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We study localization of classical waves in a model of point scatterers, idealizing random arrange-

ment of dielectric spheres (" = 1 + �") of volume Vs and mean spacing a in a matrix (" = 1). At
distances � a energy transport is di�usive. A self{consistent equation for the frequency dependent

di�usion coe�cient is obtained and evaluated in the approximation where noncritical quantities are

calculated in CPA. The velocity of energy transport and the phase velocity are renormalized in
a similar way, even for �nite size scatterers. We �nd localization for d = 3 dimensions in a fre-

quency window centered at ! ' 2�=a, and for values of the average change of the dielectric constant

�" = (Vsa
�3)�" exceeding � 1:7.

PACS numbers: 71.55.Jv, 42.20.-y, 41.10.Hv, 43.20.+g

In recent years there has been growing interest in
studies of the propagation of classical waves in random
media.1;2The revival of interest in the longstanding prob-
lem of multiple scattering of classical waves was initiated
by the discovery of the importance of quantum interfer-
ence e�ects for the transport properties of electrons in
disordered systems.3 While some of the features associ-
ated with electron localization, such as enhanced coher-
ent backscattering, have been detected in light scattering
experiments4 as well, the localization of electromagnetic
waves or other classical waves in random systems has not
been established beyond doubt. The question of localiza-
tion of classical waves has attracted attention for two rea-
sons. First, the properties of classical waves such as light
waves, microwaves and acoustic waves in random media
are of fundamental interest for their own sake. Second,
classical waves can serve as a model system for testing the
theory of Anderson localization of electrons experimen-
tally in a clean way, without the complication of strong
inelastic scattering and other e�ects of electron{electron
and electron{phonon interaction. On the other hand it
is harder to localize classical waves, mainly due to the
fact that at low frequency the e�ect of disorder tends
to average out in this case, whereas electrons at low en-
ergy are trapped more e�ectively, even by a weak ran-
dom potential. Existing theories predict localization of
classical waves under certain circumstances.5{7;16 How-
ever, there is no conclusive experimental evidence yet,
although the recent experiments by Genack and collabo-
rators provide strong indications for the existence of lo-
calization of light.9

The outstanding problem in classical wave localization
is to �nd the optimal conditions for its realization. It has
been suggested that an intermediate frequency window
of localized states separates the low{frequency extended
states characterized by Rayleigh scattering from the high
frequency extended states described by geometric op-
tics. Theories based on the weak scattering limit and
on the Coherent Potential Approximation (CPA) predict
frequency intervals within which localization should be
observed.7;16 These predictions are based on extrapola-

tion of results, obtained in the weak disorder regime. In
addition it was recently recognized that considerable care
has to be exercised in transforming the results of the
theory of localization of electrons to the case of classical
waves.10;11

This somewhat di�cult situation has led to sugges-
tions of alternative pathways to localization. S. John12

has proposed that classical localization may be more
easily achieved for a weakly disordered system of peri-
odically arranged dielectric structures in the frequency
regime near a band gap. The question of photonic band
structure in periodic dielectric structures is a fascinating
subject with potential applications in the telecommuni-
cation, information processing, optical storage and sensor
technology.
In this note we present a self{consistent theory of lo-

calization of classical waves, similar to the one developed
for electron localization.13{15 There are important dif-
ferences in the formulation of such a theory for classical
waves as compared to the case of electrons. The most
important one is that the equivalent of particle density
is not conserved. Unfortunately, this fact has not been
given su�cient attention in an earlier attempt7 to de-
rive a self{consistent theory, as pointed out recently.10

The quantity conserved here is energy, not mass, lead-
ing to di�usion behavior of the energy density. Another
di�erence is that the scattering potential is energy de-
pendent. As a consequence, a new phenomenon appears:
The energy transport velocity entering the di�usion co-
e�cient for a strongly disordered system may get appre-
ciably renormalized,10 and consequently, di�usion coe�-
cients can be quite small even far from the localization
transition. Also, in previous versions of a self{consistent
theory of localization7 the single{particle quantities and
the coupling constants were calculated in the low den-
sity or the weak scattering approximation. It is known
from the electron transport problem14 how to improve
upon this unneccessary simpli�cation by calculating the
noncritical quantities in CPA.
For simplicity, we will in the following consider an ide-

alization of a real system, such as dense packed dielectric
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spheres of random size scattering classical waves, for ex-
ample light: A system of point scatterers distributed sta-
tistically throughout the system. Then the only length
scale characterizing the system is the mean spacing of
neighboring scatterers a. In the two limits of wavelength
� of the incident wave small or large in comparison with
a, one expects e�ective medium theory to work well,
whereas for � = 2�=! ' a localization of waves should
occur for su�ciently large scattering strength.
We consider the propagation of classical waves in a

random medium described by the wave equation for the
scalar �eld 	(r; t)

["(r) @
2

@t2
�r2]	(r; t) = 0: (1)

Here "(r) characterizes the randomly varying phase ve-

locity c(r) = 1=
p
"(r). In the approximation where the

vector nature of the electromagnetic �eld is neglected,
Eq. (1) describes the propagation of electromagnetic
waves in a dielectric medium with spatially varying di-
electric constant "(r). We will assume the uctuations
of "(r) to be spacially uncorrelated, such that h"(r)i = "

and h"1(r)"1(r0)i = W�(r � r0), where "1(r) = "(r) � ".
The (unaveraged) Green's function of the wave equation
(1), Fourier transformed w.r.t. time, satis�es the Dyson
equation

G(r; r0;!) = Go(r; r0;!) (2)

+

Z
ddr00Go(r� r00;!)U (r00;!)G(r00; r0;!)

with the \interaction potential" U (r; !) = �!2("(r)� 1)
and the free propagator Go given by its Fourier transform

G
o R;A
k

(!) = [(! � i0)2 � k2]�1.
In the model of point scatterers "(r) is given by "(r)�

1 = (�"Vs)
PNI

i=1 �(r�ri), with NI the number and nI =
NI=V = 1=ad the density of scatterers (d is the spatial
dimension). The point scatterers may be thought of as
an idealization of spheres of dielectric material of volume
Vs and dielectric constant 1 +�" embedded in a matrix
with " = 1. The two parameters characterizing the model
may be chosen as the average dielectric constant " =
1 + (Vs=a

d)�" and the average separation of scattering
centers a.
The impurity averaged Green's function G

R;A

k
(!) is

given in terms of the mass operator �
R;A
k

(!) by G�1
k

=

Go �1
k

(!) � �k. The one{particle properties are ex-
pected to be uncritical at the localization transition and
hence may be calculated in CPA, i.e. in single{site{
approximation16;4 when �k(!) = �o(!) is independent
of the wavevector.
The transport properties of the system can be ex-

tracted from the averaged two{particle Green's function
�!
kk0

(q;
) = �hGR(k+;k
0

+;!+)G
A(k0

�
;k�;!�)i, where

!� = ! � 
=2, k� = k � q=2, k0
�
= k0 � q=2 and 
,

q are the center of mass frequency and wave vector, re-
spectively. The long wavelength{low frequency behavior

of the classical wave system is, in contrast to the elec-
tronic case, not governed by particle number conserva-
tion, but by the conservation of energy, with "(@	=@t)2

being the energy density of the wave �eld. The quantity

�!
"" =

�
!
cph

�2P
k;k0 �

!
kk0

(q;
) may be interpreted as an

energy density correlation function, where the phase ve-
locity cph is de�ned from the zero of the real part of the

inverse of Gk(!) as c
�2

ph (!) = 1 � Re�o(!)=!
2. �!

"" can
be shown to have the di�usion pole structure

�!
""(q;
) = c(!)

i
�

!
cph

�
ImGA

o (!)


 + iD(
)q2
(3)

in the limit 
, q ! 0 (c(!) and GA
o (!) will be de�ned

below). In the regime of localized waves, the di�usion
coe�cient D(0) vanishes identically. In the following we
will calculate D(
) as a function of disorder and show
that a localization transition takes place in the model of
point scatterers in the regime ! ' 2�=a for su�ciently
strong coupling ".
The starting point for a calculation of the averaged

two{particle Green's function �!
kk0

(q;
) is the Bethe{
Salpeter equation

�!
kk0

(q;
) = GR
k+
(!+)G

A
k
�

(!�) (4)

� [�k;k0 +
X
k00

!
kk00

(q;
)�!
k00k0

(q;
)];

where !
kk00

(q;
) is the sum of all irreducible diagrams of
the four{point vertex function. We can write Eq. (4) as
a kinetic equation with the help of the Ward identity

�R
k+
�A
k
�

=
X
k0

!
kk0

[GR
k0
+
� GA

k0
�

] (5)

+
!


!2 + (
=2)2

�
�R
k+

+�A
k
�

+
X
k0

!
kk0

(GR
k0
+
+ GA

k0
�

)

�
;

where �R
k+

= �R
k+
(!+) etc. Compared to the case of

electrons, there is an additional (the last) term on the
r.h.s. of Eq. (5), which has been missed in Ref. [7]. This
term arises because of the explicit frequency dependence
of the perturbation U (r; !) / !2 in Eq. (2). Energy
conservation is expressed by the equation


�!
"" � q�!

j" = ic(!)
!

cph
ImGA

o ; (6)

where the energy current correlation function cor-
responding to �!

"" has been de�ned as �!
j" =

c(!) !
cph

P
k;k0(k � q̂)�!

kk0
(q;
). Here we have introduced

a renormalized velocity c(!) characterizing energy di�u-
sion. In the limit of small q, 
, c(!) is given17 by

�c(!)
co

�
�1

=
�cph
co

� �
1� 1

!2

�
oReG

A
o + Re�A

o

��
; (7)
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FIG. 1. The transport velocity c(!), normalized to co, the

phase velocity in the homogeneous background medium, is
shown for " = 5. Also shown is the e�ective phase velocity

cph(!) in the disordered system. c(!) and cph(!) coincide for

! � 2�=a and for ! � 2�=a or in the limit �" ! 0 for all
frequencies.

where GA
o (!) =

P
k
GA
k
(!), o = Im�A

o =ImG
A
o is the

irreducible vertex function calculated in CPA, and co � 1
is the phase velocity in the homogeneous background
medium. The renormalization of c is a consequence of the
additional term in the Ward identity Eq. (5), which is of
order 
, while energy conservation is already guaranteed
by the 
! 0 limit of Eq. (5). We have calculated Go(!)
and �o(!) in CPA and evaluated c(!) in this approxi-
mation. The result is shown in Fig. 1. At low frequen-
cies c(!) is substantially smaller than one (for positive
�"), as already noted in Ref. [10], the limiting value as

! ! 0 being given by c(!)! 1=
p
", whereas at high fre-

quency c(!) ! 1. The velocity of energy transport c(!)
and the phase velocity cph(!) are seen to agree well. In
fact, whenever the imaginary part of the mass operator
� is small (e.g. in the limit of low density of scatter-
ers), c and cph coincide. This is seen immediately from
Eq. (7) for the case of point scatterers, and was shown
in Ref. [11] for general momentum dependent scattering
within a low{density approximation. Therefore, one may
conclude that the strong reduction of c(!) w.r.t. cph, as
measured experimentally by van Albada et al.,10 is purely
an e�ect of resonant scattering: In the vicinity of reso-
nances Im� is always large even for small density and
may cause the reduction of c(!).

Let us turn to localization e�ects now. Employ-
ing the techniques developed for the case of electron
transport,citekroha.90,vollh.92 one may derive an equa-
tion of motion for �j" from the Bethe{Salpeter equa-
tion (4), which relates back to �"" and hence allows
to derive the di�usion form (3) for �"". In the ap-
proximation for the irreducible vertex kk0(q) employed
in the case of electron transport,14;15 kk0(q;
) =
1

!2
(Im�A

o )
2(ImGA

o )
�3ImGA

k
(!)�!

""(jk + k0j;
), the dif-
fusion coe�cient D(
) is found to satisfy the selfconsis-
tency equation

D(
) =

�
1� i!


Im�A
o

�
�1

(8)

�
�
Do + 2c2(!)

� cph
!

�2 Im�A
o

(ImGA
o )

2Do

Kf �i

D(
)

g
�
;

where

Kfzg =
X
k;k0

(k � q̂) ImG
A
k
(ImGA

k0
)2

z + (k + k0)2
(k0 � q̂): (9)

In CPA the bare di�usion constant is given by Do =
2c(!)

cph
!

1

ImGA
o

P
k
(k � q̂)2(ImGA

k
)2.

We have solved Eq. (8) numerically for D(
), using
the CPA results for Go, �o, c(!) and Do. It is easily
shown that in CPA the parameter a can be absorbed
into the rescaled frequency a!, so that the only relevant
parameter in the model is the average dielectric constant
".

FIG. 2. The mobility edge trajectory in the dielectric con-
stant { frequency plane separating extended from localized

states is shown.

In Fig. 2, we present the mobility edge trajectory sep-
arating extended from localized states. Notice that the
model correctly describes the underlying physics. In par-
ticular, there are only extended states for all frequencies
! when " is less than 2.7. In addition, for low (Rayleigh
scattering) and high (geometric optics) frequencies, as
expected, there are only extended states for any value of
".
In Fig. 3, the dc di�usion coe�cient D(0) for spatial

dimension d = 3 is shown as a function of wave frequency

! for " = 5. For values " >� 2:7 (corresponding to energy

velocity c(0)<�0:6), D(0) is found to be zero within a fre-
quency window centered at a! ' 2. One may de�ne
the localization length � by �2 = lim
!0D(
)=(�i
),
which characterizes the spatial extension of wave pack-
ets localized in the system. (�=a)�1 is also shown in
Fig. 3 as a function of !. D(0) is seen to vanish linearly
as ! approaches the critical frequencies !1;2, whereas
� / j! � !1;2j�1. Note that from Eq. (8) !1;2 is inde-
pendent of the renormalization of the transport velocity
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FIG. 3. The di�usion coe�cient D(0) and the inverse local-

ization length ��1 are shown as a function of wave frequency
! for " = 5.

c(!). The critical exponents forD(0) and � found here,
s = 1 and � = 1, are the same as those for the electron
case. In dimensions d � 2 classical waves are found to be
localized for arbitrarily weak disorder.
In the region where the wavelength is large compared

to the size of the scatterers, i.e. where the approxima-
tion by point scatterers is appropriate, the description
of the localization transition as a function of a! and "

presented here is expected to be semiquantitative, with
the possible exception of a narrow critical regime, judg-
ing from the very good agreement of a similar theory
for electron localization13;14 with exact numerical results
for �nite systems. The predictions of the theory may be
tested experimentally in systems with su�ciently large
relative di�erence of dielectric constants �", such that
the disorder parameter " may be large even for small
density.
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where ko = E=cph, or by using the small q and 
 depen-
dence of the Ward identity (Eq. (5)), the equation of the

transport velocity is given by
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which agrees with the expression given by Barabanenkov
and Ozrin (Ref. 11), but disagrees with Ref. 10, where the

last term is missing.
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