In Proceedings Workshop Computer Science Logic, Heidelberg 1990, Springer LNCS 533, pp. 248 — 260
Towards an efficient Tableau Proof Procedure for Multiple-Valued
Logics*

Reiner Hahnle

Institute for Logic, Complexity and Deduction Systems
University of Karlsruhe, Am Fasanengarten 5
7500 Karlsruhe
Federal Republic of Germany
haehnle@ira.uka.de

January 1990

Abstract

One of the obstacles against the use of tableau-based theorem provers for non-standard
logics is the inefficiency of tableau systems in practical applications, though they are
highly intuitive and extremely flexible from a proof theoretical point of view. We present
a method for increasing the efficiency of tableau systems in the case of multiple-valued
logics by introducing a generalized notion of signed formulas and give sound and complete
tableau systems for arbitrary propositional finite-valued logics.

Introduction

One of the main advantages of the method of semantic tableaux [Smullyan, 1968, Beth, 1986]
is that it yields analytic proof theories for a wide variety of standard and non-standard logics
within a single framework. With relatively minor modifications tableau proof systems can be
designed for such different logics as temporal, intuitionistic and multiple-valued logics [Wolper,
1981, Fitting, 1983, Schmitt, 1989]. In addition, one could easily obtain tableau proof systems,
which combine several non-standard concepts, a feature which seems to be interesting e.g. in
circuit validation [Kropf & Wunderlich, 1990], natural language processing [Fenstad et al., 1985]
or semantics of logic programs [Sheperdson, 1989]. Also, avoidance of normal forms is necessary
for the potential application of high-level heuristics.

But there are two major obstacles against the use of tableau systems in automated theorem
proving without further modifications. First, the search process tends to be much more ineffi-
cient than in, say, resolution provers, if no extra care is taken. But recent research showed that
it is possible to reach a similar performance as with resolution-based provers [Oppacher & Suen,
1986, Oppacher & Suen, 1988]. And [Fitting, 1990] shows that completeness proofs for tableau
systems that have been tuned for automated theorem proving are still much more transparent

*This work is supported by IBM Germany and is a collaboration of the University of Karlsruhe and the
IWBS at IBM Germany in Heidelberg.

than their resolution counterparts. Second, the modifications of standard tableau proof systems
to adapt them to non-standard logics are, though highly intuitive, usually not very efficient
when one asks for performance. In this paper we concentrate on the second problem and on
propositional multiple-valued logics. Our work is part of the TCG Project involving the con-
struction of a tableau-based automated theorem prover for multiple-valued logics, a prototype
of which is currently being implemented [Héhnle, 1990].

It should be mentioned that there exists at least one other approach to automated theorem
proving in multiple-valued logics. In a series of papers (see e.g. [Stachniak, 1990]) Stachniak
developed resolution style systems for logics with finitely many truth values. While in his
systems the underlying logics are specified by consequence relations, we will assume that our
logics are given by a tabular semantics (cf. [Wéjcicki, 1988]).

The paper is organized as follows: In section 1 we introduce some mathematical concepts
and specify syntax and semantics of the class of languages under consideration. In section 2
we present our variant of a tableau-based calculus, in section 3 we give proofs of soundness
and completeness for our system and we conclude with section 4, summarizing what has been
gained.

1 Preliminaries, Syntax, Semantics

We recall some concepts from universal algebra, e.g. to be found in [Burris & Sankappanavar,

1981].

Definition 1.1 (Abstract Algebra of finite Type, Homomorphism)

A finite type F = {fi,..., f.} is an indexed set of symbols, each of them having
assigned an arity by a mapping m : F — Nat. Let F, denote the operators with
arity n. Constants are treated as 0-ary functions.

An abstract algebra of type F or ()-algebra is a non-empty universe A together
with a family of mappings such that for all n and each member f in F, there is a
corresponding fundamental operation f4 : A" — A. If convenient, the abstract
algebra < A, {f | 1 <1 < r} > and its universe A are denoted with the same
symbol.

Let A, B be abstract algebras of the same type and h : A — B any mapping. If for
all f € F,,n € Nat and ay,...,a, € A

(A (ar,...,an)) = f2(R(a1), ..., ha,))

holds, then h is called homomorphism from A to B.

Let F = {Fi,...,F,} be a set of logical connectives and Lo := {p; | i € Nat} the set of
propositional variables or atomic formulas, which has to be disjoint with F. With L we

denote the abstract algebra that is freely generated over Ly in the class of algebras with type
F. Thus we have

Ly, =1L, U{Fj(Xl,...,Xm(j)) | Xl,...,Xm(]‘) S L,’,Fj S F}
LZU{L,’ | 1€ Nat}

as the universe of L.
L; denotes the formulas of depth i. We call L (propositional) language, the members
of L are called (propositional) (L-)formulas.

Let N = {0,1,...,(n — 1)} be the finite set of truth values and D C N the set of
designated truth values. Furthermore let us denote with n = |N| and d = |D| the number
of elements in N and D resp. Though all nonnegative values are possible for n and d, we are
only interested in the nontrivial cases where n > 2 and d > 1.

Let A=< N {fi |1 <i < r} > be an algebra of the same type as L. Then we call the
pair A =< A, D > a structure for L and the f; interpretations of the F;. A defines the
semantics of the logical operators. We say that £ =< L, A > is an n-valued propositional
logic with d designated truth-values.

A propositional (A-)valuation of L is a homomorphism v from L to A. A set M of
L-formulas is called (A-)satisfiable, if there is a valuation v from L to A such that for any
X € M v(X) € D holds. In this case v is called (A-)model for M. If {X} is satisfiable for
any A-valuation, X is called tautology. Due to the universal mapping property (since L was
freely generated) it is sufficient to define v on Ly and then extend it uniquely to L.

Example 1.1 As the set of logical operators we take F = {A,V,D,,V,~} with
arities m(A) = 2,m(V) = 2,m(D) = 2,m(~) = Lm(~) = L,m(V) = 1 and as
truth values N = {0,1,2}, D = {2}. Their meaning (the abstract algebra A) is
given by the following truth tables:

(afofif2) [v]ofi[2] [D]0]1]2]
offoJofo] [ofof1]2] [o]2]2]2
ot |1| [1]frfrf2| [1]2]2]2
2fo1]2] [2]2]2]2] [2]0]1]2

Il | e I I e B

0 2 0| 2 010
11 112 1] 2
210 210 2

Note that we could have defined disjunction and conjunction alternatively as
(X7 V Xz) = max(v(Xy),v(X3))

(X1 A Xz) = min(v(X1),v(Xs))

resp. There are many alternatives to our definition of implication, but this is not
the issue that interests us here. Let us refer to the logic as defined above with the
symbol L3.

2 Semantic Tableaux

Our goal is to give a tableau proof system for propositional multiple-valued logics with the
following features:

o We want a generic proof system, i.e. it should yield a sound and complete set of tableau
rules for any logic given to it.

e We do not want to have redundancy in proofs due to the formulation of the tableau rules
alone.

The first task was begun by Surma [Surma, 1984] and completed by Carnielli [Carnielli,
1987], who provided a generic tableau proof system as proposed for multiple-valued first-order
logics with arbitrary logical connectives and generalized quantifiers. Unfortunately, Carnielli’s
system does not fulfill the second requirement. To explain this further, let us consider the signed
version (see [Smullyan, 1968, Fitting, 1990]) of a tableau proof system for standard logic: A
tableau branch may be considered as a set of formulas together with a certain assignment of
truth-values. The sign attached to each formula in the branch says that the truth-value of the
formula should be the one associated with its sign. The tableau rules provide all significant
possibilities to extend a set M of signed formulas preserving consistency. If we can arrive after
a number of rule applications at a tableau branch that contains instances of all atomic formulas
occurring in M at least once, arbitrarily signed, but non-contradictory, then we are able to
construct a model for the formulas on the branch. If this is the case, we say that the branch
is open. Let us call a tableau closed if it is fully expanded and contains no open branches. For
the moment, assume that M is a singleton, say M = {FX} (where F stands for false). Then
a closed tableau for { F X} represents the fact that there is no way to construct a model where
X is false, so X must be a tautology.

Turning to three-valued logics we only need to introduce a third sign, corresponding to the
third truth-value (say undefined) and define the appropriate rules, but the last step above is no
longer valid, since not false may be true as well as undefined. To get a proof of the validity of
X we have in fact to construct two closed tableaux, namely one with root F.X and another one
with root UX for the refutation of both non-designated truth-values. In the case of a logic with
(n — d) non-designated truth-values this amounts to the construction of (n — d) closed tableaux
for the proof of one single theorem. Also, the additional rules tend to be more complicated
than the classical ones, as the following example shows:

Example 2.1 $-valued tableau rules for V:

FX1VX2 UXl\/XZ
FX1 FX1 UX1 UXl
FX2 UX2 UX2 FXZ

On the other hand, inspection of sample proofs shows that there is much redundancy in the
proof trees, e.g. in the three-valued case most of the structure and formulas of the tableau for
F X are also part of the U X-tableau, even if they contribute nothing to the refutation of UX,
and vice versa. We present a systematic way to get rid of this kind of redundancy, resulting in
a proof system, where only one closed tableau has to be generated to prove the validity of a
formula in an arbitrary multiple-valued propositional logic.

One approach to increase efficiency would of course be to perform the steps that are identical
in all or in some of the proof trees at the same time (possibly using structure sharing), i.e. to
search for the refutation of all non-designated truth-values in parallel. But, as always when one
is making algorithms and representations trickier, this leads to a fairly complex proof procedure
involving much bookkeeping and hence a cryptical completeness proof. A far more satisfying
solution can be achieved on a logical level.

To be specific, consider the signed Ls-formula T ~ A. Application of the corresponding
tableau rule from [Carnielli, 1987] or [Surma, 1984] yields two new branches with extensions
FA and UA, resp. But encountering this formula during a proof does not give rise to any
logical reason to split the proof in two cases “v(A) = 0”7 and “v(A) = 1” resp. So our idea is
to increase the expressivity of the signs in order to be able to state conditions like “v(A) =0
or v(A) =17 or equivalently “v(A) # 2”7 within a single signed formula and thus to decrease
the number of new branches per rule application significantly. It is noteworthy that neither the

idea of enriching the syntax of signs nor of interpreting them semantically in a different way is
new. The first has been used in tableau systems for modal logics for a long time (see e.g. in
[Fitting, 1983]); on the other hand, in [Fitting, 1989] Fitting denoted upper and lower bounds
in a lattice of truth values with single signs. What we will do is to systematically exploit both
ideas at the same time.

Definition 2.1 (Sign, Signed Formula)

Let L be any language and D and N be defined as above. Then we define the set
of signs as S = {S; | ¢ € 2V}. For any logic L we fir a certain set of signs
Se C S which satisfies {Sqoy, ..., Sm-13} C S¢'. From now on a logic will be a
triple L =< L, A, S >. With Iy = {i | S; € Sc} we denote the set of allowed
indices of signs. With the same symbol we identify the abstract algebra generated
by I that has the same type as A and whose fundamental operations are defined by
FleCin, oo yim) = UGty -5 0m) | gk € ik, 1 < k < m}. From the context it will
always be clear which is meant.

If X is an L-formula and S; = S, iy o sign, then we call the string S;(X) signed

(L-)formula. L* is the set of signed formulas in a logic L, i.e. all signed L-formulas
with signs from Sg. The members of L* will be called I.-signed formulas.

In the above definition we have deliberately admitted Sy and Sy as signs. While the
following definitions and theorems exclude the former implicitely, the latter would be perfectly
right, though it is hard to imagine any meaningful application for it.

Example 2.2 We define for Ls the set of signs {Sqoy, Sy, Sgay, Sqoa3) which for
convenience we rewrite as {F,U,T,(F|U)}.

The intended interpretation of a signed formula (F|U)(X) then is “v(X) = 0 or
v(X)=1"

Now we are ready to define the tableau rules. We assume familiarity with trees, a formal
treatment of proof trees can be found in [Smullyan, 1968].

Definition 2.2 (Tableau Rule)

Let X = F(Xy,...,X,) be an L-formula in the logic

L=<L,AS;>. An (L-)tableau rule is a function m, p which assigns to a signed
formula S;(X) € L* a tree with root S;(F(Xi,...,Xs)), called premise, and the

linear subtrees

{S;,(Xi,)o...08,(Xi) | jiyeoengt € Ig,t < m and H{(F;j1,...,5)
holds},
called extensions?.
A collection of extensions satisfying (T0) is called conclusion of a tableaw rule.
(TO) for any (z1,...,2m) € f1(i) there is an extension S, (X;) o...05;,(X;)

with z;, € Jx for 1 <k <t and the set of extensions s minimal with respect to
this condition®.

LOtherwise it is not guaranteed that all rules can be properly stated.

?Extensions are treated like sets and thus of all subtrees that differ only in the ordering of their signed
formulas only one appears as an extension of the rule.

3Already in the two-valued case there may be more than one minimal (in our sense) set of extensions for a
signed formula, so we need the minimality condition; see [Dueck, 1988, p. 12f] for an example.

The condition H;(F;j1,...,7:) means, there exists a homomorphism h : L — I,
satisfying (T1)—(T4) below:

(T2) If f is the interpretation of F, then f(v1,...,vn) € i must hold, where v;, €
h(X;,) for 1 <k <t and all other arguments are arbitrary.

(T3) There is no ji, with |j.| > |jk| for 1 <k <t that satisfies (T1) and (T2).
(T4) There is no t' with t' < t that satisfies (T1) and (T2).

If no such homomorphism exists, no rule for the specific combination of formula
and sign is defined.

Though this definition seems to be fairly abstract, for any given logic it essentially boils
down to the usual tableau rules plus the extra feature of more general signs. To provide a
better understanding of how the tableau rules are generated, we give an informal description
of the process:

Remember that the extensions are thought to be disjunctively connected while the formulas
within an extension are conjunctively connected.

The conclusion of a tableau rule for a sign 7 and connective F' can be thought of as a minimal
generalized sum-of-products representation of the two-valued function that holds the entry true
in its truth table on each place where the truth table of F' holds a member of 7 and holds false
otherwise.

Each extension corresponds to a product term in this representation. A geometrical inter-
pretation would associate a partial cover of entries in the hypercube that constitutes the truth
table of F' with an extension. All extensions taken together are a total cover.

e Condition (T0) ensures that all entries from 7 are covered in some extension and minimizes
the number of extensions.

e Condition (T1) defines the interesting part of h.
e Condition (T2) guarantees soundness.

e Condition (T3) represents the strategy to split the proof tree as late as possible, in other
words, to keep the signs as general as possible.

e (T4) minimizes the number of subformulas within the extensions and prevents redundant
extensions.

Example 2.3 Consider the truth table of disjunction in L3 as defined above. Find
the tableaw rule for Sy (X1 VXs). We have to find a minimal set of homomorphisms
h: L — Iz covering all entries equal to 1. Hereby choose the sets h(X;) mazimal.

First, ...adding the partial cover
X; = {1}, Xy — {0,1} de- that corresponds to X; +—
fines the partial cover. .. {0,1}, X5 — {1} yields

x/x 01 2 x/x, 01 2

0 0f[1]2 0 O1f 2

1 112 1 1| 2

2 | 2]2]2 2 |2]12]2

Obviously all of the conditions (T1)—(T4) are satisfied. And since both partial covers
are essential and together represent a total cover, condition (T0) also holds.

Example 2.4 From the homomorphisms that define the cover of the entries equal
to 1 we can immediately extract the tableau rule:

U(X1VXy)
(FIU)X: | UXy
UX, | (FIU)X;

Note that the entry for X1 = X5 = 1 in the truth table of disjunction is covered by
both extensions. The rule is considerably simpler than the one from Ezample 2.1.

In the Appendix a sound and complete tableau system for £35 can be found.

Tableaux are by the tableau rules finitely generated trees, their nodes being labeled with
signed formulas. A branch is a path through a proof tree, beginning with the root and ending
with a leaf. Usually we identify a branch with the set of signed formulas that is equal to its
label set.

Definition 2.3 (Propositional Tableaux)
Let M be a nonempty finite set of I;-signed formulas. Then a (propositional)
tableau for M can be constructed in one of the following ways:

o A linear tree, where each formula of M occurs exactly once as a label is a

tableaw for M.

o Let T be a tableau for M and B a branch of T, containing a signed for-
mule S;(F(X1,...,Xn)). If mip is defined and has extensions Ei,..., E,,
append to T at the end of B n linear subtrees containing the signed formulas
in By, ..., E,, resp. in an arbitrary sequence. The resulting tree is again a

tableaw for M.

Definition 2.4 (Open, Closed)
A tableau branch is called closed if one of the following conditions is satisfied:

e [t contains a complementary atom set, i.e. signed atomic formulas S; (p), ..., S:.(p)
wzth ﬂ?:l ij = @

o [t contains a non-atomic signed formula for which no rule is defined®.

A branch that is not closed is called open. An open branch, for which any rule
application yields formulas, that are already on the branch, is called exhausted. A
tableau is called closed if each of its branches is closed, and open otherwise. A
tableau is called complete if each of its branches is either closed or erhausted.

Example 2.5 We prove that the formula =A D (~ AN =A) is a Ls-tautology by
constructing a closed tableau with root (F|U)=A D (~ AN —A). The existence of
such a closed tableau tells us that in any possible valuation the truth value of the
formula in question can neither be 0 nor 1, so we can conclude that indeed it must
be a tautology. In the following tableau the numbers of the formulas are marked

4This case corresponds to closure of branches that contain e.g. T L in classical logic.

with right brackets, whereas the numbers of the parent formulas are indicated by full
bracketed numbers. At the end of each branch the numbers of the complementary
formulas are stated. The tableau rules used here refer to the Appendix.

(=) 1) (FIU)=AD(~AN-A)

|

(1) 2) T-A
(1) 3) (FIU)~ AA-A

|

(2) 4) FA
(3) B) (FIU)~ A (3) 7) (F|U)-A
/\
(56) 6) TA (7) 8) TA (7) 9) UA
closed(4,6) closed(4,8) closed(4,9)

The proof of this theorem in Carnielli’s system requires the construction of two trees,
one of which is considerably more complex than the one above.

We close this section with an appropriate definition of satisfiability of branches and tableaux,
which we shall need for the formulation of the main lemma in the soundness proof.

Definition 2.5 (Satisfiability of Branches)

A set B of signed formulas is called satisfiable, if there is a valuation v such
that for all S;(X) € B v(X) €1 holds. In this case we say that v is a model for B.
A branch is satisfiable iff its label set is. A tableau is satisfiable iff it contains at
least one satisfiable branch.

3 Soundness and Completeness

3.1 Soundness

Lemma 3.1 (Satisfiability Preservation of Tableau Rules) Let T be a satisfiable
tableau and suppose T' was created by rule application to an arbitrary formula in

T. Then T' is also satisfiable.

Proof: T contains at least one satisfiable branch B. If the formula in the rule
application was not in B, B is unchanged and hence still satisfiable.

On the other hand, let S;(F(X,...,X,,)) € B be the formula that supplied the
premise for rule application and let v be a valuation that satisfies B. For such a
valuation by definition we always have v(F(Xy,..., X)) € ¢. Since v is a homo-
morphism,

v(F(Xy, ..., X)) = f(o(Xy),...,0(Xn)) €1
holds.

Let S (X,)o...05;,(X;,) be an extension obtained by applying (T0) to (v(X),...,v(X,)) €
f7(i). Take any i;: By (T0) we have v(X;,) € jr. Together with the assumption
that v was a model for B we have the satisfiability of B U {5, (X,,),...,S5;,(X:,)},

which concludes the proof. .

Now soundness follows easily:

Theorem 3.1 (Soundness) Let A be any L-formula. If there is a closed tableau
with root Sy_p(A), then A is a tautology.

Proof: Let T be such a tableau. T cannot be satisfiable. For assume B is
an arbitrary branch in 7. Since T is closed, B either contains a complementary
atom set or a signed formula with no corresponding rule definition. Obviously, no
valuation v that satisfies B can exist, since in the first case, it would be no mapping,
in the second case it would be only partially defined. Since this holds for arbitrary
branches, T is not satisfiable.

The next step is to show by a straightforward induction, using the above lemma,
that any tableau with satisfiable root also must be satisfiable.

Together we have that T is not satisfiable, so the root Sy_p(A) is not satisfiable,
which means by definition for all valuations v that v(A) ¢ N — D iff for all valuations

vv(A)€e Diff Ais a tautology. .

3.2 Completeness

The completeness proof for our system will be quite straightforward and will closely follow the
lines of standard tableau completeness proofs (see e.g. [Fitting, 1990]), but in order to be able
to deal with generalized signs we will have to make appropriate modifications of the definitions
of Hintikka Set and Analytic Consistency Property. Then we proceed as usual, proving first
Hintikka’s Lemma, and second a model existence theorem, which in turn yields completeness.
For the sake of modularity and flexibility we prefer the formulation with analytic consistency
properties over a more direct one. Then it is easy to extend the proofs to first-order formulas or
infinite sets of formulas. Also other standard results like strong completeness and compactness
may easily be obtained, though we do not include them here.

Definition 3.1 (Hintikka Set)
A set H of I;-signed formulas is called o Hintikka set iff it is atomically consistent
and downward saturated, or more precisely, if the following two conditions hold:

(H1) For all propositional variables p € Lo: If S; (p), ..., Si,(p) € H then(Nj_; i; #
0.

(H2) If S;(F(X1,...,X.)) € H then m, g is defined and at least one of the hereby
determined extensions® {S;,(X;,),...,S;(X;,)} is also in H.

A Hintikka set H' is called saturated Hintikka set or model set iff in addition
to the above stated conditions it is atomically complete and upward saturated, i.e.

SHere and in the following we view extensions as sets.

(H3) For all propositional variables p € Lo there exists an 1 € I¢ such that S;(p) €

H'.
(H4) Ifi € I; then S;(F(Xy,...,Xn)) € H', whenever at least one of the exten-
stons {S;,(Xy,), ..., 9, (X))} determined by m, p is in H'.

Note that by (H1) and (H2) it is impossible that Sp(X) for any X € L ever occurs in a
Hintikka set.

Theorem 3.2 (Hintikka’s Lemma) Every Hintikka set H can be extended to a sat-
urated Hintikka set H'.

Proof: Let H be a Hintikka set and Ly := {p; | ¢ € Nat} an enumeration of
the propositional variables. We extend H to a saturated Hintikka set H' in the
following way:

Hy = HU{S{y(pi) |+ € Nat and S;(p;) € H for no j € I}

Hiw=H U{S;(F(X1,...,Xn)) | j € Ig,mjr defined and at least one
of the extensions {S; (X;,),...,5;,(X;,)} determined by 7 is in H;}
H = U{Hl | 1 € Nat}

First we extend H such that it assigns a definite truth value (we took 0, but it is
arbitrary) to each variable not already occurring in H, then we inductively take all
L-formulas into account.

For H' (H1) holds, because let p € Ly, then either there exists a j € I, such
that S;(p) € H and nothing is changed by the construction, so (H1) still holds,
or Sj(p) € H for no j € I, then Sio(p) is added and since this is the only
occurrence of p (H1) holds trivially. (H3) and (H4) hold by construction of H'. To
see that (H2) holds, let S;(F(Xi,...,Xy)) € H and j € Iz. Then either already
Si(F(X1,...,Xn)) € H and (H2) is inherited from H, or S;(F(Xy,...,X,)) was
generated during the construction in some H;,7 > 0. Then, by definition, at least
one of the extensions {5, (X;,),...,9;,(X,,)} determined by 7 is in H;_; and

(H2) is inherited from H,;_;. .

Definition 3.2 (Analytic Consistency Property)
A family T ranging over sets of Iz-signed formulas is called an Analytic Consis-
tency Property (ACP) iff for all K € T the following conditions hold:

(F) T is of finite character, i.e. K belongs to T iff all finite subsets of K belong to
r.

(ACP1) For all propositional variables p € Ly holds:
If Si,(p),..., S (p) € K then M1, £ 0.

(ACP2) If Si(F(X1,...,Xn)) € K then m, p is defined and for at least one of the
extensions C = {S;,(X;,),...,5;,(Xi,)} KUC €T.

If K € T then K 1is called I'-consistent. While I' has finite character, from K' C K
and K € T’ we always have K’ € T.

10

Theorem 3.3 (Model Existence) Let I' be an ACP and K o set of I;-signed for-

mulas. If K is I'-consistent then there exists a valuation v, such that v(X) € j
holds, whenever S;(X) € K, in other words, v is a model for K.

Proof: In a first step we will carry out a Lindenbaum-type construction restricted
to ACP’s in order to find a L*-maximal element M in I' (this corresponds to Tukey’s
lemma in the denumerable case), then we show that M is a Hintikka set, so we can
use it to define an appropriate valuation.

Let {Z1,Z,,...} be an enumeration of all signed formulas in L* and define C,, for
n > 0 as follows:

Co =K
co._ C,U{Zz} if C,U{Z,}I'-konsistent
A RO otherwise
Clearly, all C,, are members of I' and, ordered by inclusion, are building a chain in
['. We define
M=Jc
n>0

and thus have:

1. M is L*-maximal in I', since

(a) Let K C M be arbitrary, but finite. Hence we have some C,, with k' C C,,
and while C,, € I', we have also that K" € ' because of the finite character
of I Thus we have K € I for all finite K C M and so M € I', again
because of the finite character of T

(b) Assume there were M’ C L* with M C M’ € I', M # M'. So we must have
some Z, € M’ with Z,, ¢ M. By definition, we have C,, C M C M’, hence
C,U{Z,} C M'. By the finite character of I' we know that C,U{Z,} € T.
But then, by definition, C,4; = C, U {Z,} thus yielding Z,, € M, which
is a contradiction.

2. (a) and (ACP1) imply (H1), (b) and (ACP2) imply (H2) for M, so M is indeed

a Hintikka set. According to Hintikka’s lemma we can extend M to a saturated

Hintikka set M.

It remains to show that M determines a model for K. For this purpose we fix an
arbitrary v for p € Ly such that:

v(p) € i iff Si(p) € M

Since M is a saturated Hintikka set, (H1) guarantees that v is welldefined, (H3)
that it is totally defined on Ly. We extend v to a homomorphism from L to A and
show by induction on the depth of X that X € L and $;(X) € M imply v(X) € j°.

The case when X is atomic is settled by definition of v.

SNote that in the proof we don’t make use of (H4). In fact, using (H4) we could show the other direction as
well, namely that for any X € L there exists a j € I such that v(X) € j implies S;(X) € M.

11

4

We presented a generic tableau proof system for propositional multiple-valued logics that is
more efficient and elegant than its predecessors. For support of the efficiency claim, consider
the Ls-tautology ((...(p1Vp2)V...Vpn)V ~ p1). It is easy to see that there is a proof of linear
size wrt n in our system, while the shortest proof in Carnielli’s system is of exponential size

Suppose that S;(X) = S;(F(Xy,...,X,n)) € M. According to (H2) there is at least
one extension determined by 7 with

{8, (Xi),...,5;(X;,)} € M. The induction hypothesis yields v(X;,) € jx for
1 <k <t. With this we can conclude, using the homomorphism % that defines the
extension:

v(F(X1,..., Xw))
= fo(X1),...,v(Xy))s. ., 0(Xi), ..., v(Xy)) (v hom.)

LU
€ j (by induction hypothesis, (T1), (T2))

So we have indeed constructed a model for M and the theorem follows from the

fact that K C M. .

Theorem 3.4 (Completeness) If A is a tautology then there exists a closed tableau
with root Sy_p(A).

Proof: Since A is a tautology, for all valuations v(A) € D must hold. Now suppose
no closed tableau with root Sy_p(A) exists. It follows that there exists at least one
exhausted tableau with root Sy_p(A), containing an exhausted, open branch M.
Define B as the set of all finite tableau branches that cannot be closed. For all
B € B we have:

e For all propositional variables p € Ly holds:
If i, (p), ..., 8, (p) € B then Nj_; i; # 0, otherwise B would be closed.

o If S;(F(X1,...,Xn)) € Bthen m, pis defined and for at least one of the hereby
determined extensions
C ={5,(Xs),...,5,(X;,)} BUC € B. For assume m; i were not defined,
then B were closed and if for no C BU C € B, then B could be closed later

O1l.

o Clearly, B has finite character.

Putting the facts together, we have that B is an ACP and {Sy_p(A4)} is B-
consistent, since {Sy_p(A)} C M € B. Now, from the model existence theorem we
know that there exists a valuation v with v(A) € N — D and this is the contradiction

we have been looking for. =

Conclusion

wrt n.

We emphasize that the improvements were made on a logical rather than on an algorithmi-
cal level by enriching the language, so we can use our tableau system for standard tableau

The achievement was gained by generalizing signs from truth values to sets of truth values.

12

provers with minor modifications. Another advantage of this approach is the compatibility
with techniques that are set on the bookkeeping level e.g. indexing schemes or weighting.

The extension of the technique to first-order multiple-valued logics is possible if some re-
strictions on allowed signs, connectives and quantifiers are imposed. A follow-up to this paper
concerned with multiple-valued predicate logic is available [Hahnle, 1991]. To keep the pa-
per short we have excluded the notion of systematic tableauzr which is needed for mechanizing
tableau proofs and which requires no further modifications for the use in our framework.

Acknowledgements

I would like to thank Peter H. Schmitt for many helpful discussions and suggestions during
the composition of this paper. I took advantage from the comments of Alan Shepherd and the
remarks of an anonymous referee.

Appendix: A Tableau System for L;

Rules for V:
UX, VX, FX, VX, (FIU) X1 V X,
TX,VX
TX I\VT)E Ux, | (FIU) X F X, (FI0) X,
! (P X, | UX, F X, (F|U) X,
Rules for A:
T X1 A X U X1 A X F X, AX, (FIU) X1 A X,
T UXy | UXy) T Xy FX,|FX (FIU) X, | (FIU) X
T X, TX, | UX, | UX, ! 2 ! 2
Rules for O:
TX 5 X, UX, DX, FX DX, (FIU) X, D X,
T X, [TX T X, T X, T X,
! ? U X, F X, (F|U) X

Rules for —:

T-X U-X F-X (FIU)-X
FX UX TX UX]|TX

Rules for ~:

T ~X F~X (FIU)~X
W (no rule defined for U ~ X) T Ty

13

Rules for V:

T -X FVX (F|U)VX
X TTY (no rule defined for U VX) Y Y
References

[Beth, 1986] E. W. Beth. Semantic entailment and formal derivability. In Karel Berka &
Lothar Kreiser, editors, Logik-Texte. Kommentierte Auswahl zur Geschichte der modernen

Logik, pages 262-266. Akademie—Verlag, Berlin, 1986.

[Burris & Sankappanavar, 1981] Stanley Burris & H.P. Sankappanavar. A Course in Universal
Algebra, volume 78 of Graduate Texts in Mathematics. Springer, New York, 1981.

[Carnielli, 1987] Walter A. Carnielli. Systematization of finite many-valued logics through the
method of tableaux. Journal of Symbolic Logic, 52(2):473-493, June 1987.

[Dueck, 1988] Gerhard W. Dueck. Algorithms for the Minimization of Binary and Multiple—
Valued Logic Functions. PhD thesis, University of Manitoba, Winnipeg, 1988.

[Fenstad et al., 1985] Jens Erik Fenstad, Per-Kristian Halvorsen, Tore Langholm, & Johan
von Benthem. Equations, schemata and situations: A framework for linguistic semantics.
Technical Report CSLI-85-29, Center for the Studies of Language and Information Stanford,
1985.

[Fitting, 1983] Melvin C. Fitting. Proof Methods for Modal and Intutionistic Logics. Reidel,
Dordrecht, 1983.

[Fitting, 1989] Melvin C. Fitting. Negation as refutation. In LICS 1989 Proceedings, 1989.

[Fitting, 1990] Melvin C. Fitting. First-Order Logic and Automated Theorem Proving.
Springer, New York, 1990.

[Hahnle, 1990] Reiner Hahnle. Spezifikation eines Theorembeweisers fiir dreiwertige First—
Order Logik. ITWBS Report 136, Wissenschaftliches Zentrum, IWBS, IBM Deutschland,
September 1990.

[Hahnle, 1991] Reiner Héhnle. Uniform notation of tableaux rules for multiple-valued logics.
In Submitted for International Symposium on Multiple—Valued Logic, Victoria, 1991.

[Kropf & Wunderlich, 1990] T. Kropf & H.-J. Wunderlich. Hierarchische Testmustergener-
ierung fiir sequentielle Schaltungen mit Hilfe von Temporaler Logik. II. ITG/GI Workshop
Testmethoden und Zuverlassigkeit von Schaltungen und Systemen, 1990.

[Oppacher & Suen, 1986] F. Oppacher & E. Suen. Controlling deduction with proof conden-
sation and heuristics. In Jorg H. Siekmann, editor, Proc. 8th International Conference on

Automated Deduction, pages 384-393, 1986.

[Oppacher & Suen, 1988] F. Oppacher & E. Suen. HARP: A tableau-based theorem prover.
Journal of Automated Reasoning, 4:69 — 100, 1988.

[Schmitt, 1989] Peter H. Schmitt. Perspectives in multi-valued logic. Proceedings International
Scientific Symposium on Natural Language and Logic, Hamburg, 1989.

14

[Sheperdson, 1989] John C. Sheperdson. A sound and complete semantics for a version of
negation as failure. Theoretical Computer Science, 65:343-371, 19809.

[Smullyan, 1968] Raymond Smullyan. First-Order Logic. Springer, New York, second edition,
1968.

[Stachniak, 1990] Z. Stachniak. Note on resolution approximation of many-valued logics. In
20th International Symposium on Multiple- Valued Logic, Charlotte, pages 204-209, May 1990.

[Surma, 1984] Stanistaw J. Surma. An algorithm for axiomatizing every finite logic. In David C.
Rine, editor, Computer Science and Multiple—Valued Logics, pages 143-149. North—Holland,
Amsterdam, 1984.

[Wéjcicki, 1988] Ryszard Wdjcicki. Theory of Logical Calculi. Reidel, Dordrecht, 1988.

[Wolper, 1981] Pierre Wolper. Temporal logic can be more expressive. In Proceedings 22nd
Annual Symposium on Foundations of Computer Science, pages 340 — 348, 1981.

15

