KIT | KIT-Bibliothek | Impressum | Datenschutz

Goodness-of-fit tests for the Cauchy distribution based on the empirical characteristic function

Guertler, Nora; Henze, Norbert ORCID iD icon 1
1 Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Let X$_1$,...,X$_n$ be independent observations on a random variable X. This paper considers a class of omnibus procedures for testing the hypothesis that the unknown distribution of X belongs to the family of Cauchy laws. The test statistics are weighted integrals of the squared modulus of the difference between the empirical characteristic function of the suitably standardized data and the characteristic function of the standard Cauchy distribution. A large-scale simulation study shows that the new tests compare favorably with the classical goodness-of-fit tests for the Cauchy distribution, based on the empirical distribution function. For small sample sizes and short-tailed alternatives, the uniformly most powerful invariant test of Cauchy versus normal beats all other tests under discussion.


Originalveröffentlichung
DOI: 10.1023/A:1004113805623
Zugehörige Institution(en) am KIT Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2000
Sprache Englisch
Identifikator ISSN: 0020-3157, 1572-9052
KITopen-ID: 25912000
Erschienen in Annals of the Institute of Statistical Mathematics
Verlag Springer
Band 52
Heft 2
Seiten 267 - 286
Schlagwörter Goodness-of-fit test, Cauchy distribution, empirical characteristic funktion, kerner transformed empirical process, stable distribution, uniformly most powerful invariant test
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page