
Veri�cation of a Prolog Compiler { First Steps with KIV�

Gerhard Schellhorn

Abt. Programmiermethodik

Universit�at Ulm, D-89069 Ulm, Germany

email: schellhorn@informatik.uni-ulm.de

Wolfgang Ahrendt

Inst. f�ur Logik, Komplexit�at und Deduktionssysteme

Universit�at Karlsruhe, D-76128 Karlsruhe, Germany

email: ahrendt@ira.uka.de

Abstract

This paper describes the �rst steps of the formal veri�cation of a Prolog compiler with the
KIV system. We build upon the mathematical de�nitions given by B�orger and Rosenzweig in

[BR95]. There an operational semantics of Prolog is de�ned using the formalism of Evolving

Algebras, and then transformed in several systematic steps to the Warren Abstract Machine
(WAM). To verify these transformation steps formally in KIV, a translation of deterministic

Evolving Algebras to Dynamic Logic is de�ned, which may also be of general interest. With

this translation, correctness of transformation steps becomes a problem of program equivalence
in Dynamic Logic. We de�ne a proof technique for verifying such problems, which corresponds

to the use of proof maps in Evolving Algebras. Although the transformation steps are small

enough for a mathematical analysis, this is not su�cient for a successful formal correctness
proof. Such a proof requires to explicitly state a lot of facts, which were only implicitly

assumed in the analysis. We will argue that these assumptions cannot be guessed in a �rst

proof attempt, but have to be �lled in incrementally. We report on our experience with this
`evolutionary' veri�cation process for the �rst transformation step, and the support KIV o�ers

to do such incremental correctness proofs.

1 Introduction

The Warren Abstract Machine (WAM, [War83]) today is the standard for the implementation of
Prolog compilers. Recently, a mathematical analysis of Prolog semantics and compiler correctness
has become available with the papers of B�orger and Rosenzweig ([BR94], [BR95]).

Based on this analysis and the proof sketched in [Sch94], this paper reports on our �rst steps
towards the formal, machine-checked veri�cation of the development described in [BR95] with
the KIV system. Our motivations for beginning such a large case study | based on our current
experience we estimate the necessary e�ort to develop a veri�ed compiler to be between 1-2 person
years | are the following:

� Although the necessary e�ort is quite large for a universitary project, we want to demonstrate
that the currently available technology for formal software development is capable of handling
the complexity of compiler veri�cation.

� We want to show that Dynamic Logic (DL) as it is used in the KIV system can serve
as a suitable starting point for the veri�cation of Evolving Algebras (EA's), at least in the

�This research was partly sponsored by the German Research Foundation (DFG).

1

deterministic case. In particular, the proof technique of commuting diagrams of Proof Maps,
used informally in [BR95], can be formalized in DL.

� Currently the proof techniques in KIV are tailored to the veri�cation of hierarchical, modu-
lar software systems ([Rei93]). Compiler veri�cation is of a di�erent type: It focusses on the
transformation of a program, not on hierarchical implementation of a speci�cation. There-
fore our goal is to �nd out how proof techniques (tactics, heuristics and proof engineering
techniques), which were developed for the �rst type of software development, behave in this
new application area.

� Finally, in our experience, many of the requirements a system for the development of correct
software must cope with to be suited for practical applications are only found in ambitious
case studies. Solving these requirements always leads to signi�cant improvements in the
veri�cation system.

This paper is organized as follows: Section 2 gives an introduction to the semantics of Prolog,
the �rst transformation step and the formalism of Evolving Algebras (EA). We assume the reader
to be familiar with the basic constructs of Prolog (clauses, including the cut) and their (informal)
semantics. The introductory section closely follows [BR95].

Section 3 gives an introduction to the formalism used in KIV, namely Algebraic Speci�cations

and Dynamic Logic (DL). We will assume that the reader is familiar with the basic notions of
�rst-order logic and algebraic speci�cations. In section 4 the EA's from [BR95] are translated to
programs and speci�cations of DL. Section 5 describes, how the equivalence proofs of EA's using
`commuting diagrams of Proof Maps' are formalized in DL. We will show that correctness and
completeness of a transformation step in the sense of [BR95] can be reduced to the development
of a coupling invariant, which is a DL-formula that corresponds to proof maps in EA's.

In Section 6 we develop a coupling invariant for the �rst transformation step. As will be shown,
this formula is extremely complex and can only be developped in several iterations.

Section 7 concludes with an outlook on the continuing work on this case study.

2 A Prolog Semantics based on Evolving Algebras

Informal introductions to Prolog usually describe the semantics of the programming language op-
erationally with the help of a search tree (e.g. [SS86]). To formalize this operational approach,
an interpreter must be given, which builds up (and later on reduces) a search tree. The input of
the interpreter is a Prolog program and a query. In case the interpreter terminates, it will give an
answer substitution (which may be the special value `failure'). In [BR95] such an interpreter has
been formalized for the core constructs of Prolog: Clauses including !, true and fail. This inter-
preter is then transformed in alltogether 12 systematic steps to an interpreter of WAM machine
code, with the idea that the role of the �nal interpreter is taken over by a processor executing
assembler instructions. Parallel to the transformation of the interpreter, the Prolog program and
the query are compiled to machine instructions. On intermediate levels the input of the interpreter
are machine instructions interspersed with uncompiled Prolog syntax. The compilation steps are
not given as a concrete program, but speci�ed by compiler assumptions. This still leaves some
freedom for the implementation of a compiler, in particular several variants of the �nal WAM are
still possible.

Transformation in several steps is necessary, since the interpreter for machine code works
completely di�erent from the interpreter realizing the operational semantics of Prolog. To show
the equivalence between the interpreters in one step would just be infeasible.

Splitting the transformation into several steps is also helpful to get insight in the basic steps
of compilation. With orthogonal transformation steps it becomes possible to see how the various
components of the WAM �t together.

Many of the transformations are optimization steps, e.g. the �rst transformation introduces
registers and changes the search tree to a stack-like data structure. The �rst proper compilation
step is step 5, where the predicate structure of Prolog is compiled.

2

2.1 Evolving Algebras

All interpreters are given using the formalism of Evolving Algebras (EA's; for a detailed intro-
duction see [Gur95]). Evolving Algebras (EA's) can be viewed as a general method to write
`pseudocode over abstract data' ([BR95], p. 4). In the case of the interpreter of the �rst level,
the abstract data describe di�erent states of the search tree during the interpretation of a Pro-
log program. These states are formalized to be �rst-order, partial algebras A (in the sense of
[Wir90]) over a �xed many sorted signature1 SIG. The domain of a sort node is used to describe
the currently allocated nodes of the search tree. They are related via a function father, which
gives for every node its father (and is unde�ned on the root of the tree). To make the algebras
'evolve', an interpreter (the pseudocode) is given by a set of rules, which change the state (i.e.
the algebra) under consideration, by allocating new nodes and by modifying the meaning of the
father function.

More formally, a rule is given by its applicability test, a ground boolean expression " over SIG,
and a set of function and sort updates. A function update is of the form

f(t1,...,tn) := t, (1)

where f is a function (or constant, if n = 0) from SIG, t1,. . . ,tn and t are ground terms. A
sort update2 is of the form

extend s by c, (2)

where s is a sort and c is a constant of this sort. A rule is applicable in an algebra A 2

Alg(SIG), if " holds in A. Applying a rule means executing all updates in parallel. Execution of a
function update in an algebra A changes (or sets, if it was unde�ned) the value of f at (t1; : : : ; tn)
to t. Execution of a sort update adds a new element to the universe of sort s, and assigns it to the
constant c. Note that the term `constants' for 0-ary functions is rather misleading here, since they
may change their value in function updates. Therefore we will avoid to call 0-ary functions, which
are modi�ed by rules of an EA `constants' in the future, and use the term `program variables'
instead (since we will only encounter ground terms in Evolving Algebras, there is no risk to confuse
program variables with ordinary variables).

\Evolution" of algebras is then de�ned by repeated indeterministic selection of an applicable
rule and parallel execution of its updates3. Choosing an initial Algebra A0, which contains the
Prolog program bound to a prede�ned �xed constant db (the \database") and an initial search
tree of one node (standing for the initial query), we get traces (A0, A1, . . .) of Algebras over SIG,
representing the state changes of the search tree. Re
ecting the fact that Prolog is a deterministic
language, we have at most one applicable rule in every algebra, which means that every trace (A0,
A1, . . .) is determined by the initial algebra A0. If it is �nite, it will lead to a �nal state An,
where the answer substitution (which may be also be the special value fail) can be read o� by
inspecting the value of the program variable subst. In case of an in�nite trace execution of the
query does not terminate.

2.2 The �rst interpreter

We will now describe the search tree and the �rst interpreter in some more detail. To illustrate
the work of the interpreter we use the following example program:

1The general framework does not use prede�ned sorts, but introduces them via characteristic functions. This
gives some extra freedom, but the Prolog-to-WAM compiler does not use notions, which go beyond many sorted

logic.
2The generalization extend s by c1, . . . cn with updates endextend, as de�ned in [BR95] can obviously be

simulated.
3There are other execution models, which execute all applicable rules in parallel, but we will not consider them.

3

1 p :- fail.

2 p :- q,!,s.

3 q.

4 s.

5 p.

Line numbers are explicitly written in front of the Prolog clauses for explanatory purposes4.
The program is stored in a database db (a constant) in the algebra the interpreter starts with.
The query ?- p. is stored in an initial search tree depicted in Fig. 1. The �gure contains a
tree with two nodes, labelled r and a. The tree structure is stored in a function father : node

! node, indicated by the arrow in Fig. 1, so we have father(a) = r. Node r is the root node
of the tree. It serves only as a marker when to �nish search.

The actions of the interpreter always work on a selected node, the \current node" currnode.
As indicated in Fig. 1 by the double circle around a, we initially have currnode = a.

The relevant information to do the search is attached to the nodes via three functions decglseq
(\decorated goal sequence"), cands (\candidates") and sub5 (\substitution"). The decglseq of
a node basically contains all literals, which have to be resolved at this point. The �rst of these
literals is called the \activator" act. To handle the cut instruction, the list of decorated goals is
divided into sublists, each sublist corresponding to a part of some clause body or to the query.
Each sublist is paired with a node, called \cutpoint". Initially, the decglseq of node a (shown to
its left in Fig. 1) is a list containing one element, the pair h(p),ri of query and root node. The
decglseq of the root node is unde�ned.

r

(h(p),ri) a

��
��

��
��
��
��

OO
r

(h(p),ri) a

b c d

��
��

��
��
��
��

OO

��

�
�

�

(
��
��;

??�����

1

��
��;

OO

2

��
��

[[77777

5

)

Fig. 1. Fig. 2.

The second information used in the search is the cands function. This function is initially
unde�ned on all nodes. It is used to store information about the clauses, which can be possibly
used to solve the activator act in decglseq(currnode).

The third function sub stores the answer substitution computed so far. Initially sub(a) is the
empty substitution. It is not shown in the �gures, since it does not matter in the example we
consider.

Now the interpreter works in two modes, call mode and select mode. The mode is stored
in a program variable mode, and there are di�erent rules for each of the two modes.

In call mode, which is the initial mode, the cands information is computed. This is done by
allocating a node for every clause (by expanding the universe of nodes), whose head may unify
with the activator. This list of clause lines, which `may unify' with a given literal act are speci�ed
as the result of a function procdef. Given a literal act and the Prolog program as stored in the
database db, procdef(act,db) is assumed to return at least the lines of the clauses whose heads
unify with act, and at most the ones which start with the same predicate as act.

4Our speci�cation as well as the one in [BR95] uses an abstract sort code for clause lines. The use of natural
numbers here is only to facilitate understanding.

5This function is called s in [BR95].

4

For the initial state, we have act = p and procdef(p,db) returns (1,2,5), the lines of the
three clauses with head p. Therefore, a list of three nodes b,c,d is allocated, and we have cands(a)
= (b,c,d). Fig. 2 indicates the cands list (of node a) with a dashed arrow to its �rst element and
brackets around the elements. The clause line corresponding to the candidate node is attached to
every candidate node via a function cll, i.e. we have cll(b) = 1, cll(c) = 2, cll(d) = 5,
as shown by numbers below the candidate nodes in Fig. 2.

After the allocation of candidate nodes the interpreter switches to select mode. In this mode
it selects the �rst candidate of currnode (here the node b). This is done by removing it from the
cands list and making it the new currnode. Then the interpreter computes the decorated goal
sequence decglseq for the new currnode, by removing the activator from the decglseq of the old
currnode and replacing it with the body of clause at cll(b). The father of the old currnode

becomes the cutpoint for this clause body. Also the unifying substitution of activator and the
clause head at cll(b) is applied to the new decglseq and stored in sub(currnode)6. Finally the
interpreter switches back to call mode. The resulting search tree of this second step is shown in
Fig. 3.

Now search continues again in call mode. Since now the activator is the special (always
failing) predicate fail, the interpreter backtracks by setting currnode := father(currnode), i.e.
currnode is set to a again. Although this abandons node b, it will be kept in the search tree, since
it is not formally deallocated (i.e. it remains in the node universe). Again in selectmode the next
candidate node of a, node c, is selected, and its decglseq is computed as (<(q,!,s),r>,<(),r>).
Then, call mode with activator q allocates one new candidate node e for the clause q. in line 3,
and selecting it the interpreter arrives at the state shown in Fig. 4.

r

(h(p),ri) a

(h(fail),ri, h(),ri) b c d

��
��

��
��

OO

��

�
�
���

��
��
��

{{
{{
{{
{==

(
��
��;

OO

2

��
��

[[77777

5

)

r

(h(p),ri) a

(h(fail),ri , h(),ri) b (h(q,!,s),ri , h(),ri) c d

(h(),ai , h(!,s),ri , h(),ri) e ()

��
��

��
��

OO

��

7
7
7��

��
iiii

iiii
iiii

iiii
iiii

i44

��
��

OO

��

7
7
7

(
��
��

[[77777

5

)

��
��
��
��

OO

Fig. 3. Fig. 4.

A `goal success rule' now removes the empty body of the q. clause from the decorated goal
sequence of e (together with cutpoint a), retaining call mode. Now the interpreter has to execute
the cut instruction. According to the intuitive meaning of the cut, this should throw away all alter-
natives at nodes a and c. This could be done by setting cands(a) and cands(c) to the empty list
(actually cands(c) is already empty), but there is an easier way, by updating father(currnode)
to the cutpoint r, which is attached to the list of literals (!,s). The result is shown in Fig. 5.

6Actually, uni�cation is done with a copy of the clause with new variables. New variables are created with the
help of a renaming index vi, which is incremented after each uni�cation.

5

r

(h(p),ri) a

(h(fail),ri , h(),ri) b (h(q,!,s),ri , h(),ri) c d

(h(s),ri , h(),ri) e

��
��

��
��

OO

��

7
7
7��

��
iiii

iiii
iiii

iiii
iiii

i44

��
��

OO

��

9
9
9

(
��
��

[[77777

5

)

��
��
��
�� !

"oo

()

Fig. 5.

Finally, the interpreter allocates a node f for clause s., selects it, and with two applications of
goal success rule, decglseq(f) becomes empty. Since this means that we have completely solved
the goal, the interpreter sets the answer substitution subst to sub(currnode) (here, of course,
the empty substitution). Then it stops by modifying constant stop from run to success. Then
no rule is any longer applicable, since all rule tests include the conjunct stop = run.

If we consider a variant of our example program, where clause s. is missing, the interpreter
would also arrive at the situation shown in Fig. 5. But now an empty list of candidates would
be allocated in call mode, and select mode, �nding no more alternatives, would backtrack by
setting currnode := father(currnode). Since in this case currnode would become the root
node r, the interpreter would stop by setting subst:= fail; stop := failure.

2.3 The second interpreter

With the move from the �rst to the second interpreter, we make a �rst step towards the Warren
Abstract Machine (WAM). In this step, registers are introduced to store the currently important
data, and the search tree of the �rst interpreter is transformed to a stack structure. In detail, the
di�erences between the �rst and second interpreter are the following:

� sort node is renamed to state and function father is renamed to b. This change indicates
that b now points backwards in a chain of nodes, which forms a stack. Note that in spite of
the sort renaming, we will still call elements of sort state \nodes", to avoid confusion with
the computation \state" (an algebra) of an interpreter.

� Instead of a list of candidate nodes, which all have a clause line attached by the cll-
function, the second interpreter attaches the candidates directly via the cll-function. This
is possible, if it is assumed that clauses, whose head start with the same predicate, are stored
in successive clause lines, with a special marker (called nil) at the end. The representation
of our example Prolog program for the second interpreter thus has to look like

1 p :- fail.

2 p :- q,!,s.

3 p.

4 nil

5 q.

6 nil

7 s.

8 nil

A new procdef' function is needed, such that procdef'(act,db) now yields the �rst clause
line, starting with act. So for act = p we get procdef'(p,db) = 1, the �rst line of a clause

6

with head p. The connection to the old procdef function is stated in the following compiler

assumption about function compile (used as an axiom in correctness proofs):

mapclause(procdef(lit,db),db) =
mapclause(clls(procdef'(lit,compile(db)),compile(db)),compile(db))

(3)

Here clls7 collects successive line numbers, until a nil is found, and mapclause selects
the clauses at these line numbers. This assumption is weaker than the one given in [BR95],
which identi�es databases and requires

procdef(lit,db) = clls(procdef'(lit,db),db) (4)

Here (to avoid a compilation step) it is assumed that clauses were already grouped accord-
ing to di�erent predicates on the �rst level. But even under this assumption, (4) can not
be implemented for de�nitions of the procdef function, which are more speci�c than only
looking at the leading predicate symbol. In this case even our liberalized compiler assump-
tion requires code duplication (which does not matter, since the code is shared again in
the compilation step, which introduces \switching instructions" described on pages 27� in
[BR95]).

Using the new procdef' function, instead of allocating a candidate list cands(a) = (b,c,d)

in callmode, the second interpreter simply assigns cll(a) = 1 (= procdef'(p,db)) in call
mode. Incrementing cll(a) then corresponds to removing a candidate from cands. If the
clause at cll(a) should become nil, no more candidates are available. Allocation of a new
node is now done only in select mode, when a new candidate clause is visited. With this
change the nodes of the second interpreter, which may be visited in the future, always are
the ones reachable from breg via the b function. They form a stack, but note that there
may still abandoned nodes in the state universe, which are no longer reachable. As we will
see in section 6, this causes problems for veri�cation.

� The second interpreter provides register for keeping the data, which were attached to the
currnode of the �rst interpreter. This allows to avoid the allocation of currnode altogether.
Instead of cll(currnode), decglseq(currnode), father(currnode) and sub(currnode

there are now registers cllreg, decglseqreg,breg and subreg8.

By these changes, the situations corresponding to �gures 3 and 4 on level 1 now become

r

(h(p),ri) a

2

��
��

��
��

OO

��

6
6
6

r

(h(p),ri) a

(h(q,!,s),ri , h(),ri) c 5

6

��
��

��
��

OO

��

5
5
5��

��

OO

��

6
6
6

decglseqreg = (h(fail),ri , h(),ri) decglseqreg = (h(),ai , h(!,s),ri , h(),ri)
breg = a breg = c

Fig. 6. Fig. 7.

7Compared to [BR95] we have added an argument db to the function clls and some other (dereferencing)
functions that retrieve a value stored at an address in the database.

8[BR95] uses overloading and calls the registers as well as the functions cll,decglseq,b and s.

7

In these diagrams the dashed arrows now point to the cll of the node, instead of his list of
candidates. Since the cllreg does not matter in call mode (it would be the old value, which is
now stored in cll(breg)), it is not shown in the �gures.

Note that allocation of node b is avoided in the second interpreter, since the values, which were
attached to this node in the �rst interpreter (when executing p :- fail), are now kept in the
registers and are never pushed on the stack. Also candidate node d is not allocated in the second
interpreter.

3 Dynamic Logic and Algebraic Speci�cations

The KIV system uses another formalism to describe 'pseudocode over abstract data': Imperative
Programs over Algebraic Speci�cations. To prove properties over these programs, we use Dynamic
Logic (DL,[Har79],[Gol82]). DL is an extension of (in our case many-sorted) �rst-order logic by
formulas h�i (read \diamond � ") and [�] (\box � ") , where � is an imperative program,
and is again a DL-formula. The intuitive meaning of the �rst formula is \� terminates and
afterwards ' holds", the second means \if � terminates, then ' holds afterwards". The logic
allows to state the total correctness of a program � with precondition ' and postcondition as
' ! h�i , and its partial correctness as ' ! [�] . Program inclusion with respect to some
program variables x is also expressible as h�ix = x0 ! h�ix = x0.

The imperative programs (written in a PASCAL-like notation) contain the usual imperative
constructs: Assignment x := t, where the program variables are ordinary �rst-order variables
(also parallel assignments x := t), conditional, compound, while-loops and recursive procedures
with both value- and reference parameters. With random assignments x := ? there is also the
possibility to write indeterministic programs.

The semantics of programs is given as a relation [[�]] on valuations v. Valuations, as usual
in �rst-order logic, assign values from an algebra A to the variables. For an algebra A and a
valuation v, h�i holds (in short: A, v j= h�i) i� there is v' with v [[�]] v', such that A, v'
j= is true. [�]' is equivalent to : h�i: '.

The algebras, which are used to describe the possible values of variables, are speci�ed by al-
gebraic speci�cations. Algebraic speci�cations in KIV are built up from elementary speci�cations
with the usual operations enrichment, union, renaming, parameterization and actualization. El-
ementary speci�cations are theories over Dynamic Logic (in most cases, we only use �rst-order
axioms). Their (loose) semantics is the whole class of models. It can be restricted by generation
principles (sometimes also called reachability constraints) of the form S generated by F9, which
assure that the sorts in S are generated by the constructors (constants or function symbols) in F.

4 From Evolving Algebras to Dynamic Logic

In this section we will give a translation of deterministic Evolving Algebras, as they are used
in this case study, to Algebraic Speci�cations and Dynamic Logic. The translation is essentially
one on one, because both EA and DL feature imperative programs, and therefore no encoding of
programs (as functions or relations over a state) is required. This makes DL a good starting point
for verifying properties of deterministic EA's. The translation is done in two steps: First, we will
give a translation of the abstract data used (including the set of initial states) into an algebraic
speci�cation. In a second step we will translate the set of rules of an EA into an imperative
program. The two steps are described in the following two subsections.

4.1 Translation of Speci�cations

To translate the abstract data types of an Evolving Algebra into an algebraic speci�cation, we �rst
have to separate the static and the dynamic part of the signature. The dynamic part contains those

9S generated by F can be expressed as an axiom in DL (see [Rei93]), but for convenience, speci�cations use
this shortcut

8

functions and sorts, for which the set of rules contains updates. The other, static part typically
contains data types like lists, numbers and suitable operations on them. These can be speci�ed
algebraically. Partial functions (present in EA's but not in the algebraic speci�cations used in
KIV) are usually handled using underspeci�cation. E.g. for natural numbers, we simply do not
specify the predecessor of zero. With respect to the loose semantics of algebraic speci�cations, we
then have that pred(0) is an arbitrary natural number. This is su�cient, except for two cases:
The �rst is, if we explicitly want to work with the \unde�ned" element, e.g. if the rules of the
EA contain de�nedness tests. This case does not occur in the Prolog-to-WAM-compiler (there are
error elements, e.g. the result fail of the substitution function, but these are de�ned elements).
It would have to be handled by introducing explicit error elements.

The second exception is, when a partial function is de�ned to be the least �xpoint of recursive
equations. For this latter exception, there are indeed a number of examples in the Prolog-to-
WAM-compiler, namely the functions clls ([BR95],p. 17), F, G (p. 23f) and chain (p. 25),
which all collect a list of addresses by traversing some pointer structure. Although it is provable
that the functions mentioned above all have a unique �xpoint, in general recursive equations are
not su�cient to characterize the intended least �xpoint, which is unde�ned on in�nite (or cyclic)
pointer structures and de�ned otherwise. With only minor changes (a case where the result is the
empty list of pointers would do) the uniqueness of the �xpoint would be lost.

To �x this problem in partial �rst order logic requires an explicit characterization of the
domain of the least �xpoint. In Dynamic Logic there is an easier way to handle the problem,
since we can explicitly talk about least �xpoints. Rather than specifying a �rst-order function, we
write recursive programs for clls, chain etc., and assert (in the compiler assumption) that they
terminate on all inputs delivered by the compiler. This avoids the use of an error element as well
as an explicit characterization of the domain.

Data types, which are not completely speci�ed in the EA, pose no problem for algebraic
speci�cation. E.g. on the �rst level nothing is said about the structure of terms. In terms of
algebraic speci�cation this means that the sort term is a parameter, which will be actualized with
a concrete de�nition of terms at a later stage of development.

Having translated the static part, the dynamic part is somewhat more complex. The essential
idea here is to code dynamic functions and the carrier of dynamic sorts as the state (i.e. the value)
of some (program) variables.

For dynamic functions, we have to separate the case of program variables (0-ary functions).
These are simply translated to ordinary variables. Modi�cation of a 0-ary function then becomes
modi�cation of a variable by an assignment in DL.

For dynamic functions f, the case with n > 1 arguments can be reduced to the case with one
argument by adding an appropriate tuple-sort for the arguments (the Prolog-to-WAM-compiler
uses only unary functions). For a unary function, we essentially have to code the (second-order)
datatype of a function into a �rst-order datatype, with an explicit apply-operation. The modi�-
cation operation of functions thereby becomes a �rst-order operation.

The resulting datatype is depicted in Fig. 8. It speci�es functions from domain dom to codomain
codom (both sorts are parameters to be actualized). The datatype contains constant functions
cf(z) for every codomain-element z. Application of this function to any domain element x (with
the apply-operation, for convenience written as an in�x-circum
ex `^') just gives z, as stated by
the �rst axiom. Modi�cation of function f at x by z is done with the mix�x-operation f + (x /

z).
The speci�cation can be viewed as an abstract version of a store structure. It could be im-

plemented e.g. by association lists. In our case, where the domain is pointers (elements of sort
codearea) in fact the �nal implementation will be a part of computer memory.

Every dynamic function then is turned into a program variable. Its sort is an instance (ac-
tualization) of the datatype Dynfun with the appropriate domain and codomain. For the initial
state we usually use the constant function cf(d), where d is a suitable \dummy"-element in the
codomain. E.g. the cands function is initialized to cf(nil), the function delivering an empty
list of candidates for every node. A function update f(x) := t in the EA-formalism becomes an
assignment f := f + (x / t) to variable f.

9

Dynfun =
generic speci�cation

parameter sorts dom, codom;
target

sorts dynfun
functions

cf : codom ! dynfun;
. ^ . : dynfun � dom ! codom;
. + (. / .) : dynfun � dom � codom ! dynfun;

variables f : dynfun; x, y : dom; z : codom;
axioms

dynfun generated by cf, . + . / . ;
cf(z) ^ x = z,
(f + (x / z)) ^ x = z,
x 6= y ! (f + (x / z)) ^ y = f ^ y

end generic speci�cation

Fig. 8: Algebraic speci�cation of dynamic functions

Finally note that we did not add an extensionality axiom

f = g $ 8 x. f ^ x = g ^ x (5)

to the speci�cation, in contrast to the usual methodology used in KIV to specify non-free data
types. Such axioms would have allowed us to deduce equalities between functions like f = f +

(x / f ^ x). Since such (higher-order) equalities are not expressible in the EA-formalism, we
expected not to need them in the translated version either. And indeed, there was no need for
equations between functions in veri�cation.

The last problem we have to consider are dynamic sorts. We handle them by storing the
current domain of a sort so in a variable s. The necessary generic speci�cation Set is shown in
Fig. 9.

In this speci�cation, ; is the empty set, 2 tests for membership. +s and -s add resp. delete an
element from a set. Equality on sets is characterized by an extensionality axiom. The generated
by principle characterizes the sets to be �nite. new(s) delivers a new element, which is not already
in the set s. This operation is used to translate the sort update

extend so with c (6)

(where so is a sort and c a program variable of this sort in the EA) to the two assignments

c := new(s); s := s +s c (7)

where now s is a variable of sort set with elements elem actualized to so.
In the case of Prolog-to-WAM, all levels contain only dynamic sorts, which are initialized with

a �nite domain. E.g. for the �rst level it is initialized to froot,currnodeg, where root = new(;)

and currnode = new(; +s root). If the initial domain were not �nite (we do not know of any
case studies on EA's where an in�nite initial domain is used), we would have to add a constant
for this initial domain to the Set speci�cation, and to include it in the generated by clause.

A somewhat unsatisfactory property of the Set speci�cation is that actualizations of the pa-
rameter elem with a datatype with �nite domain lead to an inconsistent speci�cation, since we can

10

Set =
generic speci�cation

parameter sorts elem;
target

sorts set
constants ; : set;
functions

. +s . : set � elem ! set;

. {s . : set � elem ! set;
new : set ! elem;

predicates

. 2 . : elem � set;
variables s, s1, s2 : set; e, e1, e2 : elem;
axioms

set generated by ;, +s;
: e 2 ;,
e1 2 s +s e2 $ e1 = e2 _ e1 2 s,
e1 2 s {s e2 $ e1 6= e2 ^ e1 2 s,
s1 = s2 $ (8 e. e 2 s1 $ e 2 s2),
: new(s) 2 s

end generic speci�cation

Fig. 9: Algebraic speci�cation of sets

deduce from the speci�cation that the elements new(;), new(; +s new(;)), new(; +s new(;

+s new(;))), ... are all di�erent. In the terminology of algebraic speci�cation such a speci-
�cation is said to lack the property of being freely extendible ([Rei93]). To regain this property,
we could specialize the admissible parameters to be those with in�nite domain, e.g. by adding a
partial order < on elem together with an axiom 8 e1. 9 e2. e1 < e2.

Putting the translation of the static and dynamic part together we get the speci�cation shown
completely in appendix A. Many of the speci�cations (lists, pairs, etc.) could be retrieved from the
library, together with a lot of simpli�cation rules useful for veri�cation. Some of the (admittedly
large) size of the speci�cation is due to the renaming of sort node to state, which causes a lot
of duplicates. Also some of the speci�cation length could be avoided by making overloading of
operations available in KIV. Nevertheless a �rst version of the speci�cation was written within
some hours and needed only minor corrections.

4.2 Translation of Programs

Given the algebraic speci�cations used in our case study, and the translation of function and sort
updates to assignments, we can now translate the rules of the interpreters to imperative programs.
The main program realizing the �rst interpreter is procedure EVAL1# (by convention, procedure
names end with a # in KIV) with the following structure (written in PASCAL-like notation):

EVAL1#(db, goal; var subst)
begin

var x := t in
while stop = run do BODY1#(x)

end

11

BODY1#(var x)
begin

if f test of rule1 g then f updates of rule1 g else
if f test of rule2 g then f updates of rule2 g else
. . .
if f test of rulen g then f updates of rulen g
end

The inputs of EVAL1# are the database db, containing the Prolog program and the query goal.
The reference parameter subst is used as the result value for the answer substitution. EVAL1#

starts by initializing the program variables x = stop, subst, decglseq, father, ... with a
vector t of suitable initial values. Then it enters a while loop with test stop = run and body
BODY1#. An extra routine for the loop body is used simply to have a suitable abbreviation in the
following formulas. BODY1# has the program variables x as reference parameters, and uses them
as input and output. It consists of a case analysis, which selects an applicable rule and executes
its updates.

To structure the interpreter, there are subroutines for the di�erent rules. The routine for
the rule for call mode in the �rst interpreter is recursive, because it has to allocate a new
node for every candidate of currnode (see sect. 2). Abbreviations are handled using variable
declarations. Although DL allows parallel assignments, we transformed them into sequential ones,
since we wanted to stay as close as possible to usual programming languages like PASCAL or C.
In retrospective, this was not a very good idea, since it introduced the only real error (apart from
typing errors) in selection rule of the �rst interpreter.

Translation of the rules of EA's somewhat increases their size, because of the expansion of
abbreviations. The translated code of each interpreter is about 120 lines of PASCAL-Code. It is
shown in appendices B and C.

5 Compiler Correctness as Program Equivalence

Correctness and completeness of the transformation of one interpreter into another is formalized
in DL as the assertion that the following program equivalence holds:

hEVAL1#(db,goal;subst)isubst = subst0
$ hEVAL2#(compile(db),goal;subst)isubst = subst0

(8)

Here EVAL1# and EVAL2# are the two interpreter programs and variable subst is their answer
substitution (which may be the result fail). subst0 is another variable, which is used to store
the result value (this variable is not modi�ed by EVAL1# and EVAL2#). The notions of Correctness
and Completeness from ([BR95], p. 8) now directly correspond to the implication from right to
left and from left to right.

The purpose of this section now will be to describe how the notion of a proof map F in evolving
algebras translates to a formula of Dynamic Logic, which will be used in the formal correctness
proof. In the context of Evolving Algebras, a proof map is de�ned to map algebras and rules of
a `concrete' level to algebras and rules of an `abstract' level such that the following diagram 10
commutes for every rule R (cf. [BR95], p. 8):

12

A A0

B B0

F(R) //

R //

F

OO

F

OO

Fig. 10.

In the context of Dynamic Logic, the (dynamic parts of the) algebras involved in a computation
have been replaced by the states of the vector of program variables. If we name the program
variables, EVAL1# and EVAL2# compute on, di�erently, say x = [stop,subst,decglseq,vi,father,. . .]
and x' = [stop',subst',decglseq',vi',b,cll. . .], then the direct translation of a proof map would be a
function, which would map a tuple of values for x' to a tuple of values for x. Since we found no
need for the connection between x and x' to be a function, we allow it to be an arbitrary relation,
which we describe by a (DL-)formula INV(x,x'), which involves the free variables x and x'. We call
this formula a coupling invariant. To use this formula in the proof, we split (8) into two goals, one
for each direction of the implication. Since the following steps are the same for both directions,
we concentrate on the one from right to left (correctness). This implication can be simpli�ed to
the following statement about the two while loops involved:

x = t ^ x' = t' ^ hwhile stop' = run do BODY2#(x') i subst' = subst0
! hwhile stop = run do BODY1#(x) i subst = subst0

(9)

Now the basic idea of our proof will be an induction on the number i of iterations, BODY2#(x')
is executed. Technically, induction over the number of iterations, a while loop does, is possible
using the Omega-Axiom of Dynamic Logic:

hwhile " do �i' $ 9 i. hloop if " then � times ii (' ^ : ") (10)

In this axiom, i is a natural number (we have an induction principle), and the loop program
loop � times i indicates execution of � i times. The two axioms for the loop-construct in DL
therefore are:

hloop � times 0i' $ '

hloop � times i +1i' $ h�i hloop � times ii'
(11)

The axiom (10) intuitively says that a formula ' holds after execution of a while-loop, i� it
holds after su�ciently many iterations of if " then � and the test " is false afterwards. Note that
(assuming some �xed input) the number of iterations, we substitute for the quanti�ed variable i,
may not be the exact number of iterations, the while loop does. It can be any greater number,
since iterations of the loop, with " being false, do nothing.

Application of (10) on both while-loops we can then generalize our goal (9) using the coupling
invariant, resulting in the following three goals:

INV(t,t') (12)

INV(x,x') ^ stop 6= run ! stop = stop' ^ subst = subst' (13)

13

INV(x,x') ^ hloop if stop = run then BODY2#(x') times i ix' = x'0
! 9 j. hloop if stop' = run then BODY1#(x) times j i INV(x,x'0)

(14)

The �rst goal states that the coupling invariant holds before execution of the two while loops.
The second goal says that from the coupling invariant and the fact that the �rst while loop stops,
we must be able to infer that the second while loop also stops with the same answer substitution.
These two goals are usually rather trivial, the complexity of veri�cation is buried in �nding an
invariant INV such that the last goal (14) is provable. This last goal states that for every number
i of rules the �rst interpreter executes there is a number j of rule applications of the second
interpreter such that the Fig. 11 commutes.

A0 A1
: : : Ai

B0 B1
: : : : : : Bj

R1 // R2 // Ri //

R0

1 //

INV

��

OO

R0

2 // // R0

j //

INV

""

bbDDDDDDDDDDD

Fig. 11

It is proved by choosing j = i and induction on i. The induction step (the base case with i
= 0 is trivial) reduces to showing:

INV(x,x') ^ stop' = run ^ hBODY2#(x') ix' = x'0
! hif stop = run then BODY1#(x) i INV(x,x'0)

(15)

which now is the formalization of �gure 10 (with INV replacing F) in DL.
Having a closer look at goal (15), we �nd that, having proved it, we not only have shown

correctness, but also solved the problem of completeness. This is true, since proving the direction
from right to left in (8) only exchanges the roles of the interpreters, and doing the same proof
steps as before we will end up with the following goal dual to (15) in the induction step:

INV(x,x') ^ stop = run ^ hBODY1#(x) ix = x0
! hif stop' = run then BODY2#(x') i INV(x0,x')

(16)

Both goals di�er only in the way they treat termination of the two loop bodies. (15) claims that
termination of BODY2# implies termination of BODY1#, (16) asserts the reverse implication. But
since both loop bodies just apply one rule, they are
at programs10. To show their termination is
trivial. Therefore, having proved (15), using it as a lemma in (16) will �nish the proof immediately.

Due to this we now concentrate on the proof of (15). The goal is divided in as many subgoals
as there are rules in the Evolving Algebra of interpreter2. The resulting seven cases corresponds
to the tests of the rules rule'1, . . . rule'7 in BODY#2. So for n = 1,2,: : :,7 we prove separately:

INV(x,x') ^ stop' = run ^ f test of rule'n g ^ hBODY2#(x') ix' = x'0
! hif stop = run then BODY1#(x) i INV(x'0,x')

(17)

10except the recursive allocation of nodes in the call rule of the �rst interpreter

14

These seven lemmas are called query-success-21, goal-success-21, call-21, select-21, true-21,
fail-21 and cut-21. Note that selection of the right case inside BODY2# and BODY1# is not
done explicitly, but delayed to symbolic execution of the programs in the proof. Of course, case
selection is trivial for BODY2# but important for BODY1#. To show that, when interpreter2
executes rule n, so does interpreter1, we inavoidably get the goal

INV ! (f test of rule'n g ^ stop' = run ! f test of rulen g ^ stop = run) (18)

as one proof obligation.

6 Veri�cation

Veri�cation is done with the proof strategy of the KIV-System. This proof strategy works with
a sequent calculus for DL (a sequent has the form '1, . . . ,'n ` 1, . . . , m and is equivalent
to '1 ^ . . .^ 'n ! 1 _ . . ._ m). Goals (i.e. premises of a proof tree) are reduced to simpler
ones by applying tactics (either manually or by built in heuristics), until we arrive at axioms.
The veri�cation strategy is based on induction and symbolic execution of programs. Symbolic
execution is used to eliminate assignments, compounds, conditionals (where we get two subgoals),
variable declarations, and non-recursive procedures. Induction is used for recursive programs and
also for while loops. The proof strategy is described in [RSS95], so we will not go into the technical
details of the tactics but only give the main intermediate steps of our proof.

6.1 The Initial Coupling Invariant

As was discussed in the previous section, the critical point for a successful formal proof is to �nd a
coupling invariant INV(x,x'), such that goals (17) are provable. Some rough indication, how such
an invariant might look like, is already given in ([BR95], p.17f). There an auxiliary function F:
state ! node is suggested, which maps the nodes of interpreter2 to the corresponding ones in
interpreter1 (see Fig. 12.).

breg

bottom

b

b

b

root

father

father

father

father

currnode

cands

cands

cands

cands

breg
subreg
cllreg
decglseqreg

global registers:

F

F

F

F

Fig. 12.

In the diagrams of section 2 this map is indicated by giving corresponding nodes the same
label, but note that this was only done for clarity, the interpreters do not assign labels. Now
the �rst problem we found with the de�nition of F is that it depends on the computation states

15

the two interpreters are in. A static de�nition would require to analyze the dynamic behavior of
the two interpreters in allocating nodes. Of course this works only in the trivial case, where the
interpreters allocate the same nodes synchronously, and F can be de�ned to be the identity. In
our case it is not even possible, as can be seen from the injectivity problem for F discussed in
subsection 6.2.2.

[Sch94] pointed out that F has to be de�ned by induction on the number of rule applications.
That is, in terms of our EVAL# procedure mentioned above, induction on the number of loop
iterations. So F is constructed by an inductive proof. The crucial question is about the formalism
where a function can be updated not by an evolving algebra but by proof steps.

In our translated version a solution is easy: Simply let F be a dynamic function in the sense of
section 4.1, which means it is a data structure and therefore can be (�rst order) quanti�ed. Our
coupling invariant then asserts the existence of a suitable function F for every two corresponding
computation states. Based on this dynamic function the properties listed on p.17f of [BR95]
translate to the following conjuncts in our invariant (remember that non-primed/primed variables
refer to the �rst/second interpreter):

9 F:

1 decglseq ^ currnode = decglseqreg'

2 sub ^ currnode = subreg'

3a mapclause(map(cll, cands ^ currnode)) = mapclause(clls(cllreg'))

3b every(father,cands ^ currnode,currnode)

4 father ^ currnode = F ^ breg'

5 decglseq ^ (F ^ n) = decglseq' ^ n

6 sub ^ (F ^ n) = sub' ^ n

7a mapclause(map(cll, cands ^ (F ^ n))) = mapclause(clls(cll' ^ n))

7b every(father,cands ^ (F ^ n), (F ^ n))

8 father ^ (F ^ n) = father' ^ n

9 F ^ bottom = root

Here the predicate every(fun, li, res) is true i� for all elements el 2 li the equation
fun ^ el = res holds. So every(father,cands ^ currnode,currnode) means that currnode
is the father of all its cands. The formulas 3a+b, 7a+b are weakened versions of the equations
cands(currnode) = mk cands(currnode, cll) and cands(F(n)) = mk cands(F(n), cll(n))

given in [BR95], p.17f. This re
ects the fact that in section 2.3 we used a (weakened) compiler
assumption (3) instead of (4).

The equations 1 and 5 actually do not hold. Although the goals of the decglseq(reg)s are
identical, the incorporated cutpoints do not relate by identity but by F. Due to this 1 and 5 were
replaced by:

1 decglseq ^ currnode = fd(F, decglseqreg')

5 decglseq ^ (F ^ n) = fd(F, decglseq' ^ n)

where fd maps the �rst argument to the cutpoints of the second. In [Sch94] this was added to the
coupling invariant together with the obvious but important equations:

10 stop = stop'

11 mode = mode'

16

12 vi = vi'

These formulas 1 { 12 formed the �rst version of the coupling invariant INV(x,x') when we
began to prove the lemmas (17) with the system. In these proofs, INV(x,x') on the left side of
the implication asserts the existence of an \Fleft" before rule execution. The F appearing on the
right hand side of the implication INV(x,x') (\Fright") has to be instantiated relative to Fleft.
Naturally F is left unchanged in most cases. Only in the proof of select-21 Fright is instantiated
with Fleft + (new(s')/currnode).

Up to here, INV concentrates on the dependencies between the two abstract machines (the only
exceptions are 3b and 7b). The reason is that at the beginning one might believe that invariant
properties of single abstract machines (if at all needed for the proof) come for free. But they
don't, as we will show below.

6.2 Development of the Correct Coupling Invariant

This �rst version of the coupling invariant was not su�cient. The completion of the coupling
invariant took much more time than proving the �nally valid version. Without going too much
in details, we give a rough overview of this search rather then describing the logical deduction.
We explain how hidden assumptions were detected (if the proof needs them explicitly) and how
proving these new formulas leaves new gaps an so on. We take this proof-historical point of view
to emphasize the evolutionary nature of solving the given problem.

6.2.1 Injectivity of F

After only 5 min. (and 6 interactions) of proving select-21 we reached the unprovable goal (ab-
breviated here):

F ^ bottom = root, F ^ breg' = root, ` breg' = bottom, (19)

This formula holds (see Fig. 12.), but how to deduce it? A short look at the corresponding branch
in the visualized proof tree shows that this proof situation arose by trying to guarantee that in
the backtracking case interpreter2 stops (with failure) if and only if interpreter1 stops! The �rst
direction is trivial because

breg' = bottom ! father ^ currnode = root (20)

follows from part 4 and 9 of INV. But the other direction

father ^ currnode = root ! breg' = bottom (21)

which is with 4 and 9 equivalent to

F ^ breg' = F ^ bottom ! breg' = bottom (22)

cannot be deduced. But it would if injectivity of F were available. Although that seems to be
obvious, (see Fig. 12.) we have to add the injectivity of F explicitly to INV:

13 F ^ n = F ^ n1 ! n = n1

Thereby, on the one hand, we make it available for all proof situations. On the other hand it
is now necessary to prove the injectivity itself inductively.

6.2.2 Characterization of the Stack

Unfortunately, this was too rough. The attempt on proving select-21 fails with a goal where
injectivity of F + (new(s')/currnode) is asserted. In other words, we are not able to guarantee
that the select rule preserves the injectivity of F. It can not be proved because it is not true!

17

breg

bottom

b

b

root

father

father

father

father

currnode

cands

cands

cands

cands

F

F

F

F
F

Fig. 13.

Fig. 13. shows a situation where two di�erent nodes of the interpreter2 tree are mapped to the
same node of the interpreter1 tree.

The problem arises because of the abandoned nodes that are no longer reachable (following
the function b up from breg) but still present in the universe of nodes. The function F is still
de�ned on such nodes, violating the injectivity. But in the restricted context of reachable nodes
(called active in [BR95]) the injectivity holds. These reachable nodes are really what is meant to
be the stack. What we need now is a logical characterization of the stack, of reachability. Then
we can restrict injectivity as well as the other properties of F to the stack.

This restriction is also necessary to close another open goal in the same proof:

.... ` (cands + (currnode / x)) ^ (F ^ n) = cands ^ (F ^ n), (23)

This means that updating the dynamic function cands at the currnode does not a�ect nodes in
the range of F. What we need is:

14 F ^ n 6= currnode

But this is not true in general, as can be seen in Fig. 14, a snapshot of a situation after backtracking.
What is true is that the currnode is not in the range of the stack under F.

A �rst approach to logically characterize the stack would be an algebraic speci�cation of a
function b-list that collects all nodes up to bottom and puts them into a list, such as:

b-list(bottom, b) = nil
n 6= bottom! b-list(n, b) = cons(st, b-list(b ^ n, b))

But this is not a consistent de�nition because a cyclic b or a unreachable bottom would lead to a
in�nite list. Of course, that critical case will never occur in the given Evolving Algebra, because
the rules never build up a cycle in b. But that is exactly what we have to prove while it is
not guaranteed by the data structure (Essentially, this is the same problem as was discussed for
function clls in section 4.1).

A correct approach is to use Dynamic Logic for expressing reachability. Thereby the inonsis-
tency problem is altered to the question of program termination, which now is a subject to proof.
We de�ne a program b-list#:

18

breg

bottom

b

b

b

root

father

father

father

father

currnode

cands

cands

cands

cands

F

F

F

F

F

Fig. 14.

b-list#(n, b; var stack)
if st = bottom then stack := snil else
begin b-list#(b ^ n, b; stack); stack := cons(n, stack) end

Now let (n) be the conjunction of all subformulas, which depend on the selected node n (5 to 8
and 13) and ' the conjunction of the remaining subformulas (1 to 4, 9 to 12 and 14). Then the
coupling invariant INV gets the form:

9 F: ' ^ hb-list#(breg, b; stack)i (8 n. n 2 stack ! (n)) (24)

This means that (for a suitable F) ' holds and that b-list# terminates with output stack, such
that holds for all elements of the stack.

6.2.3 Cutpoints

Proving cut-21 with this version of INV shows another di�culty. After (symbolic) execution of
the cut# procedure, must be guaranteed for the new stack that is given by b-list# applied to
the new breg, which is the �rst cutpoint of the current decorated goal sequence. The new stack
inherits from the old one because it is a part of the old one! This is true but not deducible
with the current INV. Here we need to assert that the cutpoints in the current decorated goal
sequence are elements of the current stack. They may not point elsewhere. Therefore we need a
new predicate called cutptsin to assert:

decglseqreg cutptsin stack (25)

In the �rst version, the de�nition of cutptsin simply checked whether all cutpoints of the �rst
argument are element of the second. Because the decorated goal sequence of every node in the
stack can potentially become the decglseqreg (by backtracking), we also have to add

(sdecglseq ^ n) cutptsin substack (26)

where substack is the output of hb-list#(b ^ n, b; substack)i.

19

With these additions the coupling invariant (24) changes to:

9 F. '

^ hb-list#(breg, b; stack)i
(decglseqreg cutptsin stack
^ (8 n. n 2 stack

! (n)
^ hb-list#(b ^ n, b; substack)i(sdecglseq ^ n) cutptsin substack))

(27)

Again, this is not strong enough. Proving cut-21 with this INV fails because cutptsin so
far does not care about any ordering. Executing the cut#-procedure (which means that breg is
repointed to the �rst cutpoint of decglseqreg) shortens the stack like some pop operations would
do (compare Fig. 5. in section 2.2). After that we have to prove that the (unchanged) cutpoints
of decglseqreg are elements of that shortened stack. This holds only because the cutpoints point
into the stack in the right ordering (see Fig. 15), so that decglseqreg cutptsin stack remains
true with the new breg.

root

father

father

father

father

currnode
decglseq

(|) , (|) , (|)

Fig. 15.

For this we have to change the de�nition of cutptsin (using an auxiliary function from, see
speci�cation in appendix A), leaving INV syntactically unchanged. In this special case no proof
gets invalid (and this is checked by the correctness management of the KIV system!) because so
far we used only lemmas about cutptsin that remain true in spite of the changed speci�cation.

6.2.4 More Properties

The coupling invariant is still not complete. Several further proof attempts revealed the necessity
to make some tree properties explicit, which are only guaranteed by the rules, not by the data
structure! Some of these properties are (informally):

� no candidate is in the range of F

� no candidate list has duplicates

� the intersection of the candidates belonging to di�erent nodes is empty

In addition, the two sets ns and s of both abstract machines, which characterize the domains of
sorts node and state had to be described more exactly, for example:

� the stack is in s

20

� the range of the stack under F is in ns

� all cands are in ns

Finally, all formulas referring to cands ^ currnode have to be restricted to the select mode,
because in call-mode cands ^ currnode is not yet de�ned. Please recognize that the �nal couling
invariant is not a arbitrary accumulation of properties. All of them are actually needed to close
proof goals!

Summarizing, our general experience was that every time one �nds INV to be insu�cient and
therefore adds new properties, this again causes unprovable goals. To discharge these new goals
INV has to improved again, leading to an evolutionary process of improving INV by veri�cation
attempts. We claim that for problems like the given one it is impossible to state all properties in
a �rst proof attempt or to �nd them all in a pencil-and-paper proof. Therefore we use a proof
system that o�ers good support for the evolutionary veri�cation process sketched above. The
resulting coupling invariant is given in appendix D. With that formula the proofs of the lemmas
(17) succeed together with the lemmas depending on (17).

6.3 Statistics

All in all it took 12 proof attempts to reach a correct coupling invariant. The veri�cation work was
done by the two authors in one month. The e�ort of two person months also included speci�cation
(see appendix A) and writing the interpreter programs (both about 100 lines of code, see appendix
B and C). In contrast, veri�cation of the �nal correct version took only two days. 1416 proof
steps were necessary to complete the top-level proofs, which involved programs. Of these proof
steps, 378 had to be given interactively, the rest were found automatically by the heuristics of the
KIV system, giving an automation degree of 73.3 %. In addition to these proofs, we needed about
300 �rst order lemmas. About half of these were already proved in the library, the other half was
shown easily (in most cases, no or one interaction).

After the work on this case study, the KIV system was improved in Ulm from the experiences
we learned. Most notable improvements were to the heuristics for unfolding procedures, for loops,
and for quanti�er instantiation. Also an additional heuristic for the elimination of selectors, similar
to the one present in NQTHM ([BM79]) (but not restricted to free datatypes), was added. With
the improved system Harald Vogt, a student, who had previously learned about KIV only in a one
term practical course, and did not have any prior knowledge of the WAM, redid the case study
in 80 hours of work. This result gives an impression of the time it takes to learn to productively
use the KIV system. As can be seen from the statistic data in E, the improvements of KIV saved
about 1/3 of the necessary interactions (now 246).

7 Conclusion

We have presented a framework for the formal veri�cation of the compilation of Prolog to the
WAM as given in [BR95]. The framework is based on the translation of deterministic Evolving Al-
gebras to imperative programs over algebraic speci�cations. With this translation correctness and
completeness of the transformation of one EA into another is expressible as program equivalence
in Dynamic Logic.

We have shown a proof technique, based on coupling invariants, which corresponds to the use
of proof maps over EA's. We have found that the correct coupling invariant, which is needed to
show correctness and completeness of the �rst transformation step is far too complex to be stated
correctly in a �rst attempt. The time to develop a correct version incrementally is much larger
than the time it takes to verify the correct solution. Therefore besides the pure power of the
theorem prover, the `proof engineering' support o�ered by the veri�cation system is crucial for
the feasibility of the case study. The following items summarize the features of KIV, which were
important for the successful veri�cation:

21

� Explicit proof trees: KIV o�ers a visualization of proof trees of the sequent calculus, which
allows to view every intermediate node by just clicking on it. Wrong decisions in proving a
goal can be undone, by just pruning away parts of the proof tree. Also complex tactic appli-
cations like simpli�cation, which appear as single steps in the proof tree, can be expanded to
proof trees on demand. Analysing proof trees may be irrelevant for small case studies, but
is of invaluable help in proving complex theorems, where goals often cover one or two pages,
and proof trees can grow to sizes of several hundred steps. Then one is continuously faced
with questions like: \What formulas in a large goal are relevant for proving it?", \This goal
seems unprovable. Why and how did I get it?". Such questions can be e�ciently answered
only by inspecting the proof tree.

� Correctness management: KIV does not rely on bottom-up theorem proving as many other
interactive theorem provers do. Instead a correctness management keeps track of the used
lemmas in proving a theorem, and prohibits cycles in lemma dependencies. Also if a lemma
is modi�ed, exactly those proofs where it is used, are invalidated. Our typical procedure in
proving the goals from the previous section was to de�ne lemmas on the
y, but to prove
the lemmas only after completing the main proof. This allows to follow the main line of
arguments in a complex proof (which may take hours to complete), without being distracted
by the need to prove auxiliary lemmas. In case the lemma de�ned was erroneous, we found
that correcting it only very rarely caused signi�cant revisions to the main proof. Most times
a simple replay with the corrected lemma su�ces.

� Reuse of proofs: KIV o�ers a strategy for the reuse of proofs, which goes beyond a simple
replay of the old proof attempt. But although this strategy can handle a lot of modi�cations
to the goal, we still are not satis�ed with the degree of automation this gives when redoing
proofs with a changed coupling invariant. We hope that a strategy for the reuse of proofs
on arbitrary changes to the theorem based on a proof analysis similar to the one developed
in ([RS95]) for program changes, which is currently developed, will improve the situation.

� E�cient simpli�cation with large sets (more than 300) of rewrite rules: KIV compiles rewrite
rules to compiled LISP code using the technique described in [Kap87] (with some extensions
like AC-rewriting). With this technique the system time consumed by rewriting on the term
level is only about 15%.

� Automation via suitable heuristics: KIV relies on heuristics to automate proofs [RSS95]. The
heuristics used in a proof can be chosen freely, and can be changed any time during the proof.
In our case study, we mainly used three sets of heuristics: One set for the di�cult proofs
of select and call rule, and another set, which more often splits cases for the easier rules.
For the inductive proof (14) a third set was used, which additionally includes heuristics for
loop's. Extending heuristics to better handle non-functional procedures (which use reference
parameters as result and input) and loop's resulted in improvements in automation.

Veri�cation showed that [BR95] is indeed an excellent analysis of the compilation problem
from Prolog to WAM. Apart from a few syntactic details, which had to be corrected, the only
remarkable change that was necessary is the introduction of an explicit compiler assumption (see
sect. 2).

Parallel to our work, some work on the veri�cation of a Prolog compiler is also done in Munich
with the Isabelle-System ([Pus96]). In contrast to our approach, which was to model the EA-
approach in DL, and to verify the correctness of transformations described in [BR95] as faithfully
as possible, they started from an operational Prolog semantics de�ned in [DM88], which is already
based on stacks, not on search trees, and used ([BR95]) only as a guidance for transformation
steps. Therefore their �rst two transformation steps have no counterpart in our veri�cation. Some
comparison can be done for our second interpreter vs. their third interpreter. The two main
di�erences are:

� Our interpreter program is an imperative program, whose semantics is a relation on states.
In Isabelle, this semantics is given explicitly as an inductively de�ned relation.

22

� Our representation of the stack is the list stack = [breg, b ^ breg, b ^ (b ^ breg),

...] of nodes reachable from breg via the b-function as computed by the B-LIST# program.
Information is attached to the nodes via functions sub, decglseq and cll. With the knowl-
edge of the invariant, we derived in section 4, and it's complexity due to the use of pointer
structures, this representation has been simpli�ed in Isabelle to a list of tuples of the values
of sub(n), decglseq(n), and cll(n) attached to the nodes n 2 stack. In this way, the
sort state of stack nodes can be avoided altogether.

Let us conclude with an outlook on the continuing work on this case study. Parallel to the
work on this paper three more transformation steps (covering section 1 and section 2.1 in [BR95])
have been veri�ed, with the last transformation documented in [Ahr95] (in German). Work on
the veri�cation of more transformations is still continued. Also veri�cation of all transformation
steps does only yield a speci�cation for a compiler, not an implementation. Therefore we also
plan to implement a (veri�ed) compiler based on the compiler assumptions derived from the
transformation steps.

Although we are currently only about half the way from Prolog to the WAM, veri�cation of
the �rst levels has con�rmed our belief that veri�cation of the WAM is a challenging, but tractable
task.

8 Acknowledgements

We thank our colleagues Wolfgang Reif, Kurt Stenzel and Matthias Ott for their valuable com-
ments on earlier drafts of this paper, and our student Harald Vogt for redoing the veri�cation with
the improved system.

References

[Ahr95] Wolfgang Ahrendt. Von PROLOG zur WAM | Veri�kation der Prozedur�ubersetzung
mit KIV. Diplomarbeit, Fakult�at f�ur Informatik, Universit�at Karlsruhe, December 1995.

[AK91] H. A��t-Kaci. Warren's Abstract Machine. A Tutorial Reconstruction. MIT Press, 1991.

[BM79] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.

[BR94] Egon B�orger and Dean Rosenzweig. A mathematical de�nition of full PROLOG. Science
of Computer Programming, 1994.

[BR95] Egon B�orger and Dean Rosenzweig. The WAM|de�nition and compiler correctness.
In Christoph Beierle and Lutz Pl�umer, editors, Logic Programming: Formal Methods

and Practical Applications, volume 11 of Studies in Computer Science and Arti�cial

Intelligence. North-Holland, Amsterdam, 1995.

[DM88] Saumya K. Debray and Prateek Mishra. Denotational and operational semantics for
prolog. Journal of Logic Programming, 5:61 { 91, 1988.

[Gol82] R. Goldblatt. Axiomatising the Logic of Computer Programming. Springer LNCS 130,
1982.

[Gur95] M. Gurevich. Evolving algebras 1993: Lipari guide. In E. B�orger, editor, Speci�cation
and Validation Methods. Oxford University Press, 1995.

[Har79] D. Harel. First Order Dynamic Logic. Springer LNCS, 1979.

[Kap87] S. Kaplan. A compiler for conditional term rewriting systems. In 2nd Conf. on Rewriting

Techniques anf Applications. Proceedings. Bordeaux, France, Springer LNCS 256, 1987.

23

[Pus96] Cornelia Pusch. Veri�cation of Compiler Correctness for the WAM. Unpublished report,
1996.

[Rei93] W. Reif. An Approach to Parameterized First-Order Speci�cations: Semantics, Correct-
ness, Parameter Passing. In Pottosin, Bjorner, and Broy, editors, Conference on Formal

Methods in Programming and Their Applications, Springer LNCS. Novosibirsk, Russia,
1993.

[RS95] W. Reif and K. Stenzel. Reuse of Proofs in Software Veri�cation. In J. K�ohler, editor,
Workshop on Formal Approaches to the Reuse of Plans, Proofs, and Programs. Montreal,
Quebec, 1995.

[RSS95] W. Reif, G. Schellhorn, and K. Stenzel. Interactive Correctness Proofs for Software
Modules Using KIV. In Tenth Annual Conference on Computer Assurance, IEEE press.
NIST, Gaithersburg, MD, USA, 1995.

[Sch94] Peter H. Schmitt. ProvingWAM compiler correctness. Interner Bericht 33/94, Universit�at
Karlsruhe, Fakult�at f�ur Informatik, 1994.

[SS86] Sterling and Shapiro. The Art of Prolog. MIT Press, 1986.

[War83] D.H.D. Warren. An abstract prolog instruction set. Technical note 309, Arti�cial Intel-
ligence Center, SRI International, 1983.

[Wir90] M. Wirsing. Algebraic Speci�cation, volume B of Handbook of Theoretical Computer

Science, chapter 13, pages 675 { 788. Elsevier, 1990.

24

A The speci�cation

A.1 Parameters

The sort of clause lines. Constant undefcode will be used to initialize function cll.

code =
speci�cation

sorts codesort;
constants undefcode : codesort;
variables co: codesort;

end speci�cation

Clause lines for the second level. This time they are linked with a next-function, called + in
[BR95].

codearea =
speci�cation

sorts codearea;
constants failcode : codearea;
functions next : codearea ! codearea ;
variables coa: codearea;

end speci�cation

The sort of Prolog programs

program =
speci�cation

sorts program;
variables db: program;

end speci�cation

nodes of the search tree

node =
speci�cation

sorts nodesort;
variables no: nodesort;

end speci�cation

nodes of sort state for the stack of the second interpreter.

state =
speci�cation

sorts statesort;
variables st: statesort;

end speci�cation

Substitutions (not speci�ed completely)

25

subst =
speci�cation

sorts substitution;
constants @su : substitution;
functions . o . : substitution � substitution ! substitution ;
variables su2, su1, su: substitution;

axioms

(su o su1) o su2 = su o su1 o su2,
su o @su = su,
@su o su = su

end speci�cation

A.2 Natural numbers

These speci�cations are from the library. Some of the functions and predicates of these speci�ca-
tions (e.g. <) are not used in this case study, but we do not care

nat-basic1 =
data speci�cation

nat = 0
j . +1 (. -1 : nat)
;

variables n: nat;
order predicates . < . : nat � nat;

end data speci�cation

nat-basic2 =
enrich nat-basic1 with

functions . + . : nat � nat ! nat ;
variables n0, m: nat;

axioms

n + 0 = n,
m + n +1 = (m + n)+1,
n < n0 _ n = n0 _ n0 < n

end enrich

nat = nat-lec + nat-sub

nat-sub =
enrich nat-basic2 with

functions . - . : nat � nat ! nat prio 4 left;

axioms

m - 0 = m,
m - n +1 = (m - n)-1

end enrich

26

nat-lec =
enrich nat-basic2 with

constants 1 : nat; 2 : nat;
predicates

. � . : nat � nat;

. > . : nat � nat;

. � . : nat � nat;

axioms

1 = 0 +1,
0 6= 1,
2 = 0 +1 +1,
2 6= 0,
2 6= 1,
m � n $: n < m,
m > n $ n < m,
m � n $: m < n

end enrich

A.3 pairs

Library speci�cations.

elem =
speci�cation

sorts elem;
variables c, b, a: elem;

end speci�cation

elemi =
rename elem by morphism

elem! elem', a ! a'
end rename

elemii =
rename elem by morphism

elem! elem", a ! a"
end rename

elemi-ii = elemi + elemii

pair =
generic data speci�cation

parameter elemi-ii
pair = mkpair (. .p1 : elem', . .p2 : elem");
variables p1, p0, p: pair;

end generic data speci�cation

A.4 lists

The �rst three speci�cations are from the library. The rest are di�erent actualizations. To resolve
overloading, di�erent instances of the datatype have di�erent subscripts for their operations.

27

list-data =
generic data speci�cation

parameter elem using nat
list = @ with @p

j . � . (. .�rst : elem, . .rest : list)
;

variables z, y, x: list;
size functions # : list ! nat ;
order predicates . � . : list � list;

end generic data speci�cation

list =
enrich list-data with

functions . � . : list � list ! list prio 4;
predicates . 2 . : elem � list;

axioms

@ � x = x,
a � x � y = a � (x � y),
a 2 x $ (9 y, z. x = y � a � z)

end enrich

sublist =
enrich list with

predicates . subli . : list � list;

axioms

@ subli x,
: a � x subli @,
a � x subli b � y $ a = b ^ x subli y _ a 6= b ^ a � x subli y

end enrich

statelist =
actualize list with parameter state by morphism

elem ! statesort, list ! statelist, @ ! snil, � ! +sl, .�rst ! scar prio 0,
.rest ! scdr prio 0, � ! �stl, # ! #stl, � ! �s, 2 ! 2sl, @p ! snilp, a
! st, x ! stl

end actualize

nodelist =
actualize list with parameter node by morphism

elem! nodesort, list! nodelist, @! nnil, .�rst! ncar prio 0, .rest! ncdr
prio 0, # ! #nl, � ! �nl, � ! +nl, � ! �n, 2 ! 2nl, @p ! nnilp, a
! no, x ! nol

end actualize

codelist =
actualize list with parameter code by morphism

elem! codesort, list! codelist, @! cnil, #! #col, �! +col, .�rst! ccar
prio 0, .rest ! ccdr prio 0, � ! �col, @p ! cnilp, � ! �c, 2 ! 2col, a
! co, x ! col

end actualize

codealist =
actualize list with parameter codearea by morphism

28

elem ! codearea, list ! codealist, @ ! canil, � ! +cal, .�rst ! cacar prio
0, .rest ! cacdr prio 0, # ! #cal, � ! �cal, � ! �ca, 2 ! 2cal, @p

! canilp, a ! coa, x ! cal
end actualize

clauselist =
actualize sublist with clause by morphism

elem ! clausesort, list ! clauselist, @ ! clnil, � ! +cli, .�rst ! clcar prio
0, .rest ! clcdr prio 0, # ! #cli, � ! �cli, � ! �cl, subli ! subli of, 2
! 2cli, @p ! clnilp, a ! cl, x ! cli

end actualize

decgoallist =
actualize list with decgoal by morphism

elem! decgoal, list ! decgoallist, @ ! dnil, � ! +dl, .�rst ! dcar prio 0,
.rest ! dcdr prio 0, #! #dgl, � ! �dgl, �! �d, 2 ! 2dgl , @p ! dnilp,
a ! dg, x ! dgl

end actualize

sdecgoallist =
actualize list with sdecgoal by morphism

elem ! sdecgoal, list ! sdecgoallist, @ ! sdnil, � ! +sdl, .�rst ! sdcar
prio 0, .rest ! sdcdr prio 0, # ! #sdl, � ! �sdl, �! �sd, 2 ! 2sdl, @p

! sdnilp, a ! sdg, x ! sdgl
end actualize

A.5 sets

The speci�cation given in the main text has been split into the basic speci�cation from the li-
brary, and the enrichment of the new function. The library speci�cation includes some additional
functions and predicates.

set =
generic speci�cation

parameter elem using nat target
sorts set;
constants ; : set;
functions

. ++ . : set � elem ! set prio 5 left;

. ' : elem ! set ;
: set ! nat ;
. { . : set � elem ! set prio 5 left;

predicates

. 2 . : elem � set;

. � . : set � set;
variables s', s: set;

axioms

set generated by ;, ++;
s = s' $ (8 a. a 2 s $ a 2 s'),
: a 2 ;,
a 2 s ++ b $ a = b _ a 2 s,
a ' = ; ++ a,
#(;) = 0,
: a 2 s ! #(s ++ a) = #(s)+1,
a 2 s { b $ a 6= b ^ a 2 s,
s � s' $ (8 a. a 2 s ! a 2 s')

29

end generic speci�cation

enrset =
enrich set with

functions new : set ! elem ;

axioms

: new(s) 2 s

end enrich

nodeset =
actualize enrset with parameter node by morphism

elem! nodesort, set ! nodeset, ; ! @ns, ++ ! +ns, { ! -ns, # ! #ns, '
! 'ns, new ! new, 2 ! 2n, � ! �ns, a ! no, s ! ns

end actualize

stateset =
actualize enrset with parameter state by morphism

elem! statesort, set! stateset, ; ! @s, ++! +s, {! -s, #! #s, '! 's,
new ! snew, 2 ! 2s, � ! �s, a ! st, s ! s

end actualize

enrnodeset =
enrich nodeset with

constants root : nodesort;

axioms

new(@ns) = root

end enrich

enrstateset =
enrich stateset with

constants bottom : statesort;

axioms

snew(@s) = bottom

end enrich

A.6 modes

mode =
data speci�cation

modesort = select
j call
;

variables mode: modesort;
end data speci�cation

stopmode =
data speci�cation

stopmodesort = success
j failure
j run
;

variables stop: stopmodesort;
end data speci�cation

30

A.7 terms,clauses,goals,lists of decorated goals

Terms are speci�ed as a parameter, with only the information, that !,true and fail are included

paramterm =
speci�cation

sorts paramterm;
constants ! : paramterm; true' : paramterm; fail' : paramterm;
predicates is user de�ned : paramterm;
variables trm: paramterm;

axioms

! 6= true',
! 6= fail',
true' 6= fail',
is user de�ned(trm) $ trm 6= true' ^ trm 6= fail' ^ trm 6= !

end speci�cation

goals are lists of terms.

goal =
actualize list with parameter paramterm by morphism

elem ! paramterm, list ! goalsort, @ ! gnil, � ! +g, .�rst ! gcar prio
0, .rest ! gcdr prio 0, # ! #goal , � ! �goal, � ! �g , 2 ! 2goal, @p

! gnilp, a ! trm, x ! go
end actualize

clauses are pairs of head and body, where head is a term and body is a goal.

clause =
actualize pair with goal by morphism

elem' ! paramterm, elem" ! goalsort, pair
! clausesort, mkpair ! mkclause, .p1 ! hd prio 0, .p2 ! bdy prio 0, p
! cl

end actualize

The result of the clause' function, which selects clauses from clause lines in the second interpreter.
The special value null is called nil in [BR95].

clauseornull =
data speci�cation

using clause
clauseornull = mkclau (the clau : clausesort)

j null
;

variables cln: clauseornull;
end data speci�cation

decorated goals are specifed as pairs of goals and nodes.

decgoal =
actualize pair with parameter node, goal by morphism

elem" ! nodesort, elem' ! goalsort, pair ! decgoal, mkpair ! mkdecgoal,
.p1 ! .1, .p2 ! .2, p ! dg

end actualize

decorated goals for the second interpreter: pairs of goals and nodes of sort state.

31

sdecgoal =
actualize pair with parameter state, goal by morphism

elem"! statesort, elem'! goalsort, pair! sdecgoal, mkpair! mksdecgoal,
.p1 ! .s1, .p2 ! .s2, p ! sdg

end actualize

A.8 dynamic functions

Dynamic functions. Mix�x-Operation operation . + (. / .) is simulated by two in�x
operations. To resolve overloading, di�erent instances of the datatype have di�erent subscripts
for their operations.

dynfun =
generic speci�cation

parameter elemi-ii target
sorts dynfun, pairdomcod;
functions

constfun : elem" ! dynfun ;
. ^ . : dynfun � elem' ! elem" prio 1;
. +fun . : dynfun � pairdomcod ! dynfun ;
. / . : elem' � elem" ! pairdomcod prio 9;

variables func2, func1, func: dynfun; pdc: pairdomcod;

axioms

dynfun generated by constfun, +fun;
pairdomcod generated by /;
constfun(a") ^ a' = a",
func +fun a' / a" ^ a' = a",
a' 6= b' ! func +fun a' / a" ^ b' = func ^ b'

end generic speci�cation

The type of dynamic function cands.

cands =
actualize dynfun with parameter node, nodelist by morphism

elem'! nodesort, elem"! nodelist, pairdomcod! pairnodenodelist, dynfun
! candsfun, constfun ! ccands, ^ ! ^n, /! /n, +fun ! +n, func ! cands

end actualize

The type of dynamic function father.

father =
actualize dynfun with parameter node by morphism

elem' ! nodesort, elem" ! nodesort, pairdomcod ! pairnodenode, dynfun
! fatherfun, constfun ! cfather, ^ ! ^fa, / ! /fa, +fun ! +fa, func
! father

end actualize

The type of dynamic function sub.

sub =
actualize dynfun with parameter node, parameter subst by morphism

elem' ! nodesort, elem" ! substitution, pairdomcod ! pairnodesubst, dyn-
fun ! subfun, constfun ! csub, ^ ! ^u, / ! /u, +fun ! +u, func ! sub

end actualize

32

The type of dynamic function cll.

cll =
actualize dynfun with parameter node, parameter code by morphism

elem' ! nodesort, elem" ! codesort, pairdomcod ! pairnodecode, dynfun
! cllfun, constfun ! ccll, ^ ! ^cll, / ! /cll, +fun ! +cll, func ! cll

end actualize

The type of dynamic function decglseq.

decglseq =
actualize dynfun with parameter node, decgoallist by morphism

elem' ! nodesort, elem" ! decgoallist, pairdomcod ! pairnodedecgoallist,
dynfun ! decglseqfun, constfun ! cdecglseq, ^ ! ^d, / ! /d, +fun ! +d,
func ! decglseq

end actualize

The type of dynamic function b.

b =
actualize dynfun with parameter state by morphism

elem' ! statesort, elem" ! statesort, pairdomcod ! pairstatestate, dynfun
! bfun, constfun ! cb, ^ ! ^b, / ! /b, +fun ! +b, func ! b

end actualize

The type of dynamic function ssub (replaces sub from the �rst level).

ssub =
actualize dynfun with parameter subst, parameter state by morphism

elem' ! statesort, elem" ! substitution, pairdomcod ! pairstatesubst, dyn-
fun ! ssubfun, constfun ! cssub, ^ ! ^su, / ! /su, +fun ! +su, func
! ssub

end actualize

The type of dynamic function sdecglseq (replaces decglseq from the �rst level).

sdecglseq =
actualize dynfun with parameter state, sdecgoallist by morphism

elem'! statesort, elem" ! sdecgoallist, pairdomcod ! pairstatesdecgoallist,
dynfun ! sdecglseqfun, constfun ! csdecglseq, ^ ! ^sd, / ! /sd, +fun

! +sd, func ! sdecglseq
end actualize

The type of dynamic function scll (replaces cll from the �rst level).

scll =
actualize dynfun with parameter state, parameter codearea by morphism

elem' ! statesort, elem" ! codearea, pairdomcod ! pairstatecoa, dynfun
! scllfun, constfun ! cscll, ^ ! ^sc, / ! /sc, +fun ! +sc, func ! scll

end actualize

A.9 substitution,renaming and uni�cation

The value fail is added to the (parameter) of substitutions.

substorfail =
data speci�cation

using parameter subst
substorfail = oksubst (the subst : substitution)

33

j fail
;

variables subst: substorfail;
end data speci�cation

function unify (unspeci�ed).

unify =
enrich substorfail, parameter paramterm with

functions unify : paramterm � paramterm! substorfail ;

end enrich

Application of substitutions on terms (unspeci�ed).

substterm =
enrich parameter subst, parameter paramterm with

functions . ^t . : substitution � paramterm! paramterm ;

end enrich

Application of substitutions on goals.

substgoal =
enrich substterm, goal with

functions . ^sg . : substitution � goalsort ! goalsort ;

axioms

su ^sg gnil = gnil,
su ^sg trm +g go = (su ^t trm) +g su ^sg go

end enrich

Application of substitution on decorated goals (�rst level)

subres =
enrich decgoallist, substgoal with

functions subres : decgoallist � substitution ! decgoallist ;

axioms

subres(dnil, su) = dnil,
subres(mkdecgoal(go, no) +dl dgl, su) = mkdecgoal(su ^sg go, no) +dl subres(dgl, su)

end enrich

Application of substitution on decorated goals (second level)

ssubres =
enrich sdecgoallist, substgoal with

functions ssubres : sdecgoallist � substitution ! sdecgoallist ;

axioms

ssubres(sdnil, su) = sdnil,
ssubres(mksdecgoal(go, st) +sdl sdgl, su)

= mksdecgoal(su ^sg go, st) +sdl ssubres(sdgl, su)

34

end enrich

Renaming of clauses (unspeci�ed)

rename =
enrich nat, clause with

functions ren : clausesort � nat ! clausesort ;

end enrich

A.10 clause occurences, procdef

function clause yields the clause at a clause line (�rst level).

clausefun =
enrich parameter code, parameter program, clause with

functions clause : codesort � program! clausesort ;

end enrich

function clause' yields the clause at a clause line (second level).

clause`fun =
enrich parameter codearea, clauseornull, parameter program with

functions clause' : codearea � program! clauseornull ;

axioms

clause'(failcode, db) = null

end enrich

The procdef function of the �rst level

procdef =
enrich parameter paramterm, parameter program, codelist with

functions procdef : paramterm � program! codelist ;

end enrich

The procdef function of the second level

procdef1 =
enrich parameter codearea, parameter program, parameter paramterm with

functions procdef' : paramterm � program! codearea ;

end enrich

A.11 toplevel speci�cation for the �rst interpreter

Contains some auxiliary functions used in the coupling invariant.

prologtree =
enrich union1 with

functions

mapclause : codelist � program ! clauselist ;
map : cllfun � nodelist ! codelist ;

predicates

35

every : fatherfun � nodelist � nodesort;
nodups : nodelist;
. nl�s . : nodelist � nodeset;
disjoint : nodelist � nodelist;
disjointls : nodelist � nodeset;

axioms

mapclause(cnil, db) = clnil,
mapclause(co +col col, db) = clause(co, db) +cli mapclause(col, db),
every(father, nnil, no),
every(father, no1 +nl nol, no) $ father ^fa no1 = no ^ every(father, nol, no),
map(cll, nnil) = cnil,
map(cll, no +nl nol) = (cll ^cll no) +col map(cll, nol),
nodups(nnil),
nodups(no +nl nol) $: no 2nl nol ^ nodups(nol),
nol nl�s ns $ (8 no. no 2nl nol ! no 2n ns),
disjoint(nol, nol0) $ (8 no. no 2nl nol ! : no 2nl nol0),
disjointls(nol, ns) $ (8 no. no 2nl nol ! : no 2n ns)

end enrich

A.12 toplevel speci�cation for the second interpreter

Contains some auxiliary functions used in the coupling invariant.

prologstack =
enrich union2 with

functions

mapclause' : codealist � program ! clauselist ;
. from . : statelist � statesort ! statelist prio 3;
cdr : statelist ! statelist ;

predicates

. cutptsin . : sdecgoallist � statelist;

. ctpelem . : sdecgoallist � stateset;

. sl�s . : statelist � stateset;

axioms

mapclause'(canil, db) = clnil,
mapclause'(coa +cal cal, db) = the clau(clause'(coa, db)) +cli mapclause'(cal, db),
sdnil cutptsin stl,

mksdecgoal(go, st) +sdl sdgl cutptsin stl
$ (st = bottom _ st 2sl stl) ^ sdgl cutptsin stl from st,
snil from st = snil,
st +sl stl from st = st +sl stl,
st1 6= st ! st1 +sl stl from st = stl from st,
sdnil ctpelem s,
mksdecgoal(go, st) +sdl sdgl ctpelem s $ st 2s s ^ sdgl ctpelem s,
stl sl�s s $ (8 st. st 2sl stl ! st 2s s),
cdr(snil) = snil,
cdr(st +sl stl) = stl

end enrich

36

A.13 speci�cation of �rst transformation step

The mapping F from states to nodes used in the invariant.

f-st-no =
actualize dynfun with parameter node, parameter state by morphism

elem' ! statesort, elem" ! nodesort, pairdomcod ! pairstatenode, dynfun
! funstatenode, constfun ! cfn, ^ ! ^fn, / ! /fn, +fun ! +fn, func ! fn

end actualize

Some auxiliary functions used in the coupling invariant, involving either F or data types from both
interpreters.

tree+stack+f =
enrich f-st-no, prologtree, prologstack with

functions

fnd : funstatenode � sdecgoallist ! decgoallist ;
fns : funstatenode � stateset ! nodeset ;

predicates

candsdisjoint : funstatenode � candsfun � statelist;
. injonn . : funstatenode � statelist;
nocands : funstatenode � candsfun � statelist;

axioms

fnd(fn, sdnil) = dnil,
fnd(fn, mksdecgoal(go, st) +sdl sdgl) = mkdecgoal(go, fn ^fn st) +dl fnd(fn, sdgl),
fns(fn, @s) = @ns,
fns(fn, s +s st) = fns(fn, s) +ns (fn ^fn st),

candsdisjoint(fn, cands, stl)
$ 8 st, st1. st 2sl stl ^ st1 2sl stl ^ st 6= st1

! disjoint(cands ^n fn ^fn st1, cands ^n fn ^fn st),
fn injonn stl

$ 8 st, st1. st 2sl stl ^ st1 2sl bottom +sl stl ^ st 6= st1 ! fn ^fn st 6= fn ^fn st1,
nocands(fn, cands, stl)

$ 8 st, st1. st 2sl stl ^ st1 2sl bottom +sl stl ! : (fn ^fn st1) 2nl cands ^n fn ^fn

st

end enrich

A.14 toplevel speci�cation for the equivalence proof

The toplevel speci�cation, in which correctness and completeness of the �rst transformation are
shown. Includes the compiler assumption as an axiom. For the procedure declaration of clls#
see appendix D.

treetostack =
enrich tree+stack+f with

functions compile1 : program! program ;

axioms

hclls#(procdef'(lit, compile1(db)), compile1(db); cal)i
mapclause(procdef(lit, db), db) = mapclause'(cal, compile1(db)),

end enrich

37

B The code of interpreter1

The main routine here is eval# (called EVAL1# in the main text)

eval#(db, goal; var subst)
var ns = @ns +ns root, vi = 0, mode = call, stop = run, currnode = new(@ns +ns root) in
var ns = ns +ns currnode,

sub = csub(@su),
father = cfather(root),
decglseq = cdecglseq(dnil) +d currnode /d (mkdecgoal(goal, root) +dl dnil),
cands = ccands(nnil),
cll = ccll(undefcode)

in

begin

while stop = run do

body#(db; ns, vi, mode, stop, currnode, sub, father, decglseq, cands, cll);
if stop = failure then subst := fail else
subst := oksubst(sub ^u currnode)

end

body#(db; var ns, vi, mode, stop, currnode, sub, father, decglseq, cands, cll)
var decgoalseq = decglseq ^d currnode in
if decgoalseq = dnil then query-success#(; stop) else
var goal = dcar(decgoalseq).1 in
if goal = gnil then goal-success#(currnode, decgoalseq; decglseq) else
var act = gcar(goal), cutpt = dcar(decgoalseq).2, fath = father ^fa currnode in
var cont = mkdecgoal(gcdr(goal), cutpt) +dl dcdr(decgoalseq) in
if is user de�ned(act) then
if mode = call then
call#(currnode, procdef(act, db); ns, father, cll, cands, mode)

else

var cnds = cands ^n currnode in
select#(db, act, cnds, cll, fath, cont; cands, decglseq, mode, vi, currnode, stop, sub)

else

if act = true' then true#(currnode, cont; decglseq) else
if act = fail' then fail#(fath; stop, currnode, mode) else
cut#(currnode, cont, cutpt; father, decglseq)

query-success#(var stop) begin stop := success end

goal-success#(currnode, decgoalseq; var decglseq)
decglseq := decglseq +d currnode /d dcdr(decgoalseq)

call#(currnode, procdefact; var ns, father, cll, cands, mode)
if procdefact = cnil then
begin cands := cands +n currnode /n nnil; mode := select end

else

begin

call#(currnode, ccdr(procdefact); ns, father, cll, cands, mode);
var no = new(ns) in
begin

ns := ns +ns no;
father := father +fa no /fa currnode;
cll := cll +cll no /cll ccar(procdefact);
cands := cands +n currnode /n (no +nl (cands ^n currnode))

38

end

end

select#(db, act, cnds, cll, fath, cont; var cands, decglseq, mode, vi, currnode, stop, sub)
if cnds = nnil then backtrack#(fath; stop, currnode, mode) else
var cla = ren(clause(cll ^cll ncar(cnds), db), vi) in
var uni = unify(act, hd(cla)) in
if uni = fail then cands := cands +n currnode /n ncdr(cnds) else
begin

cands := cands +n currnode /n ncdr(cnds);
sub := sub +u ncar(cnds) /u ((sub ^u currnode) o the subst(uni));
currnode := ncar(cnds);
decglseq := decglseq +d currnode /d subres(mkdecgoal(bdy(cla), fath) +dl cont, the subst(uni));
mode := call;
vi := vi +1

end

true#(currnode, cont; var decglseq) begin decglseq := decglseq +d currnode /d cont end

fail#(fath; var stop, currnode, mode) begin backtrack#(fath; stop, currnode, mode) end

cut#(currnode, cont, cutpt; var father, decglseq)
begin

father := father +fa currnode /fa cutpt;
decglseq := decglseq +d currnode /d cont

end

backtrack#(fath; var stop, currnode, mode)
if fath = root then stop := failure else
begin currnode := fath; mode := select end

39

C The code of interpreter2

The main routine here is s-eval# (called EVAL2# in the main text)

s-eval#(db', goal; var subst)
var s = @s +s bottom,

vi' = 0,
mode' = call,
stop' = run,
breg = bottom,
ssub = cssub(@su),
subreg = @su,
sdecglseq = csdecglseq(sdnil),
decglseqreg = mksdecgoal(goal, bottom) +sdl sdnil,
scll = cscll(failcode),
cllreg = failcode,
b = cb(bottom)

in

begin

while stop' = run do

s-body#(db'; s, vi', mode', stop', breg, ssub, subreg, sdecglseq, decglseqreg, scll, cllreg, b);
if stop' = failure then subst := fail else
subst := oksubst(subreg)

end

s-body#(db'; var s, vi', mode', stop', breg, ssub, subreg, sdecglseq, decglseqreg, scll, cllreg, b)
if decglseqreg = sdnil then s-query-success#(; stop') else
var goal = sdcar(decglseqreg).s1 in

if goal = gnil then s-goal-success#(; decglseqreg) else
var act = gcar(goal), scutpt = sdcar(decglseqreg).s2 in

var scont = mksdecgoal(gcdr(goal), scutpt) +sdl sdcdr(decglseqreg) in
if is user de�ned(act) then
if mode' = call then s-call#(act, db'; cllreg, mode') else
s-select#(db', act, scont; stop', cllreg, scll, subreg, ssub, breg, b, decglseqreg, sdecglseq, vi',

s, mode')
else

if act = true' then s-true#(scont; decglseqreg) else
if act = fail' then
s-fail#(b, sdecglseq, ssub, scll; cllreg, stop', decglseqreg, subreg, breg, mode')

else

s-cut#(scont, scutpt; breg, decglseqreg)

s-query-success#(var stop') begin stop' := success end

s-goal-success#(var decglseqreg) begin decglseqreg := sdcdr(decglseqreg) end

s-call#(act, db'; var cllreg, mode')
begin cllreg := procdef'(act, db'); mode' := select end

s-select#(db', act, scont; var stop', cllreg, scll, subreg, ssub, breg, b, decglseqreg, sdecglseq, vi',
s, mode')
if clause'(cllreg, db') = null then
s-backtrack#(b, sdecglseq, ssub, scll; cllreg, stop', decglseqreg, subreg, breg, mode')

else

var cla = ren(the clau(clause'(cllreg, db')), vi') in

40

var uni = unify(act, hd(cla)) in
if uni = fail then cllreg := next(cllreg) else
var temp = snew(s) in
begin

s := s +s temp;
b := b +b temp /b breg;
sdecglseq := sdecglseq +sd temp /sd decglseqreg;
ssub := ssub +su temp /su subreg;
scll := scll +sc temp /sc next(cllreg);
decglseqreg := ssubres(mksdecgoal(bdy(cla), breg) +sdl scont, the subst(uni));
breg := temp;
subreg := subreg o the subst(uni);
mode' := call;
vi' := vi' +1

end

s-true#(scont; var decglseqreg) begin decglseqreg := scont end

s-fail#(b, sdecglseq, ssub, scll; var cllreg, stop', decglseqreg, subreg, breg, mode')
begin s-backtrack#(b, sdecglseq, ssub, scll; cllreg, stop', decglseqreg, subreg, breg, mode')
end

s-cut#(scont, scutpt; var breg, decglseqreg)
begin breg := scutpt; decglseqreg := scont end

s-backtrack#(b, sdecglseq, ssub, scll; var cllreg, stop', decglseqreg, subreg, breg, mode')
if breg = bottom then stop' := failure else
begin

decglseqreg := sdecglseq ^sd breg;
subreg := ssub ^su breg;
cllreg := scll ^sc breg;
breg := b ^b breg;
mode' := select

end

41

D The coupling invariant

9 F. stop = stop'
^ mode = mode'
^ subreg = sub ^u currnode
^ F ^fn bottom = root
^ F ^fn breg = father ^fa currnode
^ fnd(F, decglseqreg) = decglseq ^d currnode
^ vi = vi'
^ bottom 2s s
^ root 6= currnode
^ root 2n ns
^ currnode 2n ns
^ (mode = select
! hclls#(cllreg, db'; cal)i

mapclause'(cal, db') = mapclause(mapcll(cll, cands ^n currnode), db)
^ every(father, cands ^n currnode, currnode)
^ : currnode 2nl cands ^n currnode
^ : root 2nl cands ^n currnode
^ (cands ^n currnode) nl�s ns
^ nodups(cands ^n currnode))

^ hb-list#(breg, b; stack)i
(decglseqreg cutptsin stack
^ candsdisjoint(F, cands, stack)
^ F injonn stack
^ nocands(F, cands, stack)
^ stack sl�s s
^ (8 st. st 2sl stack

! ssub ^su st = sub ^u F ^fn st
^ F ^fn b ^b st = father ^fa F ^fn st
^ fnd(F, sdecglseq ^sd st) = decglseq ^d F ^fn st
^ hclls#(scll ^sc st, db'; cal)i

mapclause'(cal, db') = mapclause(mapcll(cll, cands ^n F ^fn st), db)
^ every(father, cands ^n F ^fn st, F ^fn st)
^ F ^fn st 6= currnode
^ (F ^fn st) 2n ns
^ : currnode 2nl cands ^n F ^fn st
^ (cands ^n F ^fn st) nl�s ns
^ (mode = select

! : (F ^fn st) 2nl cands ^n currnode
^ disjoint(cands ^n F ^fn st, cands ^n currnode))

^ nodups(cands ^n F ^fn st)
^ hb-list#(b ^b st, b; substack)i(sdecglseq ^sd st) cutptsin substack))

Additional declarations for procedures b-list# and clls#:

b-list#(st, b; var stack)
if st = bottom then stack := snil else
begin b-list#(b ^b st, b; stack); stack := st +sl stack end

clls#(coa, db'; var cal)
if clause'(coa, db') = null then cal := canil else
begin clls#(next(coa), db'; cal); cal := coa +cal cal end

42

E Some statistics

� Lemmas: 23

� Proof steps: 1475

� Interactions: 246

� Automation: 83.3 %

Statistic for each lemma:
proof steps interactions automation

select-12 359 61 83.0 %
step-lemma-21 147 5 96.5 %
fail-12 124 13 89.5 %
call-12 111 15 86.4 %
t-call-lemma 92 21 77.1 %
cut-12 75 11 85.3 %
eval-imp-21b 72 19 73.6 %
eval-imp-1b2 71 18 74.6 %
true-12 50 3 94.0 %
goal-success-12 49 4 91.8 %
ind-lemma-21 48 16 66.6 %
ind-lemma-12 44 17 61.3 %
query-success-12 31 3 90.3 %
step-lemma-12 29 12 58.6 %
new-fnd-is-fnd 29 6 79.3 %
b-eq-plus-new 28 3 89.2 %
st-notin-b-blist 27 5 81.4 %
blist-elem-from 25 2 92.0 %
b-st-not-new 21 3 85.7 %
t-call-term 15 3 80.0 %
bottom-notin-blist 13 1 92.3 %
st-in-blist 11 1 90.9 %
eval-equiv-b 4 4 0.0 %

43

