiation operator.

For generic pseudo di�erential operators, as they are for instance used in
PDOAlgebra to make an ansatz for a quotient or a root, one needs indexed
functions with prescribed arguments to represent the coe�cients. Similiarly, we
need in Sato theory indexed variables. The package IndexedFunction provides
both. It takes as argument a domain from the category FunctionSpace Integer

elements of which the generated functions are.

For our applications we have implemented the domain DependentFunction

for the coe�cients of the di�erential operators. It provides functions with implicit
dependencies, i.e. they can depend on variables which do not explicitly occur in
their arguments. This is on one side often convenient to avoid lengthy argument
lists in the output, on the other side this is necessary, if functions shall depend
at least formally on an in�nite number of variables.

DependentFunction is based on the domain Expression Integer for general
symbolic expressions. The only di�erence lies in the di�erentiation which now
also respects the implicit dependencies. The procedure function generates ker-
nels with a special entry in their property list. This entry contains all variables
on which the function depends implicitly. Such a function can also depend on
indexed variables, if their name (without index!) appears in the list.

The package LaxEquation provides several procedures to evaluate (general-

2 Actually, it might appear more naturally to require it to be in the category Field. But

in view of our applications, where the coe�cients are usually symbolic expressions,

this is more convenient.

8 Werner M. Seiler

ized) Lax and Zakharov-Shabat equations. It takes two domains as parameters:
one for the operators and one for their coe�cients. This allows one to use the
same package for di�erent kind of operators. Especially, it is also possible to
apply it to matrix operators.

Finally, the package LaxHierarchy implements the generation of a hierarchy
of Lax equations as described in Section 3. Such a hierarchy is again represented
as a stream. Similiarly on can produce a stream of the conserved densities Qr

associated with the hierarchy. This package is restricted to linear di�erential
operators from LODO2. Only the coe�cient domain for the operators is taken as
parameter.

5 Examples

As examples we present here some standard equations in integrable system the-
ory. Most of the computations for them could be done by hand. But the purpose
of this section is only to demonstrate the possibilities of our program by showing
some well-known calculations and not to introduce some new results.

The classical example of an integrable system is the Korteweg-de Vries equa-
tion. Miura, Gardner and Kruskal [10] were the �rst to show that the eigenvalues
of the Schr�odinger operator

L = D
2 + u(x; t) (25)

are invariant, if u satis�es the KdV equation

4ut = uxxx + 6uux : (26)

Thus we can construct the KdV hierarchy along the lines of Section 3 by
starting with the above L. With

L
1=2 = D +

u

2
D
�1
�
ux

4
D
�2 +

uxx � u
2

8
D
�3 + � � � ; (27)

non-trivial equations result, if the positive part of an odd power of L1=2 is taken
as second operator in the Lax pair. The classical KdV equation (26) is for in-
stance the third equation of the hierarchy and obtained using

M = (L3=2)+ = D
3 +

3u

2
D +

3ux

4
: (28)

Figure 1 shows the complete AXIOM session for this computation. Only some
commands to load needed domains and packages are omitted. The)set stream

calculate command determines the number of terms calculated in a stream.
The next �ve lines de�nes the needed data types and packages: ctyp for the
coe�cients, ltyp for linear operators like L and ptyp for the pseudo di�erential
operators. algpack contains the procedures for divisions and roots; laxpack the
ones for Lax equations.

The following lines perform the actual computation. Because AXIOM allows
operations to be overloaded, it is often necessary to indicate explicitly either the

Pseudo Di�erential Operators and Integrable Systems in AXIOM 9

)set stream calculate 5

ctyp:=DependentFunction()
ltyp:=LinearOrdinaryDifferentialOperator2(ctyp,'x,'D)
ptyp:=PseudoDifferentialOperator(ctyp,'x,'D)
algpack:=PDOAlgebra(ctyp,'x,'D)
laxpack:=LaxEquation(ctyp,ltyp,'t,'x,'D)

u:ctyp:=function('u,['x,'t])

(6) u(x,t)

L:ltyp:=D()**2+u

2
(7) D + u(x,t)

M:ptyp:=nthRoot(L)$algpack

2
u (x,t) u (x,t) - u(x,t)

u(x,t) - 1 ,1 - 2 ,1,1 - 3
(8) D + ------ D - -------- D + -------------------- D

2 4 8

- 4
+ O(D)

evalLax(L,pos(M**3))$laxpack

- u (x,t) + 4u (x,t) - 6u(x,t)u (x,t)
,1,1,1 ,2 ,1

(9) --
4

conservedDensities(M)$laxpack

(10)
2

u (x,t) + 3u(x,t)
u(x,t) ,1,1

[------, 0, ---------------------, 0,
2 8

2 3
u (x,t) + 10u(x,t)u (x,t) + 5u (x,t) + 10u(x,t)
,1,1,1,1 ,1,1 ,1
--, ...]

32

Fig. 1. Session for KdV equation.

types of some of their arguments, the type of their result or the package in which
they are de�ned. Otherwise it may be impossible for the AXIOM interpreter to
�nd the correct operation.

D() represents the di�erentation operator; nthRoot computes the n-th root of
a linear di�erential operator of order n (it is a special case of a similiar procedure
for pseudo di�erential operators). The calculation of the root is the most time-
consuming step in the whole derivation. It takes about 7 sec on an IBM RS 6000
Model 530 with 64MB memory. The evaluation of the Lax form is of course
trivial. Because of the power it takes about 1.5 sec.

The �nal line computes the �rst �ve conserved densities using (17). Again

10 Werner M. Seiler

only the odd ones are non-trivial. Assuming that u and all its derivatives tend
su�ciently fast to zero as jxj ! 1 we can simplify the corresponding conserved
quantities by partial integration and obtain after multiplication with suitable
factors

Q1 =

Z
1

�1

dxu ;

Q3 =

Z
1

�1

dxu
2
;

Q5 =

Z
1

�1

dx
�
u
3
� u

2
x
=2
�
:

(29)

We can compute the complete KdV hierarchy using the command generate-
Hierarchy(L). The �rst seven equations are shown in Figure 2. It was obtained
using the TEX interface of AXIOM. Derivatives are here denoted by a comma
preceding the number of the argument with respect to which the function is
di�erentiated. We see, that indeed every second equation is trivial and that the
third line in the �gure is equation (26). The time needed for this computation
varies between 90 and 100 sec.

u;2 (x; t)� u;1 (x; t)

u;2 (x; t)

�
�u;1;1;1 (x; t) + 4 u;2 (x; t)� 6 u (x; t) u;1 (x; t)

�
=4

u;2 (x; t)

�
�u;1;1;1;1;1 (x; t)� 10 u (x; t) u;1;1;1 (x; t)� 20 u;1 (x; t) u;1;1 (x; t) + 16 u;2 (x; t)

� 30 u (x; t)2 u;1 (x; t)
�
=16

u;2 (x; t)

�
�u;1;1;1;1;1;1;1 (x; t)� 14 u (x; t) u;1;1;1;1;1 (x; t)� 42 u;1 (x; t) u;1;1;1;1 (x; t)

+
�
�70 u;1;1 (x; t)� 70 u (x; t)2

�
u;1;1;1 (x; t)� 280 u (x; t) u;1 (x; t) u;1;1 (x; t)

+ 64 u;2 (x; t)� 70 u;1 (x; t)
3
� 140 u (x; t)3 u;1 (x; t)

�
=64

Fig. 2. Output for KdV hierarchy.

As a second example we treat the Boussinesq hierarchy (Figure 3). The pro-
cedure is like in the previous example except that we start this time with the
operator

L = D
3 + p(x; t)D + q(x; t) : (30)

Thus each level of the hierarchy consists now of a system of two equations for
the two functions p; q. The second system yields the Boussinesq equation. After

Pseudo Di�erential Operators and Integrable Systems in AXIOM 11

the transformation t ! �t, it is possible to eliminate q by cross-di�erentiating
and one gets

3 ptt+ pxxxx + 2 (p2)xx = 0 : (31)

To show the behavior of the program in longer calculations, we computed the
�rst ten systems of this hierarchy. This took about 800 sec. Nearly 200 of them
were used for garbage collection. Figure 3 contains only the �rst �ve systems, as
they become quickly very large.

�
p;2 (x; t)� p;1 (x; t); q;2 (x; t)� q;1 (x; t)

	
�
p;1;1 (x; t)� 2 q;1 (x; t) + p;2 (x; t);

[2 p;1;1;1 (x; t)� 3 q;1;1 (x; t) + 3 q;2 (x; t) + 2 p (x; t) p;1 (x; t)]=3
	

�
p;2 (x; t); q;2 (x; t)

	
�
[p;1;1;1;1 (x; t)� 2 q;1;1;1 (x; t) + 2 p (x; t) p;1;1 (x; t)� 4 p (x; t) q;1 (x; t) +

3 p;2 (x; t) + 2 p;1 (x; t)
2
� 4 q (x; t) p;1 (x; t)]=3;

[2 p;1;1;1;1;1 (x; t)� 3 q;1;1;1;1 (x; t) + 6 p (x; t) p;1;1;1 (x; t)� 6 p (x; t) q;1;1 (x; t) +

12 p;1 (x; t) p;1;1 (x; t) + 9 q;2 (x; t) + (�6 p;1 (x; t)� 12 q (x; t)) q;1 (x; t) +

4 p (x; t)2 p;1 (x; t)]=9
	

�
[p;1;1;1;1;1 (x; t) + 5 p (x; t) p;1;1;1 (x; t) + (5 p;1 (x; t) + 15 q (x; t)) p;1;1 (x; t) +

(15 p;1 (x; t)� 30 q (x; t)) q;1 (x; t) + 9 p;2 (x; t) + 5 p (x; t)2 p;1 (x; t)]=9;

[q;1;1;1;1;1 (x; t) + 5 p (x; t) q;1;1;1 (x; t) + 10 q (x; t) p;1;1;1 (x; t) + (15 p;1 (x; t) �

15 q (x; t)) q;1;1 (x; t) + 20 q;1 (x; t) p;1;1 (x; t) + 9 q;2 (x; t)� 15 q;1 (x; t)
2 +

5 p (x; t)2 q;1 (x; t) + 10 p (x; t) q (x; t) p;1 (x; t)]=9
	

Fig. 3. Output for the Boussinesq hierarchy.

As a simple example of a higher-dimensional system we consider the deriva-
tion of the Kadomtsev-Petviashvili hierarchy [11]. We set in (19)
 = �n = 1:
Evaluating now the Zakharov-Shabat equation (24) with n = 2 and m = 3 yields
two equations for u�1 and u�2

u�1;t2 = u�1;xx + 2u�2;x ;
3u�2;t2 + 3u�1;xt2 + 6u�1u�1;x = 3u�2;xx + 2u�1;t3 :

(32)

If we eliminate u�2 by cross-di�erentiation and identify t2 = y; t3 = t; u�1 = u

we get the KP equation in the form

(4ut � 12uux � uxxx)x � 3uyy = 0 : (33)

It is also possible to obtain the KP equation from the generalized Lax equa-
tion (23) with n = 2 and n = 3, but this requires a more complicated elimina-
tion.

12 Werner M. Seiler

Figure 4 shows the corresponding AXIOM session. The procedure function-
Stream generates a stream of kernels representing indexed functions with explicit
and implicit dependencies of variables. Here, we have chosen to take all depen-
dencies implicit. Note that there is no di�erence between indexed and normal
variables; x and t appear on the same footing, although the latter one is used
as name for the indexed time variables. The time needed for this computation
varies between 1 and 2 sec.

L : ptyp := D()+generate(functionStream(u,[],['x,'t],-1,-1),-1)

- 1 - 2
(5) D + u ()D + O(D)

- 1

B : NonNegativeInteger -> ltyp
B := n +-> pos(L**n)$ptyp

evalZakharovShabat(B,2,3)$laxpack

(8)
(- 3u () + 3u () - 6u ())D - u ()

- 1,x,x - 1,t - 2,x - 1,x,x,x
2

+ 3u () - 3u () - 2u () + 6u ()u ()
- 1,x,t - 2,x,x - 1,t - 1 - 1,x

2 3

+ 3u ()
- 2,t

2

Fig. 4. Session for KP equation.

Finally, we want to comment brie
y on more general operators. It was already
mentioned in Section 4 that LaxEquation can be used with many di�erent kinds
of operators. For instance it is thus also possible to evaluate the Lax pair for the
Nonlinear Schr�odinger Equation [12]

iut + uxx +
2

1� k2
u
2
u = 0 (34)

consisting of matrices of linear di�erential operators with complex coe�cients

L = i

�
1 + k 0
0 1� k

�
D +

�
0 �u
u 0

�
;

M = ik

�
1 0
0 1

�
D
2 +

0
B@�

iu�u

1 + k
�ux

�ux
iu�u

1� k

1
CA :

(35)

To perform this calculation with our program is straight-forward.

Pseudo Di�erential Operators and Integrable Systems in AXIOM 13

ctyp := Complex DependentFunction()

ltyp := LinearOrdinaryDifferentialOperator2(ctyp,'x,'D)

mtyp := SquareMatrix(2,ltyp)

laxpack := LaxEquation(ctyp,mtyp,'t,'x,'D)

u:ctyp := function('u,['x,'t])

uq:ctyp := function('uq,['x,'t])

d:ltyp := D()

k:ctyp := K

L := matrix [[%i*(1+k)*d,uq], [u,%i*(1-k)*d]]

M := matrix [[%i*k*d**2-%1*u*uq/(1+k), differentiate(uq,x)], _

[-differentiate(u,x), %i*k*d**2+%i*u*uq/(1-k)]]

evalLax(L,M)$laxpack

Because of the complicated data types entering L and M is fairly clumsy. As
already mentioned above, the overloading makes it di�cult for the interpreter
to identify the correct operation. In such cases it is often quite useful to introduce
auxiliary variables like d or k and to give their types explicitly.

References

1. J. Hoppe. Lectures on Integrable Systems. Lecture Notes in Physics m10. Springer

Verlag, Berlin, 1992.

2. P.D. Lax. Integrals of nonlinear equations of evolution and solitary waves. Comm.
Pure Appl. Math., 21:467{490, 1968.

3. J. Schur. �Uber vertauschbare lineare Di�erentialausdr�ucke. Sitzungsber. Berliner

Math. Ges., 29. Sitz., pages 2{8, 1904. (App. to Archiv Math. Phys. 8, 1905).
4. V.G. Drinfeld and V.V. Sokolov. Lie algebras and equations of Korteweg-de Vries

type. J. Sov. Math., 30:1975{2036, 1985.

5. Y. Ohta, J. Satsuma, D. Takahashi, and T. Tokihiro. An elementary introduction
to Sato theory. Prog. Theor. Phys. Supp., 94:210{241, 1988.

6. W. Oevel. Darboux theorems and Wronskian formulas for integrable systems I.

Constrained KP
ows. Physica A, 195:533{576, 1993.
7. D. Jenks and R.S. Sutor. AXIOM { The Scienti�cComputation System. Springer-

Verlag, New York, 1992.

8. M. Ito. A REDUCE program for evaluating a Lax pair form. Comp. Phys.

Comm., 34:325{331, 1985.

9. W.H. Burge and S.M. Watt. In�nite structures in Scratchpad II. In J.H. Daven-

port, editor, Proc. EUROCAL '87, Lecture Notes in Computer Science 378, pages
138{148. Springer-Verlag, Berlin 1987.

10. R.M. Miura, C.S. Gardner, and M.D. Kruskal. Korteweg-de Vries equation and

generalizations II: Existence of conservation laws and constants of motion. J.

Math. Phys., 9:1204{1209, 1968.

11. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa. Transformation groups for soli-

ton equations. In M. Jimbo and T. Miwa, editors, Nonlinear Integrable Systems
{ Classical Theory and Quantum Theory. World Scienti�c, Singapore, 1983.

12. V.E. Zakharov and A.B. Shabat. Exact theory of two-dimensional self-focusing

and of one-dimensional waves in nonlinear media. Sov. Phys. JETP, 34:62{69,
1972.

