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We present an informal overview of a number of approachesto differential
equations popular in computer algebra. Thisincludes symmetry and
completion theory, local analysis, differential ideal and Galois theory,
dynamical systems and numerical analysis. A large bibliography is provided.

Introduction

Differentia equationsrepresent one of thelargest fiel dswithin mathematics. Besides being an interesting subject of
their own right one can hardly overestimate their importance for applications. They appear in natural and engineer-
ing sciences and increasingly often in economics and socia sciences. Whenever a continuous process is model ed
mathematically, chances are high that differential equations are used.

Thus it is not surprising that differential equations also play an important role in computer agebra and most gen-
eral purpose computer algebra systems provide some kind of sol ve command. Many casua users believe that
designing and improving such proceduresisa centra problem in computer algebra. But thereal situationis some-
what different. Many computer agebra applications to differential equations work indirectly; they help to study
and understand properties of the sol ution space.

The purpose of thisarticleisto sketch in an informal way some of the main research directionsin thisfield and to
providea starting point for more detailed studies by giving alarge number of references. We omit all mathematical
details (there isnot asingle formulain this article!) but describe briefly the central ideas. For the same reason we
tried to cite introductory articles or books and not the historically first or the most “ground breaking” work.

The bibliography is of course far from being exhaustive. Asafurther source of references one should mention the
survey [104] by Singer. It gives much more details, especialy on the more agebraic approaches, and contains a
large bibliography. The same holds for the more focused surveys by Hereman [50, 51] covering symmetry theory
and related fields and the one by MacCdlum [65] on the integration of ordinary differential equations. In addi-
tion there have been three conferences devoted exclusively to differential equations and computer algebra. Their
proceedings[103, 112, 113] contain a number of useful introductory or review articles on more specialized topics.

We are taking arather broad view and consider more or less any constructive approach to differentia equationsas
“computer algebra’. Thisalso impliesthat we do not pay specia attention to implementations. Among the many
different approaches to differential equations which fall under this broad definition of computer algebra one can
distinguish certain directionswhich have found most attention (at east measured in the number of articles devoted
to them). We concentrate in this article on the following eight topics: (i) solving differentia equations, (ii) local
analysis, (iii) symmetry analysis, (iv) completion, (v) differential ideal theory, (vi) differential Galoistheory, (vii)
dynamical systems theory, and (viii) the relation between numerical analysisand computer agebra.
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A comparison of the impact made by symmetry analysis and by differential Gaois theory, respectively, demon-
strates the importance of computer algebra tools. The latter one is a hardly known theory studied by a few pure
mathematicians. The former one remained in the same state for many decades following Lie's original work. One
reason was definitely the tedious determination of the symmetry algebra. As soon as computer algebra systems
emerged, the first packages to set up at least the determining equations were written. Since then Lie methods be-
long to the standard toolsfor treating differential equations.

Solving Differential Equations

Most computer algebra systems can solve some differential equations.! They mainly apply some standard tech-
niques like those in Zwillinger’shandbook [127] or try some “pattern matching” in alist of solved equations like
Kamke [58]. Heuristics often extend the applicability of these techniques, for example by finding atransformation
such that a given eguation can be handled by the implemented methods.

Althoughthisapproach solves more differential equationsthan one might expect (see e. g. the recent review by Pos-
tel and Zimmermann [86]2), it has some drawbacks. A major oneisthat no information is obtained, if the computer
algebra system does not return a solution. It could be that the given differentia equation hasindeed no solution (or
at least nonein closed form) or that simply the heuristics were not able to determine a suitable transformation.

For that reason researchers in computer algebra are more interested in decision algorithms. These either yield a
solutioninaspecific class of functionsor decidethat no such solutionexists. However, sofar only for linear ordinary
differential equations such algorithmsare known. There it ispossible to decide with the help of differential Galois
theory whether or not Liouvillian solutionsexist.

There exists a number of reasons for this perhaps disappointing situation. Computability theory yields principa
limitstowhat can be solved. For exampleif onerestrictsto computablefunctionssome classica existence theorems
for differentia equationsfail [1, 87]. More precisaly, one has constructed examples of differential equationswhere
one can show that solutionsexistsbut that it is not possibleto compute them. Some further (positive and negative)
resultsin thisdirection can be found in [23].

Idedlly a solution algorithm should return the general solution. But for nonlinear equationsit is surprisingly dif-
ficult even just to define thisterm. A rigorous resolution of this problem based on differential idea theory was
only recently presented [53]. Intuitively one would expect that the genera sol ution depends on some arbitrary pa-
rameters (constants or functions) and that every solution of the differential equation can be obtained by a suitable
specialization of these, Thisworks fine for linear equations where the solution space has the structure of a vector
space. But many nonlinear equations possess in addition singular integrals not contained in the general solution.

Similarly, defining the term “closed form solution” is notorioudly difficult. |sa solution in terms of, say, Bessd
functionsin closed form or not? Up to now no generally accepted definition has emerged. The basic idea behind
“closed form” isthat of finiteconstructibility out of aset of “elementary functions’. Notethat thisisan agebraic and
not an analytic property! On the practical side one must seethat even if a solution in closed form can be computed
it may take very long and the result may be completely useless, asit istoo large. Especiadly, if the main goal isto
obtain animpression of the behavior of thesolution, it isusual ly much moreefficient to resort to numerical methods.

In any case one can state that a notabl e solution theory exists only for ordinary differential equations (see e. g. the
survey [65]), mainly based on differential Galoistheory. But the algorithmsto compute the general solution suffer
from avery high complexity and arein practice often rather usel ess, especially for higher order equations. One way
out isto incorporate heuristics as mentioned above.

Another possibility that also addresses the problem of useless output isto aim for “simple” solutions[7]. Popular

IMuPAD providesthe command odesol ve for this task.
2An updated version can befound at ht t p: / / ww. nupad. de/ Bl B/ poszi n96. ht ni .
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variants are polynomial, rational [3] or exponential [11, 81] solutions. Because of their simple structureit is often
possible to determine such solutions, if they exist, rather fast. But one should note that the classical methods for
their computation are not always useful for computer algebra. Itisstill an activefield of research to design effective
algorithms being able to handle larger examples.

For partia differential equations the situation is much worse. In the last century mathemeaticians designed some
solution methods (see e. g. the survey [118]). However, most of them are meanwhile almost forgotten; at |east they
are no longer found in textbooks on differential equations. It could be quiteinteresting to revive some of them for
use in computer algebra systems. There exist a few implementations of standard techniques like characteritics,
separation of variables or integral transforms, but they can usually handle only rather simple equations. Often they
just reduce to a system of (nonlinear) ordinary differential equations and the question is whether thiscan be solved.

One can argue whether it really makes senseto speak of the general solution of asystem of partial differential equa-
tions. For example one definition of a harmonic function is that it solves the Laplace equation (or more generally
all holomorphic functions are solutions of the Cauchy-Riemann equation). Thus one might prefer to say that the
Laplace equation defines a class of functions. In some simple cases like the wave eguation one can give an explicit
parameterization of thisclassintermsof some arbitrary functionswhich onemay call the general solution. But usu-
ally no such parameterization exists. In order to get areally well-defined problem one must prescribe some initial
or boundary conditions. In most applications such conditions arise automatically anyway.

Local Analysis

If it is not possible to construct a closed-form solution, one may go for an approximate solution describing the
behavior of thesol utioninthe neighborhood of agiven point.® At ordinary pointsaTaylor series suffices; at singular
points more general expansions must be used. In the case of linear differential equations singular points are only
possible at singularities of the coefficients. Therefore one speaks of fixed singularities. Using the Newton polygon
of the associated differential operator they can be further classified into regular and irregular ones[25].

Local analysisisacomplex theory, even if one studiesonly real equations. Especialy, if onewantsto determinethe
radius of convergence of aformal solution, onemust consider complex singularities. Inthe neighborhood of regular
singular point one can represent the solutionin form of aFrobenius series, apolynomial inlog = with Taylor series
coefficients multiplied by a factor (z — z¢)“ where o is a complex number. At irregular singular points the solu-
tion has usually an essentia singularity and varies so rapidly that it makes no sense to construct an approximation;
instead one triesto capture the asymptotic behavior which reguires the addition of an exponential part.

There exist various agorithmsfor the construction of approximate or asymptotic solutions, partly dating back to
Frobenius. Some are discussed together with implementationsin [82, 115]. A main problem in the concrete appli-
cation isthat one cannot use an approximation of the location of the singularities. Thus one must not only solve
polynomial equationsbut ingeneral work with a gebraic numberswhichisquiteexpensivein any computer algebra
system. However, with a careful analysis of the algorithms one can significantly reduce the necessary amount of
computations with algebraic numbers.

Recent work concerns an extension to first order systems [6, 81]. In principle, one can transform any system into
a single equation of higher order, e g. using cyclic vectors. But this approach is rather inefficient, especialy in
higher dimensions. Hence oneisinterested in dealing directly with systems. Moser’s algorithm performs here the
classification intoregular and irregular singularities; arational version of it avoiding the use of algebraic extensions
was presented by Barkatou [5].

For nonlinear differential equations the situation becomes much more complicated as spontaneous or movable sin-
gularitiesmay occur, i. e. their location depends oninitial or boundary data. One important directionisthe Painlevé

3Especially in the linear caselocal solutions can also be very useful for the construction of closed-form solutions.
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theory [54]. It was introduced by Painlevéwhile searching for new specia functions(there still existsastrong con-
nection between thelocal analysisof ordinary differential equationsand specia functiontheory). If all singularities
are poles, no branch points appear in the (general) solutionand it issinglevalued. A differential equation without
movable branch pointsis said to possess the Painlevé property or to be integrable in the sense of Painlevé.

In generd, it is not possibleto check algorithmically whether or not a given differential equation has the Painlevé
property. But there exist methods to check at least some necessary conditions; such methods are usually called
Painlevé test [21]. One usualy tries to construct a Laurent series around the singularity. Essentiadly, the test is
passed, if this expansion has sufficiently many resonances or Fuchsian indices (free coefficients) to represent the
general solution and if these occur a non-negative powers. In the case of negative resonances a perturbation ap-
proach [22] yields further information. Some references concerning implementations can be found in [95].

Weiss et al. [122] generaized the Painlevé theory to partial differential equations where awhole singularity man-
ifold must be considered. This extension is much used in the theory of integrable systems, as the Painlevé test
represents an important indicator for integrability and can be performed comparatively easily. The Painlevé con-
jecture states that every ordinary differential equation obtained by symmetry reduction of an integrable system is
of Painlevéetype; only weakened versionsof it have been proven[2, 71]. Truncated series expansions are useful for
constructing Backlund transformations, Lax pairs and much more[121]. There also exist relationsto non-classica
symmetry reductions[30].

Symmetry Analysis

Symmetry analysis[9, 77, 111] has made the strongest impact on computer algebraapplicationsto differential equa-
tions. The most general definition of a symmetry is that of a transformation that maps solutions into solutions.
Depending on the kind of transformations considered one obtains different kinds of symmetries. One possible ap-
plication of symmetriesisthe construction of (special) solutions. Other god sare classifications, aproof of compl ete
integrability, separation ansatze, conservation laws and much more.

Symmetry analysis goes back to the semina work of Lie. He developed the concept of Lie groupsin his quest
for a Galoistheory for differentia equations. Aswe will see later, not much has remained of thisoriginal motiva
tion. Symmetry and Galoistheory have developed in very different directions. Even the relation between the Lie
symmetry and the Galois group of a differential equation israther unclear.

Themost popular form of symmetry analysisdeal swith point symmetries. They are generated by vector fiel dsacting
on the space of independent and dependent variables. These vector fields span the Lie agebra of the Lie group of
symmetries. The decisive observation of Liewasthat it often suffices to work with the vector fields (or infinitesimal
symmetries) instead of the symmetries themselves. Thisleads effectively to alinearization of the problem.

The symmetry generators arise as the solutionsof alinear system of partial differential equations, the determining
system. For ordinary differential equationsit isunfortunately sometimes as difficult to solve thissystem asto solve
theoriginal one. Thisholds especialy for first order equationswhere the original equation isjust the characteristic
equation of the determining equation. For partial differential equations the determining system is typically very
over-determined and contai nsoften some trivial equationsallowingin many cases arather straightforward solution.

For ordinary differentia equations the existence of a sufficiently large, solvable symmetry algebraimpliesthat its
general solution can be constructed by quadraturesonly, aseach symmetry alowsusto reducetheorder of the equa-
tion by one. Inthe case of partia differential equations symmetry reductionsyield only specia solutions, namely
those being invariant under the symmetry group. Here each symmetry allows us to reduce the number of indepen-
dent variables by one.

However, a intermediate steps of the reduction again linear partia differentia equations must be solved. For in
order to obtain the reduction, one must either perform acoordinatetransformation such that the symmetry generator
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is rectified (so-called canonical coordinates) or the differential invariants of the symmetry must be determined.
These are functions annihilated by the generator.

Thus the usefulness of Lie symmetries depends crucially on the ability to solve effectively al the arising linear
partial differential equations. At first sight it might look, as if, especialy for ordinary differential equations, we
made the problem only worse. But in many cases of practical interest it turns out that is much simpler to solve
these linear partid differential equations than the original equation.

There exist so many implementations of symmetry methodsthat it israther difficult to keep an overview; we refer
againto the surveysby Hereman [50, 51]. In amost any computer a gebrasystem one can find apackage for setting
up the determining system. A few of the packages try furthermore some heuristicsto solve it automatically. Again
it israther surprising how often this suffices to obtain the complete symmetry algebra. The symmetry package of
MAPLE issomewhat unusual, as it uses the exterior systems approach of Harrison and Estabrook [47].

Although Lie point symmetries proved to be very useful in many applications, many differential equationsof prac-
tical interest have no such symmetries. There are two basic approaches to generalize the theory. One can consider
more general transformations; thisleadsto generalized or Lie-Backlund symmetries [4]. Alternatively, one wesk-
ens the requirement that every solution is mapped into a solution; thisyields the so-called non-classical methods.
In both cases the explicit construction of the symmetries becomes considerably more difficult.

Generaized symmetries are especially of interest for integrablesystems[32, 123]. The existence of arecursion op-
erator or amaster symmetry generating an infinitehierarchy of symmetriesisastrong indicationthat the considered
system isintegrable. Reduction with respect to generalized symmetriesis an important tool for the construction of
soliton solutions. It isalso possibleto classify nonlinear partia differential equations using these symmetries[73].
Some MuPAD packages for symmetries of integrable systems are described in [33].

Non-classical reductions can be understood within the general scheme of augmenting a given differential equation
with differential constraints[78]. Thiscorrespondsto requiring that only some sol utionsare mapped into solutions,
therefore one hopes to find more symmetries (these are sometimes called weak symmetries). In this approach the
emphasis lies less on group theory but on the theory of over-determined systems of partial differential equations
and thus on questions of completion (cf. [100]).

The first non-classica method was developed by Bluman and Cole [8] and uses the invariant surface condition as
congtraint. Although this leads for many differential equations to new reductions, the drawback is that the deter-
mining system becomes nonlinear. The direct method of Clarkson and Kruskal [20] triesto reduce a given partial
differentia eguation to asystem of ordinary differential equations by constructing a good ansatz; it corresponds to
aspecial case of the method of Bluman and Cole.

The main problem in the method of differential constraintsisto find compatible constraints leading to non-trivia
reductions. Besides using the invariant surface condition no systematic way has been discovered so far and thus
it remains essentialy a game of “try and error”. For thisreason differential constraints have not yet found much
attention in applications.

Completion

Most textbooks on differential equationstreat only normal systems (or systems in Cauchy-Kowal evsky form). For
ordinary differential equationsthisimpliesthat one assumes that the equations can be solved for the highest order
derivatives. For partia differential equations one must furthermore assume the existence of a distinguished inde-
pendent variable such that one can solve for its derivatives to obtain the Cauchy-Kowalevsky form. However, in
many fields one encounters systems of differential equationswhich are not normal. A simple example are the de-
termining systems appearing in symmetry analysis which are usually over-determined. Non-normal systems also
occur naturaly in differential geometry and in theoretical physics (gauge theories).
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For anon-normal system itisapriori not clear whether it possesses any solutions. It may happen that the systemis
inconsistent. This can only be decided after the construction of all integrability conditions. These are differential
equations satisfied by any solution of the system but which are neverthel ess algebraically independent of it. While
it makes no problem to construct one integrability condition (typicaly this requires only a cross-derivative), it is
not so easy to decide when all have been found, as in principle an infinite number of conditions must be checked.

The process of finding all integrability conditionsis called completion of the differential equation. It resultsin a
formally integrable system, as after completion it is straightforward to construct order by order aformal power se-
ries solution. Under additional assumptionsit is sometimes possible to show the convergence of the series. This
leads for anal ytic equationsto existence and uniquenesstheorems like the Cartan-K ahler theorem (the well-known
Cauchy-Kowalevsky theorem is a specia case of it). For non-anaytic equations solvability isa much more com-
plicated question dueto Lewy type effects [63].

Thefirst systematic approach to the problem of compl etion was probably provided by the Janet-Riquier theory [55]
with theintroduction of passive systems. Their definitionis based on aranking of the derivativeswhich decidesin
what order the integrability conditionsare constructed. The completion can be done completely automatically only
for quasi-linear systems (if all arising integrability conditionsare also quasi-linear), as it must be possibleto solve
for theleading derivative. In this case the resulting passive system is sometimes call a standard form[91].

In geometric theories the notion of a passive system is replaced by involution. It combines a geometric definition
of formal integrability with an algebraic criterion for the termination of the completion. As an intrinsic concept
involution requires no coordinate dependent ingredients like a ranking. Involution analysis based on the Cartan-
Kahler theory [14] for exterior systemsis discussed from an algorithmic point of view in [48, 49]. A completion
algorithm for the jet bundle formalism based on the formal theory of Pommaret [84] was presented in [97].

Completion agorithmsare very useful in the symmetry analysis of differential equations. Once a system is either
passive or involutive, one can make statements about the size of the solution space [91, 98]. Thusit is possibleto
compute the size of the symmetry group without explicitly solving the determining system or to determine theloss
of generdity in a symmetry reduction [99]. One can even compute the abstract structure of the symmetry algebra
without solving the determining system [64, 92].

These concepts are closdly related to Grobner bases in commutative algebra. This holds especialy for the Janet-
Riquier theory whererankings play a similar role as in the definition of a Grobner basis. Therefore one sometimes
find theterm differential Grobner basisfor a passive system. Integrability conditionsarising from cross-derivatives
may be considered as “differential S-polynomials’. But these anal ogies acquire a precise meaning only in the con-
text of differential algebra

Thereisaone-to-onecorrespondence between linear systems of partia differentia equationsin one dependent vari-
able and polynomial idedls. This has lead in commutative algebra to the new concept of an involutive basis of an
ideal [42]. It is computed using algorithms coming from the completion theory of differential equations, but it is
an ordinary (though not reduced) Grobner basis. In some cases the new agorithmsare considerably faster than the
classical Buchberger algorithm.

Differential Ideal Theory

Like the differential Galois theory discussed in the next section, differentia ideal theory belongs to the field of
differential algebra. It can be informally described as an attempt “to write differentia in front of everythingin a-
gebra’. Thusit dealswith differential rings, differential fields etc. Of course, thisrequiresan a gebrai c definition of
differentiation. In differentia algebraany mapping that islinear with respect to addition and satisfiesthe Leibniz or
product ruleiscalled aderivation. A differentia ringisacommutative ring together with one (or more) derivation.

Differential polynomialsarise by adjunction of differential indeterminatesto a differential ring. But thering of dif-

6 mathPAD Vol n No m Date



Computer Algebra and Differential Equations — An Overview

ferential polynomiasis not Noetherian. Adjoining a differential indeterminate corresponds to adjoining infinitely
many agebraic indeterminates, as one must introduce dl its derivatives as additional, agebraically independent
variables. Thus Hilbert’sBasis Theorem does not apply.

A differential ideal isan ideal which isin addition closed under the derivation of the differentia ring. Many of
the basic ideas in differential ideal theory can be traced back to Ritt [93]; the most advanced book is still the one
by Kolchin [60]. Likein the purely algebraic theory one would like to introduce something like a Grobner basis.
Asthering of differential polynomiasis not Noetherian, algorithms along the lines of the Buchberger algorithm
do not terminate in general [18]. Thisisrelated to the fact that the ideal membership problem is undecidable for
arbitrary differential ideals[35]. However, thisresult ismore of theoretical interest, as for finitely generated idedls
the decidability is still an open question. In any case one must say that so far no generally accepted definition of a
differentia Grobner basis has emerged.

There exist two basic strategies to circumvent this principa problem. One can either restrict to specia classes of
ideals where a proof of termination is possible or one weakens the properties expected of a differentia Grobner
basis. The completion agorithm of the Janet-Riquier theory can be considered as a simple example for the first
strategy. An example for the second one are the bases introduced by Mansfield [70]. They are computed with
pseudo-reductions and have thuswesker propertiesthan their algebraic counterpart. Especialy, it may happen that
one leavestheided.

Recently, Boulier et al. [10] presented aRosenfeld-Grobner algorithmwhich computes arepresentation for therad-
ical ideal of afinitely generated differential ideal inthefollowingform. Theradical iswritten asafiniteintersection
of saturations ideds; these are radica differential ideals defined by a system of differential polynomia equations
and inequalities. This representation alows for an easy agorithmic test of radical ideal membership and for com-
puting formal power series solutions.

Open problemsareto obtain aminimal decomposition, i. e. to use only aminimal number of saturationideals, and to
find bases for these idedls (avoiding the inequalities). These questionsare closaly related to the inclusion problem
for differential ideals which in turn can be seen as the problem of determining the relation between the singular
and the general solutionsof adifferential equation. The principal obstaclein the construction of the basesisavery
typical onein differential agebra. A theorem of Ritt asserts that by taking sufficiently many derivatives of the
equations one can aways get a basis but no bound for the number of derivatives needed is known.

Differential algebraisappliedinautomatictheoremprovingin differential geometry [126]. Thisissimilar totheuse
of algebraic idea theory in theorem proving in elementary geometry. For this kind of applications characteristic
sets seem to be more useful than Grobner bases. A nice examplefor the possibilitieshereisthe automatic derivation
of Newton's law of gravity from the three Kepler laws[125].

Besidesidealsof differential polynomialsthere has also been somework onidealsof linear differentia operatorsor
ideals of the Well algebra[34]. However, here oneisdealing with non-commutativerings. One could a so consider
the Cartan-K ahler theory asakind of differential ideal theory, asit represents differentia equationsby closed ideals
of differential forms.

Differential Galois Theory

Already Lie was looking for adifferential analog of the (algebraic) Galoistheory, when he introduced Lie groups.
What is nowadays usually caled differential Galoistheory [66, 105] has however no connection to Lie symmetry
theory. The latter one uses continuoustransformation groups and can be applied to any differentia equations. But
as discussed above it is not completely algorithmic. The former oneisbased on linear algebraic groups. It consid-
ersexclusively linear ordinary differential equationsand culminatesin variousalgorithmsfor explicitly computing
Liouvillian solutions.



mathPAD

Determining the solutionsof linear differential equationsisavery classica topic and many famous mathematicians
like Liouville, Fuchs, Klein or Jordan studied it in the last century and their results are still very important for the
design of agorithms. Differential Gal oistheory was essentially founded by Picard and Vessiot and givenitsmodern
form by Kolchin[60]. Pommaret [85] devel oped an alternativetheory followingmore closely Li€' sideasand using
the formal theory.

Liouvillian functionscomprise essentialy all expressions one can “easily write down”. Allowed operationsare the
usua arithmetic ones, roots, exponentials, logarithms, integrals and algebraic functions. A more formal definition
uses a tower of simple extensions of the field of rational functions. An important point is that for any Liouvillian
function one needs only afinite number of extensions, thus it is agorithmically constructible. Most expressions
onewould cal “closed-form” areinfact Liouvillian.

Most solution a gorithmsare based on the semina work of Singer [102]. He showed that the logarithmic derivative
of any Liouvilliansolution is algebraic and determined an apriori bound for the degree of the minimal polynomial,
namely the Jordan bound for the index of an Abelian normal subgroup of a finite linear group. In principle, this
suffices to determine al Liouvillian solutions, but the bound grows rapidly with the order of the equations leading
thusto avery high complexity of the algorithm.

Using the representation theory of finite groups Ulmer [ 114] could significantly improvethe bound given by Singer,
so that at least the treatment of equations up to third order seems feasible, but there does not yet exist an implemen-
tation. Group theory yieldsa so anumber of other interesting resultslike criteriafor the existence (and number) of
algebraic solutions (the solutionswhich are most expensive to determine belong to this class) and gives the basic
case distinctionsin the solution algorithms.

The original work of Singer covered only equationswith rational coefficients. Later, he extended it to Liouvillian
coefficients[12, 106]. For second order equations Kovatic [57, 28] devel oped independently a solution agorithm.
Only much later it could be shown that the classification underlying this agorithm can also be derived within the
Singer theory [108]. The Kovatic a gorithm has been implemented in several computer algebra systems.

An dternative approach based on the invariant ring of the differential Galois group was presented by Fakler [31]
following ideas going back to Fuchs (see also the work of Singer and Ulmer [108] and van Hoeij and Weil [116],
respectively). For second order equations there exists an isomorphism between the invariant ring and the rational
solutions of some symmetric power of the differential equation. This isomorphism alows one to derive explicit
solution formulae and thus a rather efficient algorithm.*

The determination of thedifferential Gal oisgroup for agiven equationisrather difficult. Some progresshasrecently
been made for second and third order equations[107] whereit could be reduced to the problem of finding solutions
of some associated linear differential equations in the coefficient field and of factoring such equations. If there
was an easy way to compute the group directly, one could probably design more efficient solution agorithms. But
currently it isthe other way round: the solution algorithms help finding the Galois group.

There has also been some work on the inverse problem of differential Galois theory. Here alinear a gebraic group
is given and the task isto determine a differential equation that has it as differential Galois group. One can prove
that such adifferentia equation aways exists[74]. Ramis[89] showed that it is often possibleto reducetheinverse
problem to the direct problem and then even give an explicit solution.

All the theory mentioned here works only for irreducible equations. Thus the (efficient) factorization of linear dif-
ferential operators is an important problem in differential Galoistheory. A solution of this problem based on the
Newton polygon was recently presented by van Hoeij [115]. Factorization (although only of polynomials) is also
an issuein differential ideal theory.

Differentia Galois theory also gives agorithms for the construction of (Liouvillian) first integrals[69, 88, 120].

4A MuPAD implementation of this approach (and some related code) can be down-loaded from Fakler's WWW page with the URL
http://iaks-ww.ira. uka. de/ hone/fakl er/index. htm.
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These can be used to construct explicit solutions[68]. Other applications appear in the theory of completely inte-
grable systems. Ziglin has given an algebraic characterization of such systems based on their monodromy group.
Hiscriterionfor integrability can be rephrased in terms of certain propertiesof thedifferential Galoisgroup[19, 75].

Dynamical Systems

Applicationsin dynamica systems theory are not in the main stream of computer algebra. Conversdly, numerical
computations play a much more prominent role in dynamical systems theory than symbolic ones. Nevertheless,
the use of computer algebra systems is becoming more and more popular in thisfield, especially for perturbation
analysis[90]. The mainly used feature isthe ability to expand functionsinto series and to manipulate these.

But also classical agebraic problems are of great importance in the study of dynamical systems. For example,
before afixed point can be analyzed it must be determined. This requiresthe solution of anonlinear system of alge-
braic equations. If the vector field isrational, this can be done with Grobner bases. Often the vector field depends
on some parameters. At certain values of these parameters, the properties of the vector field may change, i.e. a
bifurcation occurs. The determination of these valuesis afundamental problem in dynamical systems theory.

Of special interest are here equivariant systems, i. e. systemsfor which the defining vector field isinvariant under the
action of asymmetry group [44, 45]. Inthis case one can use linear representation theory and polynomid invariant
theory for determining the fundamenta invariantsand equivariants[38, 124]. Using normal formsthey enable the
local bifurcationanalysis, i. e. thetypical bifurcation diagram in the neighborhood of acritical point can be derived.

A typica problem in computer algebrais the determination of normal forms. For dynamical systems such normal
forms have already been introduced by Poincaré, Birkhoff, Gustavson and many others, often in the context of
celestial mechanics [13, 24]. They form the basis for the solution of many problemsin dynamica systems theory
like for example stability or bifurcation analysis. The main ideabehind normal formsisto study the system in the
nei ghborhood of afixed point (or equilibrium) and totry to remove by acoordinate transformati on as many nonlinear
terms from the differential equation as possible. According to the Hartman-Grobman theorem al such terms can
be eliminated near a hyperbolic fixed point where the Jacobian has no zero or purely imaginary eigenvalues. Thus
at ahyperbolic point linear stability theory is sufficient.

Around other types of equilibrialike centers the analysisis more involved. This concerns especially Hamiltonian
systems where stabl e fixed points can never be hyperbolic. If there are resonances between the eigenval ues of the
Jacobian, the normal form isnecessarily non-linear. In order to determine anormal form one makes a power series
ansatz for the coordinate transformation and determines the coefficients of the ansatz by requiring that besides the
resonances al non-linear terms of the differentia equations up to a certain order disappear. The resulting trans-
formed differential equationsare normal forms.

An agorithmfor computing normal forms of agiven system that is suitable for implementationin acomputer alge-
brasystem was presented by Walcher [119]. Itisclosely related to Lietransforms[72]. Thistechniquehasitsorigin
in Hamiltonian mechanics where it yields a canonical transformation. However, it can be extended to general dy-
namical systems. In contrast to this Birkhoff normal form Gatermann and Lauterbach [40] use normal formsfrom
singularity theory in order to study bifurcation phenomena. For equivariant systems they automaticaly classify
them using Grobner bases.

Another applicationisthe determination of center manifolds[17], aspecia form of invariant manifolds. If asystem
possesses a center manifold, it often suffices to study the behavior of the system on thismanifold. For example, if
the zero solution of the reduced system is stable, then solutions of the original system for initial data sufficiently
close to the center manifold will approach this manifold exponentialy fast. Thus the reduced system completely
describes the asymptotic behavior of such solutions.

The main point in using center manifold theory is that it yields a reduction of the dimension and thus typically a
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considerablesimplification of theanalysis. Oftenitispossibleto reduce aninfinite-dimensiona problemto afinite-
dimensional one. There are two important computational steps in the application of the theory. First we need an
approximation for the center manifold, then we must compute the reduced system. Asin norma form theory, this
isdone step by step with apower seriesansatz. Laure and Demay [61] showed for the Couette-Tayl or problem how
computer algebra and numerical analysis can interact to solve a complicated bifurcation problem for an infinite-
dimensional problem using areduction to afinite-dimensiona center manifold.

A more theoretical application of computer algebra concerns Hilbert's 16th problem of bounding the number of
limit cyclesin aplanar polynomia system. For quadratic systems alot of results are known [96]; however already
the cubic case becomes very complicated. An important subproblem isthe center problem, namely to distinguish
between a focus and a center. The derivation of sufficient and especialy of necessary conditionsfor a center can
be very involved and is sometimes hardly feasible without computer algebra [80]. In a recent study of cubic sys-
tems [29] a CRAY-J90 had to be used.

Numerical Analysis

It was already mentioned above that the capabilities of computer agebra systems to explicitly solve differentia
equations are limited. This holds especially for partia differential equations. Therefore numerical methods have
lost nothing of their importance. Symbolic and numerical computations can interact in many ways and most com-
puter a gebra systems provide some numerical facilities.

The oldest and simplest approach consists of interfacing acomputer algebra system and a numerical library. Typi-
caly theinteraction isone-way: the computer algebra system is used to derivethe differentia equations (e. g. the
equations of motion of a complicated physical system); the interface generates code in the language of the numer-
ical library (perhaps including some optimization steps); findly, the differential equations are solved with some
methods from the numerical library.

To some extend most of the common computer algebrasystems can do this, asthey all provide commandsto convert
an expression into C or FORTRAN. However, it israther cumbersome to automatically generate whole programs
that way. For such purposesone better uses aspecialized package like GENTRAN [41] whichispart of the REDUCE
distribution. Another problem isthe optimization of the generated code whichisusually necessary. In REDUCE the
package ScopE [117] can do this.

MuPAD providesavery efficient form of interfacing: dynamical modules[110]. These are developed inalanguage
like C or C++ and can be linked to MuPAD dynamically at run-time. Compared with approaches based on inter-
process communication thisleads to much less overhead. Asthe module has direct access totheinternal dataof the
MuPAD session, much less data must be communicated. The proceduresimplemented in a dynamical module can
be called within MuPAD like any other function. Provided a convenient interface existsthisallowsin principleto
work within MuPAD interactively with anumerical library.

Computer algebra systems can a so help to select an appropriate method fromanumerical library. Modernlibraries
have reached such alevel of sophisticationthat for many usersitisimpossibleto fully exploit their potential. They
provide many different routinesfor the same task and their working can be further tuned by many input parameters
whose meaning remains a secret for non-experts. A computer algebra system can andyze the given differentia
equation (e. g. estimate its stiffness) and then choose an appropriate method and determinereasonable valuesfor its
parameters. An example for this approach isthe Axiom package ANNA developed by Dupée [27].

Goldman et al. [43] go considerably further intheir application of computer a gebrain numerical analysisby using
it as a software engineering tool. They automatically generate the full FORTRAN code for numerically solving the

5A prototypical implementation of an interface to some functions of the NAG C-library is discussed on the MuPAD web site at the URL
http://ww. nupad. de/ PAPERS/ MODULES/ NAGC/ i ndex. ht m
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Navier-Stokes equations. Their argument isthat such programs are so long and complicated that their maintenance
and adaption (new boundary conditions, different discretizations etc) is rather difficult and error-prone. They use
instead a number of input files that contain all the relevant information about the problem in aformat that is com-
paratively easy to read and let the computer algebra system then generate the source code.

One can aso use computer algebra to derive numerical schemes. The Butcher theory of Runge-Kutta methods
is here a typica example. For higher order methods the order conditions become rather large and complicated.
Computer algebra packages have been devel oped that derive and solve them (using Grobner bases) [46, 109].° For
partial differentia equationsthe construction of higher-order discretizationsor finite elementscan berather invol ved
and is sometimes only feasible with the help of a computer agebra system [76]. Computer algebra can aso assist
in proving the stahility of finite difference schemes [36].

Another topic where computer algebra plays a certain role in numerical analysis are differential algebraic equa-
tions. The index of such a system comprising differential and algebrai c equations measures in a certain sense, how
far it isaway from a pure differential equation [15]. This gives an indication of the difficulties one must expect
in anumerica integration. The determination of the index is essentially equivaent to the completion procedures
described above [62, 83, 101], asit can be defined as the number of steps needed for the completion. However, in
practice numerical analysts often prefer the use of automatic differentiationto computer algebra[16].

None of the applicationsdescribed so far representsreally what onewould call ahybrid a gorithm combining sym-
bolic and numerica elements, i. e. where computer algebrais an integral part of the solution process and not only
used to determine either the problem or the numerical method for its solution. However, we are not aware of any
such agorithm for differential equations, although some ansatze based on symmetry theory have been devel oped.
Dorotnitsyn[26] showed how one may construct finite difference schemes inheriting the symmetries of a differen-
tial equation. Such schemes should very well preserve the associated conservation laws, but so far no numerical
tests have been published.

In contrast, for solving algebraic equations several hybrid a gorithms have been designed. One of them dealswith
nonlinear systems possessing symmetries[39], asthey e. g. arisein equivariant systems. Inthe symbolic part it uses
thelinear representation theory of finite groupsto transform the probleminto an optimal formfor the numerical part.
Thisincludes for example a block diagonalization of the Jacobian. The numerical agorithmis complicated dueto
the underlying group theory. Gatermann [37] showed how the numerical computations can be automated by first
computing the necessary group theoretic data which is summarized in a bifurcation graph.

Conclusions and Outlook

The application of computer algebrato differential equationsis avast (and not very well defined) field. We could
only briefly indicate some of the main research directions and had to omit many others. For example, one can
extend theideaof transforming differential equationsfar beyond simpleheuristicsand isthenlead tothe equivalence
problem of Cartan [59, 79]. Within the a gebrai c approaches weignored the theory of D-modules[67] whichis of
considerable importance in control theory.

The fields we have touched on are in rather different states. Some of them like symmetry theory are meanwhile
fairly mature with the fundamental s well understood and they provide standard techniquesfor tackling differential
equationsimplemented in many computer algebra systems. Othersare still in an early stage of their development
and essentia questionsare open. Such fields are usually known only to some experts and only prototypical imple-
mentations of algorithmsexist.

Onecommon feature shared by most of thefiel dsisthe complexity of thea gorithms. If wetakethe variouscomple-

6 Actually, the problem of automatically generatingthe order conditionsfor Runge-K uttamethodswas mentioned by Jenks[56] in the problem
section of the SIGSAM Bulletin aready in 1976.
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tion methods as example, it isobviousfrom their close relation to Grobner bases that their complexity isat least as
bad asthat of the Buchberger algorithm. Although Grobner bases solvein principlemany problemsin commutative
algebra, it iswell-known that one often failsto get a basisin reasonable time. One possibleway out isthe stronger
use of heuristics and techniques from Artificial Intelligence, although thisis an unpleasant thought for many pure
mathematicians.

Some readers might be surprised that we discussed applicationsin numerical analysisas broadly as moretraditional
topics like symmetry theory. But we believe that in the future this direction will be among the most important
ones. Despite all the successes of Lie symmetries, differential Galois theory etc. one must clearly see that these
theories are of hardly any value for many of the problems an engineer, say, typicaly faces. A popular benchmark
problem for numerical methods for differential a gebraic equations comes from vehicle dynamics and modelswith
fivelinksawhed suspension[52]. Itsequations of motion must be generated by computer and consist of 7000 lines
of FORTRAN code. It appears hardly realistic to solve such a system with Lie symmetries (if it possesses any!) or
any other analytic technique.

This does not imply that thereis no point in further studying symbolic methods, not at all! Toy modelsthat can be
solved analytically areimportant for obtaininga deeper understanding of underlying structures. One may hope that
such understanding may lead to more efficient numerical algorithmsfor such large problems. And again we want
to stress that the application of computer algebrato differential equationsis not restricted to solving them!

Most of the current numerical methodsfor ordinary differential equationsdo not takeinto account any specia prop-
erties of the equation (except itsstiffness). Itisarather new trend in numerical analysistotry to use such properties
for the design of better algorithms. One prominent example of thistrend are symplectic integrators[94] which are
superior to most conventional methodsin the long term integration of Hamiltonian systems, as they preserve many
qualitative features of such systems. One might expect that computer algebra will play an important role in this
emerging field.

The combination of symbolic and numerical computation will become much more important in the future. In the
form of simpleinterfaces it happens aready now in many places and hopefully we can soon add powerful hybrid
methods. For most users of computer algebra systems (thisis avery different community than the participants of
computer algebraconferences!) such possibilitiesare of much greater importance than many of thefancy algorithms
developed by theorists.
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