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We present an informal overview of a number of approaches to differential
equations popular in computer algebra. This includes symmetry and
completion theory, local analysis, differential ideal and Galois theory,
dynamical systems and numerical analysis. A large bibliography is provided.

Introduction

Differential equations represent one of the largest fields within mathematics. Besides being an interesting subject of
their own right one can hardly overestimate their importance for applications. They appear in natural and engineer-
ing sciences and increasingly often in economics and social sciences. Whenever a continuous process is modeled
mathematically, chances are high that differential equations are used.

Thus it is not surprising that differential equations also play an important role in computer algebra and most gen-
eral purpose computer algebra systems provide some kind of solve command. Many casual users believe that
designing and improving such procedures is a central problem in computer algebra. But the real situation is some-
what different. Many computer algebra applications to differential equations work indirectly; they help to study
and understand properties of the solution space.

The purpose of this article is to sketch in an informal way some of the main research directions in this field and to
provide a starting point for more detailed studies by giving a large number of references. We omit all mathematical
details (there is not a single formula in this article!) but describe briefly the central ideas. For the same reason we
tried to cite introductory articles or books and not the historically first or the most “ground breaking” work.

The bibliography is of course far from being exhaustive. As a further source of references one should mention the
survey [104] by Singer. It gives much more details, especially on the more algebraic approaches, and contains a
large bibliography. The same holds for the more focused surveys by Hereman [50, 51] covering symmetry theory
and related fields and the one by MacCallum [65] on the integration of ordinary differential equations. In addi-
tion there have been three conferences devoted exclusively to differential equations and computer algebra. Their
proceedings [103, 112, 113] contain a number of useful introductory or review articles on more specialized topics.

We are taking a rather broad view and consider more or less any constructive approach to differential equations as
“computer algebra”. This also implies that we do not pay special attention to implementations. Among the many
different approaches to differential equations which fall under this broad definition of computer algebra one can
distinguish certain directions which have found most attention (at least measured in the number of articles devoted
to them). We concentrate in this article on the following eight topics: (i) solving differential equations, (ii) local
analysis, (iii) symmetry analysis, (iv) completion, (v) differential ideal theory, (vi) differential Galois theory, (vii)
dynamical systems theory, and (viii) the relation between numerical analysis and computer algebra.
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A comparison of the impact made by symmetry analysis and by differential Galois theory, respectively, demon-
strates the importance of computer algebra tools. The latter one is a hardly known theory studied by a few pure
mathematicians. The former one remained in the same state for many decades following Lie’s original work. One
reason was definitely the tedious determination of the symmetry algebra. As soon as computer algebra systems
emerged, the first packages to set up at least the determining equations were written. Since then Lie methods be-
long to the standard tools for treating differential equations.

Solving Differential Equations

Most computer algebra systems can solve some differential equations.1 They mainly apply some standard tech-
niques like those in Zwillinger’s handbook [127] or try some “pattern matching” in a list of solved equations like
Kamke [58]. Heuristics often extend the applicability of these techniques, for example by finding a transformation
such that a given equation can be handled by the implemented methods.

Although this approach solves more differential equations than one might expect (see e. g. the recent review by Pos-
tel and Zimmermann [86]2), it has some drawbacks. A major one is that no information is obtained, if the computer
algebra system does not return a solution. It could be that the given differential equation has indeed no solution (or
at least none in closed form) or that simply the heuristics were not able to determine a suitable transformation.

For that reason researchers in computer algebra are more interested in decision algorithms. These either yield a
solution in a specific class of functionsor decide that no such solutionexists. However, so far only for linear ordinary
differential equations such algorithms are known. There it is possible to decide with the help of differential Galois
theory whether or not Liouvillian solutions exist.

There exists a number of reasons for this perhaps disappointing situation. Computability theory yields principal
limits to what can be solved. For example if one restricts to computable functions some classical existence theorems
for differential equations fail [1, 87]. More precisely, one has constructed examples of differential equations where
one can show that solutions exists but that it is not possible to compute them. Some further (positive and negative)
results in this direction can be found in [23].

Ideally a solution algorithm should return the general solution. But for nonlinear equations it is surprisingly dif-
ficult even just to define this term. A rigorous resolution of this problem based on differential ideal theory was
only recently presented [53]. Intuitively one would expect that the general solution depends on some arbitrary pa-
rameters (constants or functions) and that every solution of the differential equation can be obtained by a suitable
specialization of these. This works fine for linear equations where the solution space has the structure of a vector
space. But many nonlinear equations possess in addition singular integrals not contained in the general solution.

Similarly, defining the term “closed form solution” is notoriously difficult. Is a solution in terms of, say, Bessel
functions in closed form or not? Up to now no generally accepted definition has emerged. The basic idea behind
“closed form” is that of finite constructibilityout of a set of “elementary functions”. Note that this is an algebraic and
not an analytic property! On the practical side one must see that even if a solution in closed form can be computed
it may take very long and the result may be completely useless, as it is too large. Especially, if the main goal is to
obtain an impression of the behavior of the solution, it is usually much more efficient to resort to numerical methods.

In any case one can state that a notable solution theory exists only for ordinary differential equations (see e. g. the
survey [65]), mainly based on differential Galois theory. But the algorithms to compute the general solution suffer
from a very high complexity and are in practice often rather useless, especially for higher order equations. One way
out is to incorporate heuristics as mentioned above.

Another possibility that also addresses the problem of useless output is to aim for “simple” solutions [7]. Popular

1MuPAD provides the command odesolve for this task.
2An updated version can be found at http://www.mupad.de/BIB/poszim96.html.
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variants are polynomial, rational [3] or exponential [11, 81] solutions. Because of their simple structure it is often
possible to determine such solutions, if they exist, rather fast. But one should note that the classical methods for
their computation are not always useful for computer algebra. It is still an active field of research to design effective
algorithms being able to handle larger examples.

For partial differential equations the situation is much worse. In the last century mathematicians designed some
solution methods (see e. g. the survey [118]). However, most of them are meanwhile almost forgotten; at least they
are no longer found in textbooks on differential equations. It could be quite interesting to revive some of them for
use in computer algebra systems. There exist a few implementations of standard techniques like characteristics,
separation of variables or integral transforms, but they can usually handle only rather simple equations. Often they
just reduce to a system of (nonlinear) ordinary differential equations and the question is whether this can be solved.

One can argue whether it really makes sense to speak of the general solution of a system of partial differential equa-
tions. For example one definition of a harmonic function is that it solves the Laplace equation (or more generally
all holomorphic functions are solutions of the Cauchy-Riemann equation). Thus one might prefer to say that the
Laplace equation defines a class of functions. In some simple cases like the wave equation one can give an explicit
parameterization of this class in terms of some arbitrary functions which one may call the general solution. But usu-
ally no such parameterization exists. In order to get a really well-defined problem one must prescribe some initial
or boundary conditions. In most applications such conditions arise automatically anyway.

Local Analysis

If it is not possible to construct a closed-form solution, one may go for an approximate solution describing the
behavior of the solution in the neighborhoodof a given point.3 At ordinary points a Taylor series suffices; at singular
points more general expansions must be used. In the case of linear differential equations singular points are only
possible at singularities of the coefficients. Therefore one speaks of fixed singularities. Using the Newton polygon
of the associated differential operator they can be further classified into regular and irregular ones [25].

Local analysis is a complex theory, even if one studies only real equations. Especially, if one wants to determine the
radius of convergence of a formal solution, one must consider complex singularities. In the neighborhoodof regular
singular point one can represent the solution in form of a Frobenius series, a polynomial in logx with Taylor series
coefficients multiplied by a factor (x � x0)

� where � is a complex number. At irregular singular points the solu-
tion has usually an essential singularity and varies so rapidly that it makes no sense to construct an approximation;
instead one tries to capture the asymptotic behavior which requires the addition of an exponential part.

There exist various algorithms for the construction of approximate or asymptotic solutions, partly dating back to
Frobenius. Some are discussed together with implementations in [82, 115]. A main problem in the concrete appli-
cation is that one cannot use an approximation of the location of the singularities. Thus one must not only solve
polynomial equations but in general work with algebraic numbers which is quite expensive in any computer algebra
system. However, with a careful analysis of the algorithms one can significantly reduce the necessary amount of
computations with algebraic numbers.

Recent work concerns an extension to first order systems [6, 81]. In principle, one can transform any system into
a single equation of higher order, e. g. using cyclic vectors. But this approach is rather inefficient, especially in
higher dimensions. Hence one is interested in dealing directly with systems. Moser’s algorithm performs here the
classification into regular and irregular singularities; a rational version of it avoiding the use of algebraic extensions
was presented by Barkatou [5].

For nonlinear differential equations the situation becomes much more complicated as spontaneous or movable sin-
gularities may occur, i. e. their location depends on initial or boundary data. One important direction is the Painlevé

3Especially in the linear case local solutions can also be very useful for the construction of closed-form solutions.
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theory [54]. It was introduced by Painlevé while searching for new special functions (there still exists a strong con-
nection between the local analysis of ordinary differential equations and special function theory). If all singularities
are poles, no branch points appear in the (general) solution and it is single valued. A differential equation without
movable branch points is said to possess the Painlevé property or to be integrable in the sense of Painlevé.

In general, it is not possible to check algorithmically whether or not a given differential equation has the Painlevé
property. But there exist methods to check at least some necessary conditions; such methods are usually called
Painlevé test [21]. One usually tries to construct a Laurent series around the singularity. Essentially, the test is
passed, if this expansion has sufficiently many resonances or Fuchsian indices (free coefficients) to represent the
general solution and if these occur at non-negative powers. In the case of negative resonances a perturbation ap-
proach [22] yields further information. Some references concerning implementations can be found in [95].

Weiss et al. [122] generalized the Painlevé theory to partial differential equations where a whole singularity man-
ifold must be considered. This extension is much used in the theory of integrable systems, as the Painlevé test
represents an important indicator for integrability and can be performed comparatively easily. The Painlevé con-
jecture states that every ordinary differential equation obtained by symmetry reduction of an integrable system is
of Painlevé type; only weakened versions of it have been proven [2, 71]. Truncated series expansions are useful for
constructing Bäcklund transformations, Lax pairs and much more [121]. There also exist relations to non-classical
symmetry reductions [30].

Symmetry Analysis

Symmetry analysis [9, 77, 111] has made the strongest impact on computer algebra applications to differential equa-
tions. The most general definition of a symmetry is that of a transformation that maps solutions into solutions.
Depending on the kind of transformations considered one obtains different kinds of symmetries. One possible ap-
plication of symmetries is the construction of (special) solutions. Other goals are classifications, a proof of complete
integrability, separation ansätze, conservation laws and much more.

Symmetry analysis goes back to the seminal work of Lie. He developed the concept of Lie groups in his quest
for a Galois theory for differential equations. As we will see later, not much has remained of this original motiva-
tion. Symmetry and Galois theory have developed in very different directions. Even the relation between the Lie
symmetry and the Galois group of a differential equation is rather unclear.

The most popular form of symmetry analysis deals with point symmetries. They are generated by vector fields acting
on the space of independent and dependent variables. These vector fields span the Lie algebra of the Lie group of
symmetries. The decisive observation of Lie was that it often suffices to work with the vector fields (or infinitesimal
symmetries) instead of the symmetries themselves. This leads effectively to a linearization of the problem.

The symmetry generators arise as the solutions of a linear system of partial differential equations, the determining
system. For ordinary differential equations it is unfortunately sometimes as difficult to solve this system as to solve
the original one. This holds especially for first order equations where the original equation is just the characteristic
equation of the determining equation. For partial differential equations the determining system is typically very
over-determined and contains often some trivial equations allowing in many cases a rather straightforward solution.

For ordinary differential equations the existence of a sufficiently large, solvable symmetry algebra implies that its
general solution can be constructed by quadratures only, as each symmetry allows us to reduce the order of the equa-
tion by one. In the case of partial differential equations symmetry reductions yield only special solutions, namely
those being invariant under the symmetry group. Here each symmetry allows us to reduce the number of indepen-
dent variables by one.

However, at intermediate steps of the reduction again linear partial differential equations must be solved. For in
order to obtain the reduction, one must either perform a coordinate transformation such that the symmetry generator
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is rectified (so-called canonical coordinates) or the differential invariants of the symmetry must be determined.
These are functions annihilated by the generator.

Thus the usefulness of Lie symmetries depends crucially on the ability to solve effectively all the arising linear
partial differential equations. At first sight it might look, as if, especially for ordinary differential equations, we
made the problem only worse. But in many cases of practical interest it turns out that is much simpler to solve
these linear partial differential equations than the original equation.

There exist so many implementations of symmetry methods that it is rather difficult to keep an overview; we refer
again to the surveys by Hereman [50, 51]. In almost any computer algebra system one can find a package for setting
up the determining system. A few of the packages try furthermore some heuristics to solve it automatically. Again
it is rather surprising how often this suffices to obtain the complete symmetry algebra. The symmetry package of
MAPLE is somewhat unusual, as it uses the exterior systems approach of Harrison and Estabrook [47].

Although Lie point symmetries proved to be very useful in many applications, many differential equations of prac-
tical interest have no such symmetries. There are two basic approaches to generalize the theory. One can consider
more general transformations; this leads to generalized or Lie-Bäcklund symmetries [4]. Alternatively, one weak-
ens the requirement that every solution is mapped into a solution; this yields the so-called non-classical methods.
In both cases the explicit construction of the symmetries becomes considerably more difficult.

Generalized symmetries are especially of interest for integrable systems [32, 123]. The existence of a recursion op-
erator or a master symmetry generating an infinite hierarchy of symmetries is a strong indication that the considered
system is integrable. Reduction with respect to generalized symmetries is an important tool for the construction of
soliton solutions. It is also possible to classify nonlinear partial differential equations using these symmetries [73].
Some MuPAD packages for symmetries of integrable systems are described in [33].

Non-classical reductions can be understood within the general scheme of augmenting a given differential equation
with differential constraints [78]. This corresponds to requiring that only some solutions are mapped into solutions,
therefore one hopes to find more symmetries (these are sometimes called weak symmetries). In this approach the
emphasis lies less on group theory but on the theory of over-determined systems of partial differential equations
and thus on questions of completion (cf. [100]).

The first non-classical method was developed by Bluman and Cole [8] and uses the invariant surface condition as
constraint. Although this leads for many differential equations to new reductions, the drawback is that the deter-
mining system becomes nonlinear. The direct method of Clarkson and Kruskal [20] tries to reduce a given partial
differential equation to a system of ordinary differential equations by constructing a good ansatz; it corresponds to
a special case of the method of Bluman and Cole.

The main problem in the method of differential constraints is to find compatible constraints leading to non-trivial
reductions. Besides using the invariant surface condition no systematic way has been discovered so far and thus
it remains essentially a game of “try and error”. For this reason differential constraints have not yet found much
attention in applications.

Completion

Most textbooks on differential equations treat only normal systems (or systems in Cauchy-Kowalevsky form). For
ordinary differential equations this implies that one assumes that the equations can be solved for the highest order
derivatives. For partial differential equations one must furthermore assume the existence of a distinguished inde-
pendent variable such that one can solve for its derivatives to obtain the Cauchy-Kowalevsky form. However, in
many fields one encounters systems of differential equations which are not normal. A simple example are the de-
termining systems appearing in symmetry analysis which are usually over-determined. Non-normal systems also
occur naturally in differential geometry and in theoretical physics (gauge theories).
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For a non-normal system it is a priori not clear whether it possesses any solutions. It may happen that the system is
inconsistent. This can only be decided after the construction of all integrability conditions. These are differential
equations satisfied by any solution of the system but which are nevertheless algebraically independent of it. While
it makes no problem to construct one integrability condition (typically this requires only a cross-derivative), it is
not so easy to decide when all have been found, as in principle an infinite number of conditions must be checked.

The process of finding all integrability conditions is called completion of the differential equation. It results in a
formally integrable system, as after completion it is straightforward to construct order by order a formal power se-
ries solution. Under additional assumptions it is sometimes possible to show the convergence of the series. This
leads for analytic equations to existence and uniqueness theorems like the Cartan-Kähler theorem (the well-known
Cauchy-Kowalevsky theorem is a special case of it). For non-analytic equations solvability is a much more com-
plicated question due to Lewy type effects [63].

The first systematic approach to the problem of completion was probably provided by the Janet-Riquier theory [55]
with the introduction of passive systems. Their definition is based on a ranking of the derivatives which decides in
what order the integrability conditions are constructed. The completion can be done completely automatically only
for quasi-linear systems (if all arising integrability conditions are also quasi-linear), as it must be possible to solve
for the leading derivative. In this case the resulting passive system is sometimes call a standard form [91].

In geometric theories the notion of a passive system is replaced by involution. It combines a geometric definition
of formal integrability with an algebraic criterion for the termination of the completion. As an intrinsic concept
involution requires no coordinate dependent ingredients like a ranking. Involution analysis based on the Cartan-
Kähler theory [14] for exterior systems is discussed from an algorithmic point of view in [48, 49]. A completion
algorithm for the jet bundle formalism based on the formal theory of Pommaret [84] was presented in [97].

Completion algorithms are very useful in the symmetry analysis of differential equations. Once a system is either
passive or involutive, one can make statements about the size of the solution space [91, 98]. Thus it is possible to
compute the size of the symmetry group without explicitly solving the determining system or to determine the loss
of generality in a symmetry reduction [99]. One can even compute the abstract structure of the symmetry algebra
without solving the determining system [64, 92].

These concepts are closely related to Gröbner bases in commutative algebra. This holds especially for the Janet-
Riquier theory where rankings play a similar role as in the definition of a Gröbner basis. Therefore one sometimes
find the term differential Gröbner basis for a passive system. Integrabilityconditions arising from cross-derivatives
may be considered as “differential S-polynomials”. But these analogies acquire a precise meaning only in the con-
text of differential algebra.

There is a one-to-one correspondence between linear systems of partial differential equations in one dependent vari-
able and polynomial ideals. This has lead in commutative algebra to the new concept of an involutive basis of an
ideal [42]. It is computed using algorithms coming from the completion theory of differential equations, but it is
an ordinary (though not reduced) Gröbner basis. In some cases the new algorithms are considerably faster than the
classical Buchberger algorithm.

Differential Ideal Theory

Like the differential Galois theory discussed in the next section, differential ideal theory belongs to the field of
differential algebra. It can be informally described as an attempt “to write differential in front of everything in al-
gebra”. Thus it deals with differential rings, differential fields etc. Of course, this requires an algebraic definition of
differentiation. In differential algebra any mapping that is linear with respect to addition and satisfies the Leibniz or
product rule is called a derivation. A differential ring is a commutative ring together with one (or more) derivation.

Differential polynomials arise by adjunction of differential indeterminates to a differential ring. But the ring of dif-
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ferential polynomials is not Noetherian. Adjoining a differential indeterminate corresponds to adjoining infinitely
many algebraic indeterminates, as one must introduce all its derivatives as additional, algebraically independent
variables. Thus Hilbert’s Basis Theorem does not apply.

A differential ideal is an ideal which is in addition closed under the derivation of the differential ring. Many of
the basic ideas in differential ideal theory can be traced back to Ritt [93]; the most advanced book is still the one
by Kolchin [60]. Like in the purely algebraic theory one would like to introduce something like a Gröbner basis.
As the ring of differential polynomials is not Noetherian, algorithms along the lines of the Buchberger algorithm
do not terminate in general [18]. This is related to the fact that the ideal membership problem is undecidable for
arbitrary differential ideals [35]. However, this result is more of theoretical interest, as for finitely generated ideals
the decidability is still an open question. In any case one must say that so far no generally accepted definition of a
differential Gröbner basis has emerged.

There exist two basic strategies to circumvent this principal problem. One can either restrict to special classes of
ideals where a proof of termination is possible or one weakens the properties expected of a differential Gröbner
basis. The completion algorithm of the Janet-Riquier theory can be considered as a simple example for the first
strategy. An example for the second one are the bases introduced by Mansfield [70]. They are computed with
pseudo-reductions and have thus weaker properties than their algebraic counterpart. Especially, it may happen that
one leaves the ideal.

Recently, Boulier et al. [10] presented a Rosenfeld-Gröbner algorithm which computes a representation for the rad-
ical ideal of a finitely generated differential ideal in the following form. The radical is written as a finite intersection
of saturations ideals; these are radical differential ideals defined by a system of differential polynomial equations
and inequalities. This representation allows for an easy algorithmic test of radical ideal membership and for com-
puting formal power series solutions.

Open problems are to obtain a minimal decomposition, i. e. to use only a minimal number of saturation ideals, and to
find bases for these ideals (avoiding the inequalities). These questions are closely related to the inclusion problem
for differential ideals which in turn can be seen as the problem of determining the relation between the singular
and the general solutions of a differential equation. The principal obstacle in the construction of the bases is a very
typical one in differential algebra. A theorem of Ritt asserts that by taking sufficiently many derivatives of the
equations one can always get a basis but no bound for the number of derivatives needed is known.

Differential algebra is applied in automatic theorem proving in differential geometry [126]. This is similar to the use
of algebraic ideal theory in theorem proving in elementary geometry. For this kind of applications characteristic
sets seem to be more useful than Gröbner bases. A nice example for the possibilities here is the automatic derivation
of Newton’s law of gravity from the three Kepler laws [125].

Besides ideals of differential polynomials there has also been some work on ideals of linear differential operators or
ideals of the Weil algebra [34]. However, here one is dealing with non-commutative rings. One could also consider
the Cartan-Kähler theory as a kind of differential ideal theory, as it represents differential equations by closed ideals
of differential forms.

Differential Galois Theory

Already Lie was looking for a differential analog of the (algebraic) Galois theory, when he introduced Lie groups.
What is nowadays usually called differential Galois theory [66, 105] has however no connection to Lie symmetry
theory. The latter one uses continuous transformation groups and can be applied to any differential equations. But
as discussed above it is not completely algorithmic. The former one is based on linear algebraic groups. It consid-
ers exclusively linear ordinary differential equations and culminates in various algorithms for explicitly computing
Liouvillian solutions.
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Determining the solutions of linear differential equations is a very classical topic and many famous mathematicians
like Liouville, Fuchs, Klein or Jordan studied it in the last century and their results are still very important for the
design of algorithms. Differential Galois theory was essentially founded by Picard and Vessiot and given its modern
form by Kolchin [60]. Pommaret [85] developed an alternative theory following more closely Lie’s ideas and using
the formal theory.

Liouvillian functions comprise essentially all expressions one can “easily write down”. Allowed operations are the
usual arithmetic ones, roots, exponentials, logarithms, integrals and algebraic functions. A more formal definition
uses a tower of simple extensions of the field of rational functions. An important point is that for any Liouvillian
function one needs only a finite number of extensions, thus it is algorithmically constructible. Most expressions
one would call “closed-form” are in fact Liouvillian.

Most solution algorithms are based on the seminal work of Singer [102]. He showed that the logarithmic derivative
of any Liouvillian solution is algebraic and determined an a priori bound for the degree of the minimal polynomial,
namely the Jordan bound for the index of an Abelian normal subgroup of a finite linear group. In principle, this
suffices to determine all Liouvillian solutions, but the bound grows rapidly with the order of the equations leading
thus to a very high complexity of the algorithm.

Using the representation theory of finite groups Ulmer [114] could significantly improve the bound given by Singer,
so that at least the treatment of equations up to third order seems feasible, but there does not yet exist an implemen-
tation. Group theory yields also a number of other interesting results like criteria for the existence (and number) of
algebraic solutions (the solutions which are most expensive to determine belong to this class) and gives the basic
case distinctions in the solution algorithms.

The original work of Singer covered only equations with rational coefficients. Later, he extended it to Liouvillian
coefficients [12, 106]. For second order equations Kovačic [57, 28] developed independently a solution algorithm.
Only much later it could be shown that the classification underlying this algorithm can also be derived within the
Singer theory [108]. The Kovačic algorithm has been implemented in several computer algebra systems.

An alternative approach based on the invariant ring of the differential Galois group was presented by Fakler [31]
following ideas going back to Fuchs (see also the work of Singer and Ulmer [108] and van Hoeij and Weil [116],
respectively). For second order equations there exists an isomorphism between the invariant ring and the rational
solutions of some symmetric power of the differential equation. This isomorphism allows one to derive explicit
solution formulae and thus a rather efficient algorithm.4

The determinationof the differential Galois group for a given equation is rather difficult. Some progress has recently
been made for second and third order equations [107] where it could be reduced to the problem of finding solutions
of some associated linear differential equations in the coefficient field and of factoring such equations. If there
was an easy way to compute the group directly, one could probably design more efficient solution algorithms. But
currently it is the other way round: the solution algorithms help finding the Galois group.

There has also been some work on the inverse problem of differential Galois theory. Here a linear algebraic group
is given and the task is to determine a differential equation that has it as differential Galois group. One can prove
that such a differential equation always exists [74]. Ramis [89] showed that it is often possible to reduce the inverse
problem to the direct problem and then even give an explicit solution.

All the theory mentioned here works only for irreducible equations. Thus the (efficient) factorization of linear dif-
ferential operators is an important problem in differential Galois theory. A solution of this problem based on the
Newton polygon was recently presented by van Hoeij [115]. Factorization (although only of polynomials) is also
an issue in differential ideal theory.

Differential Galois theory also gives algorithms for the construction of (Liouvillian) first integrals [69, 88, 120].

4A MuPAD implementation of this approach (and some related code) can be down-loaded from Fakler’s WWW page with the URL
http://iaks-www.ira.uka.de/home/fakler/index.html.
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These can be used to construct explicit solutions [68]. Other applications appear in the theory of completely inte-
grable systems. Ziglin has given an algebraic characterization of such systems based on their monodromy group.
His criterion for integrabilitycan be rephrased in terms of certain properties of the differential Galois group [19, 75].

Dynamical Systems

Applications in dynamical systems theory are not in the main stream of computer algebra. Conversely, numerical
computations play a much more prominent role in dynamical systems theory than symbolic ones. Nevertheless,
the use of computer algebra systems is becoming more and more popular in this field, especially for perturbation
analysis [90]. The mainly used feature is the ability to expand functions into series and to manipulate these.

But also classical algebraic problems are of great importance in the study of dynamical systems. For example,
before a fixed point can be analyzed it must be determined. This requires the solution of a nonlinear system of alge-
braic equations. If the vector field is rational, this can be done with Gröbner bases. Often the vector field depends
on some parameters. At certain values of these parameters, the properties of the vector field may change, i. e. a
bifurcation occurs. The determination of these values is a fundamental problem in dynamical systems theory.

Of special interest are here equivariant systems, i. e. systems for which the defining vector field is invariant under the
action of a symmetry group [44, 45]. In this case one can use linear representation theory and polynomial invariant
theory for determining the fundamental invariants and equivariants [38, 124]. Using normal forms they enable the
local bifurcation analysis, i. e. the typical bifurcation diagram in the neighborhood of a critical point can be derived.

A typical problem in computer algebra is the determination of normal forms. For dynamical systems such normal
forms have already been introduced by Poincaré, Birkhoff, Gustavson and many others, often in the context of
celestial mechanics [13, 24]. They form the basis for the solution of many problems in dynamical systems theory
like for example stability or bifurcation analysis. The main idea behind normal forms is to study the system in the
neighborhoodof a fixed point (or equilibrium) and to try to remove by a coordinate transformationas many nonlinear
terms from the differential equation as possible. According to the Hartman-Grobman theorem all such terms can
be eliminated near a hyperbolic fixed point where the Jacobian has no zero or purely imaginary eigenvalues. Thus
at a hyperbolic point linear stability theory is sufficient.

Around other types of equilibria like centers the analysis is more involved. This concerns especially Hamiltonian
systems where stable fixed points can never be hyperbolic. If there are resonances between the eigenvalues of the
Jacobian, the normal form is necessarily non-linear. In order to determine a normal form one makes a power series
ansatz for the coordinate transformation and determines the coefficients of the ansatz by requiring that besides the
resonances all non-linear terms of the differential equations up to a certain order disappear. The resulting trans-
formed differential equations are normal forms.

An algorithm for computing normal forms of a given system that is suitable for implementation in a computer alge-
bra system was presented by Walcher [119]. It is closely related to Lie transforms [72]. This technique has its origin
in Hamiltonian mechanics where it yields a canonical transformation. However, it can be extended to general dy-
namical systems. In contrast to this Birkhoff normal form Gatermann and Lauterbach [40] use normal forms from
singularity theory in order to study bifurcation phenomena. For equivariant systems they automatically classify
them using Gröbner bases.

Another application is the determination of center manifolds [17], a special form of invariant manifolds. If a system
possesses a center manifold, it often suffices to study the behavior of the system on this manifold. For example, if
the zero solution of the reduced system is stable, then solutions of the original system for initial data sufficiently
close to the center manifold will approach this manifold exponentially fast. Thus the reduced system completely
describes the asymptotic behavior of such solutions.

The main point in using center manifold theory is that it yields a reduction of the dimension and thus typically a
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considerable simplification of the analysis. Often it is possible to reduce an infinite-dimensional problem to a finite-
dimensional one. There are two important computational steps in the application of the theory. First we need an
approximation for the center manifold, then we must compute the reduced system. As in normal form theory, this
is done step by step with a power series ansatz. Laure and Demay [61] showed for the Couette-Taylor problem how
computer algebra and numerical analysis can interact to solve a complicated bifurcation problem for an infinite-
dimensional problem using a reduction to a finite-dimensional center manifold.

A more theoretical application of computer algebra concerns Hilbert’s 16th problem of bounding the number of
limit cycles in a planar polynomial system. For quadratic systems a lot of results are known [96]; however already
the cubic case becomes very complicated. An important subproblem is the center problem, namely to distinguish
between a focus and a center. The derivation of sufficient and especially of necessary conditions for a center can
be very involved and is sometimes hardly feasible without computer algebra [80]. In a recent study of cubic sys-
tems [29] a CRAY-J90 had to be used.

Numerical Analysis

It was already mentioned above that the capabilities of computer algebra systems to explicitly solve differential
equations are limited. This holds especially for partial differential equations. Therefore numerical methods have
lost nothing of their importance. Symbolic and numerical computations can interact in many ways and most com-
puter algebra systems provide some numerical facilities.

The oldest and simplest approach consists of interfacing a computer algebra system and a numerical library. Typi-
cally the interaction is one-way: the computer algebra system is used to derive the differential equations (e. g. the
equations of motion of a complicated physical system); the interface generates code in the language of the numer-
ical library (perhaps including some optimization steps); finally, the differential equations are solved with some
methods from the numerical library.

To some extend most of the common computer algebra systems can do this, as they all provide commands to convert
an expression into C or FORTRAN. However, it is rather cumbersome to automatically generate whole programs
that way. For such purposes one better uses a specialized package like GENTRAN [41] which is part of the REDUCE

distribution. Another problem is the optimization of the generated code which is usually necessary. In REDUCE the
package SCOPE [117] can do this.

MuPAD provides a very efficient form of interfacing: dynamical modules [110]. These are developed in a language
like C or C++ and can be linked to MuPAD dynamically at run-time. Compared with approaches based on inter-
process communication this leads to much less overhead. As the module has direct access to the internal data of the
MuPAD session, much less data must be communicated. The procedures implemented in a dynamical module can
be called within MuPAD like any other function. Provided a convenient interface exists this allows in principle to
work within MuPAD interactively with a numerical library.5

Computer algebra systems can also help to select an appropriate method from a numerical library. Modern libraries
have reached such a level of sophistication that for many users it is impossible to fully exploit their potential. They
provide many different routines for the same task and their working can be further tuned by many input parameters
whose meaning remains a secret for non-experts. A computer algebra system can analyze the given differential
equation (e. g. estimate its stiffness) and then choose an appropriate method and determine reasonable values for its
parameters. An example for this approach is the AXIOM package ANNA developed by Dupée [27].

Goldman et al. [43] go considerably further in their application of computer algebra in numerical analysis by using
it as a software engineering tool. They automatically generate the full FORTRAN code for numerically solving the

5A prototypical implementation of an interface to some functions of the NAG C-library is discussed on the MuPAD web site at the URL
http://www.mupad.de/PAPERS/MODULES/NAGC/index.html
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Navier-Stokes equations. Their argument is that such programs are so long and complicated that their maintenance
and adaption (new boundary conditions, different discretizations etc) is rather difficult and error-prone. They use
instead a number of input files that contain all the relevant information about the problem in a format that is com-
paratively easy to read and let the computer algebra system then generate the source code.

One can also use computer algebra to derive numerical schemes. The Butcher theory of Runge-Kutta methods
is here a typical example. For higher order methods the order conditions become rather large and complicated.
Computer algebra packages have been developed that derive and solve them (using Gröbner bases) [46, 109].6 For
partial differential equations the constructionof higher-order discretizations or finite elements can be rather involved
and is sometimes only feasible with the help of a computer algebra system [76]. Computer algebra can also assist
in proving the stability of finite difference schemes [36].

Another topic where computer algebra plays a certain role in numerical analysis are differential algebraic equa-
tions. The index of such a system comprising differential and algebraic equations measures in a certain sense, how
far it is away from a pure differential equation [15]. This gives an indication of the difficulties one must expect
in a numerical integration. The determination of the index is essentially equivalent to the completion procedures
described above [62, 83, 101], as it can be defined as the number of steps needed for the completion. However, in
practice numerical analysts often prefer the use of automatic differentiation to computer algebra [16].

None of the applications described so far represents really what one would call a hybrid algorithm combining sym-
bolic and numerical elements, i. e. where computer algebra is an integral part of the solution process and not only
used to determine either the problem or the numerical method for its solution. However, we are not aware of any
such algorithm for differential equations, although some ansätze based on symmetry theory have been developed.
Dorotnitsyn [26] showed how one may construct finite difference schemes inheriting the symmetries of a differen-
tial equation. Such schemes should very well preserve the associated conservation laws, but so far no numerical
tests have been published.

In contrast, for solving algebraic equations several hybrid algorithms have been designed. One of them deals with
nonlinear systems possessing symmetries [39], as they e. g. arise in equivariant systems. In the symbolic part it uses
the linear representation theory of finite groups to transform the problem into an optimal form for the numerical part.
This includes for example a block diagonalization of the Jacobian. The numerical algorithm is complicated due to
the underlying group theory. Gatermann [37] showed how the numerical computations can be automated by first
computing the necessary group theoretic data which is summarized in a bifurcation graph.

Conclusions and Outlook

The application of computer algebra to differential equations is a vast (and not very well defined) field. We could
only briefly indicate some of the main research directions and had to omit many others. For example, one can
extend the idea of transformingdifferential equations far beyond simple heuristics and is then lead to the equivalence
problem of Cartan [59, 79]. Within the algebraic approaches we ignored the theory ofD-modules [67] which is of
considerable importance in control theory.

The fields we have touched on are in rather different states. Some of them like symmetry theory are meanwhile
fairly mature with the fundamentals well understood and they provide standard techniques for tackling differential
equations implemented in many computer algebra systems. Others are still in an early stage of their development
and essential questions are open. Such fields are usually known only to some experts and only prototypical imple-
mentations of algorithms exist.

One common feature shared by most of the fields is the complexity of the algorithms. If we take the various comple-

6Actually, the problemof automatically generatingthe orderconditions for Runge-Kutta methodswas mentioned by Jenks [56] in the problem
section of the SIGSAM Bulletin already in 1976.
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tion methods as example, it is obvious from their close relation to Gröbner bases that their complexity is at least as
bad as that of the Buchberger algorithm. AlthoughGröbner bases solve in principle many problems in commutative
algebra, it is well-known that one often fails to get a basis in reasonable time. One possible way out is the stronger
use of heuristics and techniques from Artificial Intelligence, although this is an unpleasant thought for many pure
mathematicians.

Some readers might be surprised that we discussed applications in numerical analysis as broadly as more traditional
topics like symmetry theory. But we believe that in the future this direction will be among the most important
ones. Despite all the successes of Lie symmetries, differential Galois theory etc. one must clearly see that these
theories are of hardly any value for many of the problems an engineer, say, typically faces. A popular benchmark
problem for numerical methods for differential algebraic equations comes from vehicle dynamics and models with
five links a wheel suspension [52]. Its equations of motion must be generated by computer and consist of 7000 lines
of FORTRAN code. It appears hardly realistic to solve such a system with Lie symmetries (if it possesses any!) or
any other analytic technique.

This does not imply that there is no point in further studying symbolic methods, not at all! Toy models that can be
solved analytically are important for obtaining a deeper understanding of underlying structures. One may hope that
such understanding may lead to more efficient numerical algorithms for such large problems. And again we want
to stress that the application of computer algebra to differential equations is not restricted to solving them!

Most of the current numerical methods for ordinary differential equations do not take into account any special prop-
erties of the equation (except its stiffness). It is a rather new trend in numerical analysis to try to use such properties
for the design of better algorithms. One prominent example of this trend are symplectic integrators [94] which are
superior to most conventional methods in the long term integration of Hamiltonian systems, as they preserve many
qualitative features of such systems. One might expect that computer algebra will play an important role in this
emerging field.

The combination of symbolic and numerical computation will become much more important in the future. In the
form of simple interfaces it happens already now in many places and hopefully we can soon add powerful hybrid
methods. For most users of computer algebra systems (this is a very different community than the participants of
computer algebra conferences!) such possibilitiesare of much greater importance than many of the fancy algorithms
developed by theorists.
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