KIT | KIT-Bibliothek | Impressum | Datenschutz

Do components of smooth tests of fit have diagnostic properties?

Henze, Norbert ORCID iD icon 1
1 Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Smooth goodness of fit tests were introduced by Neyman (1937). They can be regarded as a compromise between globally consistent (“omnibus”) tests of fit and procedures having high power in the direction of a specific alternative. It is commonly believed that components of smooth tests like, e.g., skewness and kurtosis measures in the context of testing for normality, have special diagnostic properties in case of rejection of a hypothesis H$_0$ in the sense that they constitute direct measures of the kind of departure from H$_0$. Recent years, however, have witnessed a complete change of attitude towards the diagnostic capabilities of skewness and kurtosis measures in connection with normality testing. In this paper, we argue that any component of any smooth test of fit is strictly non-diagnostic when used conventionally. However, a proper rescaling of components does indeed achieve the desired “directed diagnosis”.


Originalveröffentlichung
DOI: 10.1007/BF02717098
Zugehörige Institution(en) am KIT Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.1997
Sprache Englisch
Identifikator ISSN: 0026-1335, 1435-926X
KITopen-ID: 260897
Erschienen in Metrika
Verlag Springer
Band 45
Heft 1
Seiten 121-130
Schlagwörter Goodness of fit, smooth tests, components, directed diagnosis
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page