KIT | KIT-Bibliothek | Impressum | Datenschutz

Extreme smoothing and testing for multivariate normality

Henze, Norbert ORCID iD icon 1
1 Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Recently, Bowman and Foster (1993) proposed to base a test for multivariate normality on a L$^2$ distance between a nonparametric kernel density estimator and the parametric density estimator under normality, applied to the empirically standardized data. We show that, for a fixed bandwidth (not depending on the sample size), the test of Bowman and Foster is a member of the class of invariant and universally consistent procedures suggested by Henze and Zirkler (1990). Moreover, we identify and study the tests for multivariate normality obtained by letting the bandwidth tend to zero and to infinity. While the former test statistic is based solely on the Euclidean norm of the standardized data, letting the bandwidth tend to infinity yields a weighted sum of Mardia's time-honoured measure of multivariate skewness and a sample version of a recently introduced skewness measure of Móri, Rohatgi and Székely (1993).


Originalveröffentlichung
DOI: 10.1016/S0167-7152(97)00015-1
Zugehörige Institution(en) am KIT Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 1998
Sprache Englisch
Identifikator ISSN: 0167-7152, 1879-2103
KITopen-ID: 261397
Erschienen in Statistics & probability letters
Verlag Elsevier
Band 35
Heft 3
Seiten 203-213
Vorab online veröffentlicht am 19.05.1998
Schlagwörter Multivariate skewness, Smoothing, Elliptically symmetric distributions, Test for multivariate normality
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page