KIT | KIT-Bibliothek | Impressum | Datenschutz

Recent and classical goodness-of-fit tests for the Poisson distribution

Guertler, Nora; Henze, Norbert ORCID iD icon 1
1 Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

We give a critical synopsis of classical and recent tests for Poissonity, our emphasis being on procedures which are consistent against general alternatives. Two classes of weighted Cramér–von Mises type test statistics, based on the empirical probability generating function process, are studied in more detail. Both of them generalize already known test statistics by introducing a weighting parameter, thus providing more flexibility with regard to power against specific alternatives. In both cases, we prove convergence in distribution of the statistics under the null hypothesis in the setting of a triangular array of rowwise independent and identically distributed random variables as well as consistency of the corresponding test against general alternatives. Therefore, a sound theoretical basis is provided for the parametric bootstrap procedure, which is applied to obtain critical values in a large-scale simulation study. Each of the tests considered in this study, when implemented via the parametric bootstrap method, maintains a nominal level of significance very closely, even for small sample sizes. The procedures are applied to four well-known data sets.


Originalveröffentlichung
DOI: 10.1016/S0378-3758(00)00114-2
Zugehörige Institution(en) am KIT Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2000
Sprache Englisch
Identifikator ISSN: 0378-3758, 1873-1171
KITopen-ID: 25922000
Erschienen in Journal of statistical planning and inference
Verlag North-Holland Publishing
Band 90
Heft 2
Seiten 207 - 225
Vorab online veröffentlicht am 30.08.2000
Schlagwörter Goodness-of-fit test, Poisson distribution, Empirical probability generating function, Empirical distribution function, Integrated distribution function, Weak convergence under triangular arrays, Parametric bootstrap, Fisher's index of dispersion
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page