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We study the superconductor-insulator transition of a 2-dimensional Bose-Hubbard model, consid-

ering as a speci�c example, an array of Josephson junctions. Within a coarse-graining approach we
derive an e�ective free-energy functional from which we determine the phase diagram. At zero tem-

perature it consists of a superconducting phase and Mott-insulating lobes. The phase boundaries of

some of these lobes display reentrant behaviour as a function of temperature. Next, we evaluate the
electromagnetic response functions of the system. The real part of the longitudinal conductivity is

characterized by an excitation gap, whereas the imaginary part describes a capacitor. In an ideal

system, under certain conditions a universal conductance is found at the transition. If we add low
frequency dissipation to the model a di�erent value of the universal conductance is found, but still

it is independent of the strength of the dissipation. Qualitatively di�ering results are obtained for

frustrated and unfrustrated systems. We also discuss the Hall conductance of the system.

PACS numbers: 72.20.-i 74.65.+n

I. INTRODUCTION

Interacting Bose systems have attracted considerable
interest in the past few years. Several predictions1{3 on
the superconductor-insulator (S-I) transition as a func-
tion of the system parameters, disorder, chemical poten-
tial, and magnetic �eld have been veri�ed in experiments
on granular �lms of superconducting material4;5. More
recently the same transition has been studied in fabri-
cated, regular arrays of Josephson junctions6{8, where
the parameters can be controlled, and disorder is less
important. In high quality junction arrays the charges
on islands change only in discrete quanta due to tunnel-
ing of Cooper pairs. The tunneling of single electrons is
frozen out at low temperatures. This makes junction ar-
rays an ideal experimental system to test the concepts of
the Bose-Hubbard model and of the S-I transition. The
Josephson coupling EJ of the junction array is equiva-
lent to the hopping term t in the Bose-Hubbard model;
the inverse capacitance matrix de�nes the charging en-
ergy scale EC and describes the interaction of particles;
a gate voltage Vx applied between the ground plane and
the array replaces the chemical potential �.
The S-I transition of a Josephson junction array (or

Bose-Hubbard model) can be described by a Ginzburg-
Landau (G-L) free-energy functional, derived from the
original Hamiltonian within the so-called coarse-graining
approach9;10. The coe�cients depend on the ratio of
Josephson coupling EJ and charging energy EC , and
also on the value of a gate voltage Vx applied between
the ground plane and the array. This G-L theory,
in contrast to the standard time-dependent Ginzburg-
Landau description of (bulk) superconductors, does not
describe a relaxation process. Rather the second order
time derivative is essential, leading to nontrivial response
functions11. For instance, a universal conductance may
appear at the transition1, instead of the 
uctuation con-
ductivity found in the framework of the standard G-L

theory of bulk superconductors.
In the present paper we extend our earlier results10;11

(see also12) to �nite temperatures and consider the e�ect
of low frequency dissipation on the response functions.
At zero temperature the phase diagram as a function of
EJ=EC and Vx consists of a superconducting phase and
Mott-insulating lobes. A �nite value of Vx, in general,
breaks particle-hole symmetry. The dependence of the
system properties on Vx is periodic and in many respects
reminiscent of the dependence of classical arrays on the
magnetic frustration f . We, therefore, denote the former
by 'charge frustration'. At �nite temperature the phase
boundary of some of the Mott-insulating lobes is reen-
trant. At higher temperatures the dependence on the
applied gate voltage is washed out and the phase bound-
ary approaches the Kosterlitz-Thouless result.
We also present further properties of the response func-

tions as a function of temperature, dissipation, magnetic
frustration and applied gate voltage (charge frustration).
At zero temperature, in the insulating phase the real part
of the conductivity is governed by a gap in the excita-
tion spectrum, equal to the energy for the creation of
particle-hole pairs. The imaginary part is that of a capac-
itor. In unfrustrated (magnetic and charge) arrays (with
particle-hole symmetry) the energy gap and the inverse
capacitance vanish continuously at the phase transition,
implying a vanishing Coulomb gap in the I-V curves. At
the transition the conductance takes a universal value.
For general frustration (magnetic or charge) the excita-
tion energy and Coulomb gap remain �nite up to the
transition and jump discontinuously to zero as the su-
perconducting phase is entered. At �nite temperature,
free charge carriers (particle- and hole-like) are activated.
Their excitation energies and densities depend on the
applied gate voltage. We �nd a nonzero Hall conduc-
tance if the densities of particle-and hole-like excitations
are di�erent. The lower of their excitation energies van-
ishes continuously at the transition; characterized by a

1



dynamic critical exponent z = 1 or z = 2 for unfrustrated
or frustrated systems, respectively. The presence of the
free carriers turns the system into a perfect conductor,
i.e. the conductivity has a Drude form with in�nite scat-
tering time. Low frequency dissipation 'regularizes' the
perfect conductivity at �nite temperature and leads to
a superconducting-resistive phase transition. It also re-
duces the value of the universal conductance of the T = 0
transition. Remarkably, this new universal conductance
is independent of the strength of dissipation.
In the following section we brie
y outline the coarse-

graining approach to derive the G-L free-energy func-
tional. We present the phase diagram of the Josephson
junction array with �nite range interaction of the charges,
extending our earlier work to �nite temperatures. In sec-
tion 3 we study the conductivity for several distinct cases,
including the e�ect of low frequency dissipation. We con-
clude with a discussion.

II. THE PHASE DIAGRAM

We consider a square array of Josephson junctions. In
terms of the excess Cooper pair charges (2e) on the is-
lands Qi and the phases 'i of the superconducting order
parameters it is described by the Hamiltonian

H =
1

2

X
i;j

(Qi �Qx)C
�1
ij (Qj � Qx)

�
X
<i;j>

EJ cos('i � 'j � Aij) : (1)

The scale for the Josephson coupling isEJ . The Coulomb
interaction of the charges on the islands is described by an
inverse capacitance matrixC�1ij . The capacitance matrix
contains in the diagonal the self capacitance of the islands
C0 and nearest neighbor terms describing the junction
capacitances C1. Hence Cii = C0 + 4C1; Cij = �C1

for i and j nearest neighbors, and Cij = 0 otherwise.
A characteristic scale for the interaction is set by the
charging energy EC = 1

2e
2C�1ii .

Magnetic frustration f is introduced by a vector po-
tential

Aij =
2�

�0

Z j

i

~A � d~l ;
X

 Aij = 2�f : (2)

We also allow for a homogeneous 'charge frustration' or
'external' charges Qx;i = Qx on the islands. Their value
can be controlled by an overall gate voltage Vx applied
between the array and the substrate. In general this in-
troduces a term Vx

P
iQi into the Hamiltonian, whereP

iQi is the net charge which has traversed the voltage
source. Clearly this corresponds to Qx = C0Vx in eq.
(1).
The Hamiltonian (1) is equivalent to that of a Bose-

Hubbard model, provided that the mean number of

bosons per site is large and certain amplitude 
uctua-
tions can be neglected10. The Josephson coupling term
corresponds to the hopping term. The inverse capaci-
tance matrix C�1

ij describes the interaction, which in a
general has a �nite range. The applied gate voltage Vx
corresponds to the chemical potential for the bosons.
If C0 = 0 the charges interact logarithmically, as do

the vortex excitations contained in (1). Then duality ar-
guments imply1;13 that at the superconductor-insulator
transition the resistance of the array is given by the quan-
tum value RQ = h=4e2 = 6:45k
. If C0 6= 0, the case we
consider here, the duality is broken and the resistance at
the transition in general will be di�erent.
In order to study the model further we make use of

the so-called 'coarse-graining' approximation developed
by Doniach9. The essence of this approach is to introduce
a complex order parameter �eld  , whose expectation
value is proportional to that of exp(i'). As long as  
is small, i.e. close to the onset of phase coherence, the
Hamiltonian (1) reduces to an e�ective Ginzburg-Landau
theory. The derivation has been presented before10 and
we only state the result. The partition function

Z =

Z
D � D expf�F [ � ;  ]g (3)

is governed by a G-L functional

F [ ]=

Z �

0

d�

Z
d2r
n
� j  j2 +� j  j4

+
 j (~r+
2�i

�0

~A) j2 +� � @� + � j @� j2
o
: (4)

The coe�cients depend on the frequency dependent
phase-phase correlation function10

g(!�; qx) =

8EC

Z0

X
fqig

exp[�2e2�
P

i;j(qi � qx)C
�1
ij (qj � qx)]

[4EC]2� [4e2
P

j C
�1
0j (qj � qx)� i!�]2

where Z0 =
X
fqig

exp[�2e2�
X
i;j

(qi � qx)C
�1
ij (qj � qx)]

(5)

as follows


 = g�1(0; qx)=8EC = (�+ EJ=EC)=4

� = g�1(0; qx)=2EC �EJ=EC

� = i@!�g
�1(!�; qx)

��
!�=0

=2EC

� = @2!�g
�1(!�; qx)

��
!�=0

=4EC (6)

The sums in (5) run over all integer charge con�gurations
qi = Qi=2e = 0;�1; ::: on each site. Since the properties
of the system are periodic in qx = Qx=2e with period
1 we can restrict in the explicit formulas below qx to
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the range �1=2 � qx � 1=2. Within the coarse grain-
ing approach the coe�cient of the fourth order term in
the G-L equation turns negative if the interaction is suf-
�ciently long range14. This may indicate a tendency of
the system to show a �rst oder transition in this limit, or
it re
ects simply a weakness of the present approach. In
the following we will consider the case where the inter-
action decays su�ciently fast to avoid this problem. For
on-site interactions and qx = 0 we have � = 7E2

J=32E
3
C.

Notice that the correlation function g(!�; qx) depends
only on the combination (2eVx+i!�) as required by gauge
invariance15. The time derivatives in Eq. (4) arise if
we expand in !�. The coe�cient of the �rst order time
derivatives � is nonzero only for qx 6= 0. It multiplies
a time derivative with respect to the imaginary time �
and must not be interpreted as a dissipative term. The
coe�cient � vanishes on the lines in the phase diagram
where the system exhibits particle-hole symmetry. If the
particle-hole symmetry is broken, and � 6= 0 a nonva-
nishing Magnus force on vortices8;16 and a �nite Hall
conductance may arise.
For on-site interaction only (self-capacitance limit,

C0 � C1) we �nd at T = 0

� = 1� 4q2x � EJ=EC

� = qx=EC

� = 1=16E2
C (7)

In this case g�1(!�; qx) is a 2nd order polynomial in !�,
and the frequency expansion of the G-L functional is ex-
act.
The mean-�eld phase boundary is given by the condi-

tion �f � �+
2�f = 0. For on-site interaction it reduces
to

EJ

EC

���
cr
= (1� 4q2x)(1 +

�

2
f) (8)

for �1=2 � qx � 1=2 and periodic beyond. In Fig. 1a
we show for this limit the T = 0 phase boundary be-
tween the insulating and the superconducting phase as
a function of qx and EJ=EC. Mott insulating lobes for
small EJ=EC are separated by regions of superconduct-
ing phase at larger EJ=EC. A similar lobe structure had
been predicted before for the Bose-Hubbard model2; in
the Josephson junction array it is perfectly periodic in qx
with period 1.
The Mott insulating phase inside the lobe is char-

acterized by an excitation gap for adding or remov-
ing bosons (Cooper pairs). From the G-L functional
(4) we �nd at k = 0 two excitation frequencies !� =

(�� +
p
�2 + 4��)=2�. In the limit EJ = 0 for on-site

interaction this reduces simply to !� = 4EC(1�2qx). It
is reassuring to see that in the limit EJ = 0, where the
excitation gap can be determined directly from the elec-
trostatic part in the Hamiltonian (1), the result obtained
within the coarse graining approximation coincides with
the exact result. We, furthermore, notice that a hopping

process in the ground state, which creates a pair of ex-
citations, costs the sum of the single particle excitation
energies � = !+ + !�. The energy � is independent
of qx. Throughout the lobes in Fig. 1a it is given by
� = 8EC

p
1� EJ=EC .

From the excitation spectrum we can obtain the dy-
namic critical exponent z. On the particle-hole symme-
try lines, � = 0, the excitation energies vanish propor-
tional to

p
�. Hence the product of critical exponents is

equal to z� = 1=2. Within the mean �eld approximation
used here � = 1=2, which implies z = 1. The transition
is known to be in the universality class of the 3D XY
model and better estimates for the critical exponents ex-
ist. It turns out that z = 1 and � � 0:67. In the general
case (where � 6= 0) the lowest excitation energy vanishes
linearly in �. Hence, in the mean �eld approximation we
have z = 2. In ref.2 it was argued that this is the ex-
act result, since in frustrated systems the transition is
described by mean �eld exponents.
The nature of the phase transition in the symmetry

points between the lobes di�ers from the rest. At qx =
1
2

and EJ = 0 the phase transition is �rst order, and the
free-energy functional (4) ceases to be a proper descrip-
tion. At these points a mapping onto a spin model pro-
vides more insight17.
For a general interaction, i.e. a general capacitance

matrix, the phase diagram acquires more structure. For
de�niteness let us consider on-site and a weaker nearest-
neighbor (n.n.) interaction, i.e. the inverse capacitance
matrix is restricted to diagonal and n.n. terms. We, fur-
thermore, restrict C�1

ij � C�1
ii =4, thus avoiding unphys-

ical instabilities. In this case the relevant ground state
charge con�gurations are i) the state in which each island
has an equal number of bosons and ii) the two degener-
ate 'checkerboard' con�gurations where neighboring sites
are occupied with n or n+1 bosons, respectively. Accord-
ingly the phase diagram consists of two types of insulat-
ing lobes, those with homogeneous charge distributions
centered around integer values of qx, and checkerboard
con�gurations centered around half-integer values of qx.
If we de�ne W = 1 + 4C�1

01 =C
�1
00 the coe�cients that

describe an 'integer lobe' are

�=1� 4W 2q2x � EJ=EC

�=Wqx=EC

�=1=16E2
C (9)

The phase boundary of integer lobe is limited by EJ =
EC(1 � 4W 2q2x)(1 +

�
2f). The analogue for the 'half-

integer lobe' is

�=2b+b�=(b+ + b�) �EJ=EC

�=
2

EC

h+b
2
� + h�b

2
+

(b+ + b�)2

�=
1

8EC

h
1� 2b+b�

(b+ + b�)2
+
(h+b� � h�b+)

2

(b+ + b�)3

i
where b+ = [1� 4h2+], b� = [1� 4h2�], h+ = [1 �Wqx]
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and h� = [W (1� qx)� 1]. The half-integer lobe extends
at qx = 1

2 to EJ = EC[1 � 4(1 � W=2)2]. An example
for the phase diagram with on-site and nearest-neighbor
interaction is shown in Fig. 1b. For a more general ca-
pacitance matrix (and hence longer range interaction)
the lobe structure is more complicated10. If we include
next nearest neighbour interactions the possibility for a
supersolid arises18;17.
At �nite, but low temperatures charge 
uctuations are

suppressed exponentially. As a result the critical value
of (EJ=EC)cr at qx = 0 depends only weakly on T 3. For
on-site interaction the leading temperature dependence
of the phase boundary follows from�EJ

EC

�
cr
= 1 +

8

3
e�4EC=T ; (10)

For a complete picture we evaluated the correlation func-
tion Eq.(5) numerically, and for �nite range interaction
employing Monte-Carlo techniques. For short range in-
teractions between the charges it is su�cient to study
small system sizes. Numerical problems arise due to the
nonanalytical behaviour of the correlation function at
certain values of qx. The phase boundary for di�erent
temperatures is shown in Fig. 1a for on-site interactions
and in Fig. 1b for on-site and nearest neighbour interac-
tions. As is clear from Fig.1b and 1c the phase boundary
near qx =

1
2 , i.e. near the tips of the half-integer lobes is

reentrant. In contrast the phase boundary of the lobes
at integer qx is not reentrant. This di�erence may be due
to domain walls between the two equivalent checkerboard
charge con�gurations of the half-integer lobes, which may
in
uence the transition.
Several papers have dealt with the question whether

the phase boundary is reentrant or not. In some cases
reentrance appeared to be related to approximations used
in the calculation19, in others it appeared to depend on
the range of the interaction3. However, the dependence
on qx and related, the di�erence between integer and non-
integer lobes had not been realized before.
Similarly as the phase boundary the coe�cients in the

G-L functional (4) depend on the temperature on a scale
set by EC (except in the regime of qx where the T = 0
phase boundary extends to EJ = 0). Below we will �nd
that the reponse functions are temperature dependent
on smaller energy scales. Restricting our attention to
low enough temperatures we, therefore, can take the co-
e�cients of the G-L equation to be constants.

III. CONDUCTIVITY NEAR THE TRANSITION

From the G-L model (4) we can evaluate explicitly the
frequency dependent response to an electromagnetic �eld
in the di�erent phases. This sheds light on the origin of
the universal conductance predicted at the transition1,
and we obtain further qualitative and quantitative re-
sults. In order to do so we study the imaginary time
correlation function

��� =
�h

!�

Z
d2r

Z
d�

�2 lnZ

�A�(�; ~r)�A�(0)
ei!��+i~q�~r ; (11)

where Z is the partition function (3). The variational
derivative yields

���(i!� ; ~q) =
�

RQ!�

h
4
h � (0) (0)i���

�2
Z
d2r

Z �

0

d� hJ�(�; ~r)J�(0)iei!��+i~q�~r
i
; (12)

where the current is

J�(�; ~r) = 4


�
1

2i
( � r� �  r�

� ) � 2�

�0
A� j  j2

�
:

(13)

We consider �rst the insulating phase (� > 0) in
zero magnetic �eld. In this case the transverse compo-
nent �xy(i!� ; ~q = 0) � �H(i!�) (the Hall conductiv-
ity) vanishes by symmetry. The longitudinal component
�xx(i!� ; ~q = 0) � �(i!�) becomes, in Gaussian approx-
imation, after a partial integration of the diamagnetic
part

�(i!�) =

1

8RQ!�

Z
1

0

dkk3
1

�

X
�

G!�;k[G!�;k � G!�+!� ;k]; (14)

where

G!�;k =
1

rk + i�!� + �!2�
; rk = �+ k2=4: (15)

The sum over Matsubara frequencies in (14) is readily
performed by contour integration, with the result

�(i!�) =
1

8RQ�2

Z
dkk3

n�v(�; !+ ; !�)
�2
k

1

!�

+
u(�; !+; !�)

�3
k

�
1

!� + i�k

+
1

!� � i�k

�o
: (16)

Here the k-dependent excitation energies are !� = (��+p
�2 + 4�rk)=2�, �k = !+ + !�. The functions u and

v are de�ned in terms of the Bose distribution function
N (!) = (exp(�!) � 1)�1 as

u=N (!+) +N (!�) + 1

v=[N (!�) + 1]N (!�) + [N (!+) + 1]N (!+) (17)

In order to extract the conductivity as a function of
real frequencies we perform the analytic continuation to
real frequencies. This amounts to setting i!� ! ! + i�.
The identity lim�!0

1
a�i�

= P 1
a
�i��(a) �nally yields the

real and imaginary parts of the conductivity.
There is some discussion on this point, related to the

order of analytic continuation and summation over Mat-
subara frequencies. In Ref.12 the analytical continuation
is performed before the summation over Matsubara fre-
quencies. In this case the �rst term of Eq. (16) is absent.
However, as we will show below, this term has a physical
interpretation.
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A. Zero temperature

At zero temperature the function v vanishes and u = 1.
Hence we are left with

�(!) =
1

8RQ�2

Z
dk

k3

�3
k

n 2i!

!2 ��2
k

+��(! � �k) + ��(! +�k)
o
: (18)

which reduces to20

Re�(!) =
�

8RQ

�
1� !2c

!2

�
�(!2 � !2c )

Im�(!) =
1

8RQ

�
�2!c
!

+

�
1� !2c

!2

�
ln

����! � !c! + !c

����
�

(19)

The real and imaginary part of the response function are
shown in Fig. 2. The real part vanishes below a threshold
frequency ! < !c, as we expect for the Mott insulating
phase. The threshold frequency coincides with the sum of
the excitation gaps for a particle and hole like excitation
!c = �(k = 0) =

p
�2 + 4��=�. Above the threshold fre-

quency !c particle-hole excitations can be created, and
the real part of the conductivity is �nite. In the lan-
guage of the G-L functional it means that propagating
Josephson plasmon modes can be excited9. Notice that
the conductivity at zero temperature depends on !=!c
and a universal constant only.
The threshold frequency is shown for di�erent param-

eters in Fig. 3. For the case of on-site interaction it is
given throughout the lobe by !c = 8EC

p
1�EJ=EC in-

dependent of qx. In general the sum of the excitation en-
ergies remains �nite up to the transition at � = 0, where
it reaches the value !c = �=�. Only on the particle-hole
symmetry lines � = 0, i.e. at the tips of the integer
lobes, as well as, for �nite range interactions, the tip of
the half-integer lobes the gap vanishes as

p
� when the

superconducting phase boundary is approached.
We want to stress this result: At zero temperature the

applied electromagnetic �eld only produces excitations
in pairs (particle and hole). The sum of the excitation
energies enters into the conductivity, whereas the lower
of the single particle excitation energies shows the critical
behavior characterized by the dynamic critical exponent
z.
At the transition, on the particle-hole symmetry lines,

where the gap in the response function vanishes, a �nite
dc conductance equal to

�� =
�

8RQ

(20)

emerges. This response is the universal conductivity
found by Cha et al.1. In the general case the gap re-
mains �nite at the transition and Re�(! = 0) = 0.
The imaginary part of the conductivity can be ex-

panded at low frequencies ! � !c, with the result

Im�(!) = !Ceff . This implies that the system behaves
as a capacitor with e�ective capacitance

Ceff =
1

6!cRQ

: (21)

Thus we expect on the insulating side of the transition
in the I-V curves of junction arrays the phenomenon of
'Coulomb blockade' up to a voltage scale given by the
'Coulomb gap' (2e)2=2Ceff . This means no current is

owing for voltage smaller than a threshold voltage which
scales with e=Ceff . If � = 0 the e�ective capacitance di-

verges near the transition as ��1=2, and the transition
to the superconducting state is marked by a vanishing
Coulomb gap. If � 6= 0 the particle-hole symmetry is
broken and the capacitance remains �nite up to the tran-
sition. This means the Coulomb gap vanishes discontin-
uously as we enter the superconducting phase (Fig. 3a).

B. Finite temperature

At low temperatures T � minf!+; !�g the conduc-
tivity is

Re �(!) = ��D�(!) +
��(!2 � !2c )

8RQ

�
1� !2c

!2

�
�

�(1 + 2 cosh(
��

2�
)e��j!j=2) ; (22)

Im �(!) = �D=! + !Ceff ; (23)

where Ceff =
(1 + 12T

2

!2c
(e��!

+

+ e��!
�

))

6!cRQ

; (24)

where the Drude weight �D = T (e��!
+

+ e��!
�

)=RQ

was introduced. In the real part two contributions can
be distinguished. The second term in Eq.(22) generalizes
(19). It still describes the simultaneous excitation of a
particle and a hole. However, at �nite temperature the
absorption and emission processes are characterized by
Bose functions. Indeed the temperature dependent co-
e�cient can be written as f[1 + N (!+)][1 + N (!�)] �
N (!+)N (!�)g�!++!�;j!j.
The �rst term in Eq.(22) describes the coupling of

the external �eld to thermally excited particles or holes.
It is proportional to their total density exp(��!+) +
exp(��!�). The frequency dependence of this term
arises from 1=(! + i�) with vanishing �, i.e. it is an
ordinary Drude conductivity in the limit where the scat-
tering time is in�nite. It may appear peculiar that the
phase which is insulating at T = 0 turns into a perfect
conductor at �nite temperature. It arises due to the ab-
sence of a low frequency dissipation or disorder in our
model. Hence the thermal charge excitations are freely
accelerated. Below we will show that the inclusion of
dissipation regularizes this zero frequency contribution.
Although the system is a perfect conductor it is not a su-
perconductor, since it shows no Meissner e�ect. In order
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to check this we write eq.(12) for small but �nite ~q in the
zero frequency limit as

hj�(~q)i = K��(~q)A�(~q) : (25)

After expansion in ~q the dia- and paramagnetic parts
in K�� cancel to leading order, i.e. K = O(q2), which
implies a vanishing super
uid density and, therefore the
absence of a Meissner e�ect21;22.
The scale of the cross-over temperature to classical be-

haviour is set by T � minf!+; !�g. Note that at the
transition minf!+; !�g = 0. This means that at any
�nite temperature the transition is in a sense classical.
For T � !c we �nd

Re �(!) = ��D�(!) +
�T

2RQj!j
!2 � !2c

(!2 � �2=�2)
�(!2 � !2c )

Im �(!) = �D=! +
T!

4RQ!2c
; !� !c (26)

The excitation gap persists. However, the frequency
dependence is changed. On the particle-hole symme-
try lines � = 0 the low frequency conductivity at the
transition diverges rather than being universal. At high
temperatures T � min(!+; !�) the Drude weight, i.e.
the prefactor of the 1=(! + i�), in the absence of dis-
sipation and disorder diverges near the transition as
�T ln[minf!+; !�g=T ]=RQ.

C. Magnetic �eld e�ects

The e�ect of a magnetic �eld, if we ignore commen-
surability e�ects, is also described by the G-L functional
(4) (In Refs.23;24 commensurability e�ects have been in-
cluded in the coarse-graining approach). In this case we
can take the magnetic �eld into account by expanding
the order parameter in Hermite polynomials that diago-
nalize the free energy. Thus the momentum integrals in
(14) are replaced by a sum over 'Landau levels' n and eq.
(14) is replaced by

�(i!�) =
(4
�f)2

2RQ�!�

1X
n=0

X
�

(n+ 1)
�
2G!�;nG!�;n+1

�G!�+!�;nG!�;n+1 �G!�;nG!�+!� ;n+1

�
(27)

where

G!�;n =
1

�!2� + i�!� + rn
; rn = 4
�fn + �f (28)

For �nite magnetic �elds the mean �eld phase transition
is determined by �f � �+ 
2�f = 0. We expect the Hall
conductance to be nonzero25. Hence we also consider
�xy(i!�) � �H(i!�)

�H (i!�) =
i(4
�f)2

2RQ!�

1X
n=0

(n + 1)�

1

�

X
�

�
Gn;!�Gn+1;!�+!� �Gn;!�+!�Gn+1;!�

�
; (29)

Proceeding along the same lines as in the zero �eld case
we �nd the real and imaginary parts of the conductivity

Re�(!) =
�(4
�f)2

2RQ�2

X
n

n+ 1

!n!n+1
�

�
un + un+1

�n

�(j ! j ��n) +
un � un+1

�n

�(j ! j ��n)

�
(30)

Im�(!) =
(4
�f)2

RQ�2

X
n

n+ 1

!n!n+1
�

�
un + un+1

!2 ��2
n

!

�n

+
un � un+1
!2 ��2

n

!

�n

�
: (31)

Here we introduced !n = !+n + !�n , �n = !+n+1 � !+n ,

�n = !+n+1+ !�n and !�n = (��+
p
�2 + 4�rn)=2�. The

temperature enters through the function un = N (!+n ) +
N (!�n ) + 1. As is clear from (31), the excitation gap
frequency !c is now given by !c = �n=0. Even on the
particle-hole symmetry line � = 0, the gap remains �nitep
�f=� up to the transition (see Fig. 4). This implies

that magnetic frustration, similarly as charge frustration,
prevents the appearance of the universal (zero frequency)
conductance at the transition. On the other hand, the ef-
fective capacitance may still diverge. For strong magnetic
�elds f (close to the transition) we can replace the sum
over Landau levels by the �rst (divergent) term. Hence
at zero temperature and � = 0 the e�ective capacitance
reduces to

Ceff =

p
�

4RQ
p
�f

: (32)

For temperatures T � !c the e�ective capacitance de-
pends on the critical �eld fcr. For a large range of
parameters it is inversely proportional to the �eld, i.e.
Ceff � f�1.
For small �eld or far from the transition, f �

�f ; �
2=4�, the sum over Landau levels can be substituted

by an integral. In this way we �nd corrections to the
f = 0 results. For instance (19) and (21) are replaced at
zero temperature by

Re �(!) =
�

8RQ

�(!2 � !2c )

�
1� !20

!2
+
(4
�f)2

�2!4

�

Im �(!) =
!

6RQ!c

�
1 + 6(1�

!20
!2c

) +
3

10

(4
�f)2

�2!4c

�
:

(33)

D. The Hall conductance

The real and imaginary part of the transverse conduc-
tivity are
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Re �H(!) = (34)

(4
�f)2

RQ�2

X
n

(n + 1)(wn+1 �wn)
!n!n+1

(35)

�
1

�2
n � !2

� 1

�2
n � !2

�
Im �H(!) = (36)

�(4
�f)2

2RQ�2

X
n;�

(n+ 1)(wn+1 �wn)
!n!n+1�

� 1

�n

�(! ��n)�
1

�n

�(! ��n)

�
: (37)

The function wn = N (!�n ) � N (!+n ) governs the tem-
perature dependence. At zero temperature the Hall con-
ductance vanishes. This follows from the fact that at
T = 0 no excitations are present. As expected, it is
also zero at the particle-hole symmetry points where
(wn � wn+1) j�=0= 0. A nonvanishing Hall conductance
�T arises in a magnetic �eld at �nite temperature if the
density of hole-like and particle-like excitations di�er, i.e.
if the particle-hole symmetry is broken.
In comparison to the longitudinal conductivity (31) the

behavior of the real and imaginary parts has been inter-
changed: The imaginary part of the Hall conductance
exhibits an excitation gap and the real part is �nite at
zero frequency

Re�H(! = 0) =
(4
�f)2

RQ�2

X
n

(n+ 1)(wn+1 � wn)

!n!n+1
�

�
1

�2
n

� 1

�2
n

�

= R�1Q

X
n

(n+ 1)(wn � wn+1) (38)

Close to the transition where �f � minf�T; �2=2�g
the Hall conductivity diverges as Re �H (! = 0) =
R�1Q T���1f . In the opposite limit, i.e. T � minf!+0 ; !�0 g,
we can approximate (38) for small �elds by an integral,
with the result

Re�H(! = 0)=
�!0

4
�f�RQ

h
exp(��!+0 ) � exp(��!�0 )

i
;

!0 = ��1
q
�2 + 4��f (39)

which is odd in � as well as in f . Thus we see that
far from the transition the Hall conductance is inversely
proportional to the magnetic �eld and proportional to
the di�erence in density of activated particle and hole
like carriers.

E. The in
uence of dissipation

So far in our model no low frequency dissipation was
included. The only source of dissipation is the creation of

particle and hole like excitations, related to the excitation
gap in the nonsuperconducting phase. We found a perfect
dc conductivity at �nite temperatures (proportional to
i
!
+ ��(!)). Now we will show that the inclusion of a

phenomenological low frequency dissipation regularizes
the divergent Drude conductivity.
Generalizing the approach of Caldeira and Leggett26

we can account for damping in an imaginary time for-
malism by an extra term � j !� j in the free energy. The
inclusion of this term changes the analytic properties of
the Matsubara sums and some care is needed when eval-
uating them. The analytic continuation now yields

�(!) =
1

16�RQ!

Z
1

�1

dz

Z
1

0

dkk3

1� e��z
�
GR(z) �GA(z)

�
�
�
GR(z) + GA(z)� GR(z + !)� GA(z � !)

�
; (40)

where the advanced and retarded Green's functions
GA=R(z) = (rk + �z � �z2 � i�z)�1 were introduced.
From these real time Green's functions we immediately
obtain the 'density of states' as shown in Fig. 4. For
weak dissipation, i.e. �EC � 1

4 , it is peaked around the

two excitation frequencies !�, whereas for �EC � 1
4 the

largest contribution appears at zero frequency.
The k-integration in Eq.(40) can be performed ana-

lytically. The Bose distribution function, and therefore
the conductivity, is seperated conveniently in a T = 0
part and a �nite temperature part. The z-integration
was done numerically, the results for di�erent cases are
shown in Fig. 5. Note that, although smeared, the gap
structure is still visible. At �nite temperatures a contri-
bution to the real part centered around zero frequency
appears. This is reminiscent of the perfect conductivity
�(!) peak in eq.(22) for the case without dissipation.
For �nite temperatures, but lower than the gap fre-

quency, the height of the zero frequency peak in the real
part of the conductivity shows activated behavior. In the
limit T � !c on the symmetry line � = 0 and for weak
damping �� �; � the result is

�(! = 0) =
8

�RQ

��

��
exp(�1

2
�!c) (41)

This demonstrates that the inclusion of dissipation reg-
ularizes the singular behavior in Eq. (22). Note, the
surprising result that at zero temperature, although dis-
sipation is present, the dc conductivity vanishes �(! =
T = 0; � 6= 0) = 0.
At the zero temperature transition the dc conductiv-

ity ~� may be evaluated directly from Eq.(40). Again a
universal value emerges, but with a di�erent value

~� =
1

8RQ

�
�

2
� 2

�

�
= 0:117

1

RQ

= 0:3��; (42)

independent of the strength of the dissipation �. This
important and perhaps surprising result can be under-
stood as a consequence of hyperuniversality27;1: At a
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continuous phase transition certain amplitudes, as the
conductivity at a T = 0 transition in two dimensions,
are universal constants. The inclusion of dissipation in
the Caldeira-Legett sense changes the universality class.
Again a universal conductivity is found, independent of
the strength of the dissipation, but with a di�erent value.
Fig. 6 demonstrates how this new universal conductance
arises as we approach the transition. Shown is a one pa-
rameter family of curves that depends on the value of
�2=��. At zero temperature the conductivity is a func-
tion of !=!c and �2=�� only. The horizontal curve (V)
corresponds to either in�nite damping or the response at
the transition. All curves cross at the value � = ~�.
It is interesting to compare ~� with the results of

Monte Carlo simulations on disordered Bosons28, where
a very similar value of the universal conductance equal
to �MC = (0:14 � 0:03)=RQ) was reported. It is not
clear at this stage whether the agreement is a coincidence
or whether it indicates a link between disorder and the
model for low frequency dissipation used by us.
At �nite temperature the dc conductance at the transi-

tion is in�nite, similar as in the absence of dissipation. In
the high temperature limit we can study directly the real-
time dependent Ginzburg-Landau equation correspond-
ing to the free energy (4)15 

�� 


�
~r+

2�i

�0

~A(~r; t)

�2
+ (� � i�)@t + �@2t

!
 = � :

(43)

Here we wrote both the time derivative arising due to
gauge invariance with coe�cient � and the dissipative
term proportional to �. On the right appears a Langevin
force � with power spectrum < �� >!= 2�T . The

uctuation conductivity can be derived using the or-
dinary Kubo formula. In this way we can derive the
high temperature results quoted above. They di�er
from the standard 
uctuation conductivity results for
superconductors29 due to the second order time deriva-
tive.

F. Response in the SC phase

In the superconducting phase the conductivity can
be evaluated along the same lines as in the insulating
phase. Now � is negative and the order parameter is �-
nite hj j2i = h�si =j � j =2�. Writing  =

p
�se

i� and
taking into account phase 
uctuations only we �nd the
free energy

F [�; �] =

Z �

0

d�

Z
d2r�s �n1

4
(r��+

2�

�0
A�)

2 + �(@��)
2 + i�@��

o
: (44)

The term i�@�� is a total derivative and does not in
u-
ence the response functions. Using (11) we �nd

���(~q; i!�) =
��s

RQ!�

�
���� +

q�q�

4�!2� + q2

�
(45)

The analytic continuation to real frequencies yields for
q! 0

���(~q = 0; !) = ���s
RQ

���

�
i

!
+ ��(!)

�
; (46)

which implies perfect conductivity, and for ! ! 0

hj�i = ���s
RQ

�
��� �

q�q�

q2

�
A� ; (47)

which demonstrates the presence of a Meissner e�ect21.

IV. DISCUSSION

We analyzed the Bose-Hubbard model describing the
S-I transition of Josephson junction arrays. It reduces to
a G-L free-energy functional (4), di�ering from the stan-
dard one for bulk superconductors by the absence of low
frequency dissipation and relaxation. Rather than the
�rst order time derivative, characteristic for the ordinary
G-L equation, the second order time derivative is crucial.
First we investigated the phase diagram for �nite tem-

peratures and �nite range of the interaction. Reentrant
behaviour is found for the 'half-integer' lobes, whereas no
reentrant behaviour arises for the integer lobes. This is
presumably related to the presence or absence of domain-
wall in the two cases.
Secondly we derived the frequency dependent conduc-

tivity of the system using the G-L free energy. The
real and imaginary part are governed by a threshold fre-
quency !c and an e�ective capacitance Ceff , respectively.
The threshold frequency is the sum of the excitation en-
ergies of a particle and a hole-like excitation, which is
independent of qx in the integer lobes. The e�ective
capacitance is related to the Coulomb gap (2e)2=2Ceff ,
which has been found in many small capacitance junction
systems and is responsible for the insulating behavior at
voltages below 2e=Ceff . If particle-hole symmetry ex-
ists, � = 0, and if f = 0 the threshold frequency and the
Coulomb gap vanish at the transition. In general (� 6= 0
or f 6= 0) both remain �nite up to the transition. (This
in contrast to the disordered case where the particle-hole
asymmetry scales to zero at the transition16.) On the
other hand, the excitation gap for a single excitation
(particle or hole-like, whichever lies lower depending on
the chemical potential) vanishes at the transition and is
governed by the dynamic critical exponent z. At �nite
temperatures this gap energy determines the density of
the majority type excitations. However, this critical en-
ergy scale does not in
uence the T = 0 conductivity.
We analyzed the problem in a mean �eld approxima-

tion. In this way we can obtain explicit results, for in-
stance the complete frequency dependence of the conduc-
tivity. Moreover we reproduce the correct value of the
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dynamic critical exponent z. This is not so surprising,
since it follows essentially from symmetry arguments. It
is z = 1 for a system with particle-hole symmetry � = 0
(which follows from the equivalence of space and time
derivatives in this limit) and z = 2 in the general case
� 6= 0. Both agree with the analysis of ref.2. On the
other hand, the exponent � is � = 1=2 in the man �eld
approximation, which is correct only for � 6= 0. In general
non-Gaussian corrections can also modify the universal
conductance. Right at the transition the fourth order
term in the Ginzburg-Landau free energy should have
the most pronounced e�ect. But even there Monte Carlo
simulations of Ref.1 yield results which di�er from the
mean �eld value by only 30 %. This gives us con�dence
into the quality of our results.
The two kinds of frustration, external charge qx and

the magnetic frustration f , turned out to have a very
similar e�ect on the response functions, although the
free energy from which they were derived is not self-dual
for �nite-range interactions between charges. The na-
ture of the phase transition and the response function
di�er in the presence or absence of charge or magnetic
frustration2. Only for integer or half-integer values of qx
(i.e. at the tips of the lobes) and for integer f , i.e. at
the point of maximal symmetry, does the threshold fre-
quency for the real part of the conductivity vanish at the
transition, leading to a universal value. The Coulomb
gap vanishes at the transition, either continuously in the
unfrustrated or with a jump in the charge frustrated case.
The Hall conductivity also re
ects the di�erent na-

ture of the phase transition in the presence or absence
of particle-hole symmetry. A nonzero value is obtained
only at �nite temperatures when the particle-hole sym-
metry is broken.
Without low frequency dissipation thermally activated

carriers can be freely accelerated by an electric �eld,
resulting in perfect conductivity without Meissner ef-
fect. The inclusion of low frequency dissipation regu-
larizes this singular behaviour and yields a Drude-like
contribution. The dc conductivity at the transition ~� is
smaller than in the case without dissipation but still uni-
versal and independent of the amount of dissipation. It
is ~� � 0:12=RQ, which is very close to the Monte Carlo
result (0:14� 0:03)=RQ)28.
The calculated response should be visible in experi-

ments on junction arrays where the e�ect of disorder and
dissipation is negligible at low temperatures. The mea-
sured Coulomb gap as a function of magnetic frustration
shows qualitative agreement30 with the results presented
here. The threshold frequency in the excitation spectrum
has not yet been veri�ed. It would require high frequency
measurements.
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FIG. 1. (a) Phase diagram at T=EC = 0, 0:2, 0:4, 0:6, 0:8,
1:0 for bosons with on-site interaction (or a junction array

with self capacitance only) as a function of EJ=EC and charge
frustration qx. (b) Same, now with both on-site and nearest

neighbor interaction. The relative strength of the interactions

is set by the parameter W � 1 + 4C�1
01

=C�1
00

= 4=3. (c)
The phase boundary with both on-site and nearest neighbour

interactions for W = 4=3 and qx = 1=2 clearly demonstrates

reentrance as a function of temperature.

FIG. 2. The real and imaginary parts of the frequency de-
pendent conductivity at the symmetry point, � = f = 0.

FIG. 3. (a) Excitation gap (or inverse capacitance) vs. �

for both the nonfrustrated and the frustrated case at T = 0.

I: � = f = 0, II: � = 0, �f = 1

2
, III: � = 1

2
, f = 0. (b)

Excitation gap on the phase boundary where � = 0 as a func-

tion of charge frustration (on-site interaction: curve I, also

n.n. interaction, W � 1 + 4C�1
01

=C�1
00

= 4=3: curve II) and
magnetic frustration (curve III).

FIG. 4. The density of states N as a function of frequency.
In this example we choose � = 1

4
, �EC = �0.1 and �EC = 0,

0.2, 0.8 for curves I, II and III respectively.

FIG. 5. (a) The real (even) and imaginary (odd) parts of

the conductivity at zero temperature in the presence of dissi-

pation. I: �2=�� = 0.01, II: �2=�� =. (b) The real and imagi-

nary part of the conductivity at �nite temperature T = 0:2!c
and �nite dissipation �2=�� = 0.1.

FIG. 6. The real part of the conductivity for �2=�� =
1,1000,10,0.1,0, denoted by I, II, II, IV and V respectivly.

Note that all the curves cross each other at � = ~�.
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