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Abstract

NO formation during ignition of combustible mixtures has been calculated in non–
stationary two-dimensional systems by coupling the fluid flow and chemical reactions
using “interactive flamelets”. The fluid flow was calculated by the PISO (Pressure–
Implicit with Splitting of Operators) method to solve the Navier–Stokes equations.
Further a convection–diffusion equation for the mixture fraction Z(x, y, t) has been
solved to calculate the scalar dissipation rate χ, needed for the flamelet calculations. The
one dimensional flamelet code solves the flamelet equation in the mixture fraction space.
The stiffness of the system of equations describing the 1D non–stationary flamelets
requires a fully-implicit calculation. It has been shown in the past, that Newton’s
method, damped and modified, is suitable to solve this class of equations. A backward
difference scheme (BDF) with automatic order selection strategies is utilized. The grid
resolving the 1D–flamelet supports high accuracy by using a moving grid method. Back
transformation of the calculated species mass fractions from the flamelet space gives
a two dimensional distribution of all chemical species included in the large chemical
system.

1 Introduction

In the high Damköhler number regime of combustion turbulent diffusion flames can
be conceived as an ensemble of laminar diffusion flamelets [1]. This concept has been
realized assuming the laminar flamelets to be stationary [2]. The calculated flow field
was coupled with chemical reactions by the help of flamelet libraries describing the
dependence of flamelets on several parameters, e.g. the scalar dissipation rate χ and
the mixture fraction Z. The flamelet libraries are calculated in advance using detailed
chemical mechanisms for the combustion reactions under consideration. It is obvious
that ignition and extinction phenomena in turbulent diffusion flames cannot be modeled
with stationary flamelets. On the other hand, the calculation of the non–stationary
conservation equations for temperature and species mass fractions on each grid point in
the flow field cannot be realized for large chemical systems in more than one dimension.
Therefore, it has been proposed recently [3], to calculate several unsteady flamelets
interactively with the calculation of the flow field. Each flamelet is representative for a



certain domain of the flame. This concept allows to couple large chemical systems with
the flow field by “interactive flamelets”.
In the present work the system of ammonia/air is considered. This system is described
by a set of 148 chemical reactions between 19 chemical species. To attain high accuracy
of the calculated solution for temperature and species mass fractions in the flamelet
calculations a moving grid method is used. For each chemical system the motion of
grid points due to a weight function resolving the pyrolysis of the fuel, the ignition
process, the propagating flame fronts and the stationary solution of the diffusion flame
is presented. The spatial distribution of mass fractions is retrieved via the mixture
fraction/scalar dissipation rate field, which is calculated with the flow field.

2 Modelling

2.1 Modelling of the Flow Field

The PISO (Pressure–Implicit with Splitting of Operators) algorithm is a non-iterative
method for solving the implicitly discretised, time dependent Navier–Stokes equations
[4]. The method is based on the use of pressure and velocity as dependent variables
and is, hence, applicable for the compressible formulation of the transport equations.
The main feature of the technique is the splitting of the solution process into a series of
steps whereby operations on pressure are decoupled from those on velocity at each step,
with the split sets of equations being amenable to solution by standard techniques. At
each time–step, the procedure yields solutions which approximate the exact solution of
the difference equations.
The governing equations are written here in Cartesian tensor notation. The equations
for continuity, momentum and total energy in laminar compressible flows are
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where µ is the laminar viscosity and Pr is the Prandtl number. The total energy e is
related to the temperature by

e = CvT +
1

2
uiui (4)

where Cv is the constant volume specific heat. The equation of state taken here is that
of perfect gas

ρ = p/RT (5)

where R is the gas constant. Q contains the external source of energy.

The discretisation of the equations in time and space is obtained by a finite difference
scheme. The predictor and corrector steps of the PISO algorithm lead to the new



velocities un+1
i and the new pressure pn+1 by solving the momentum, continuity and

energy equations. The poisson equation is solved by a Block–LU decomposition, an
ADI technique with operator splitting leads to the velocities.

2.2 Modelling of the Chemical System

For laminar diffusion flamelets ,under the condition that equal diffusivities of chemical
species and temperature can be assumed, all Lewis numbers

Lei = λ/cpρDi = 1 (i = 1, 2, ..., n) (6)

are unity, such that a common diffusion coefficient D = λ/(cpρ) can be introduced. The
conservation equation for the mixture fraction Z, the temperature T and the species
mass fraction are given in cartesian coordinates:
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Eq.(8) and (9) can be transformed into the mixture fraction space according to [1]. The
mixture fraction Z is a function of space and time. Then the surface of the stoichiometric
mixture can be determined from

Z(x, t) = Zst. (10)

Combustion takes place in a thin layer in the vicinity of this surface if the local mixture
fraction gradient is sufficiently high. To introduce a coordinate system attached to the
surface of a stoichiometric mixture, we replace the coordinate x by the mixture fraction
Z and define the original coordinate system such that the coordinate x does not lie
within this surface. By definition the new coordinate Z is normal to the surface of the
stoichiometric mixture. With the help of the transformation rules
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and introducing the new variable χ
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for the scalar dissipation rate to describe the influence of the flow field, the flamelet
equations for temperature and species mass fractions in the mixture fraction space are
obtained.
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The stiffness of the system of equations describing the 1D non–stationary flamelets
requires a fully-implicit calculation. It has been shown in the past, that Newton’s
method, damped and modified, is suitable to solve this class of equations. The semi–
discrete partial differential equations approximation is written in the form Ut = F (U)
, where F is a nonlinear operator. To reduce CPU–time, needed for each timestep, a
backward difference scheme (BDF) with automatic order selection strategies is utilized
[5]. Finally the grid resolving the 1D–flamelet has to support this approach.

2.3 Coupling of Fluid Flow and Chemical Reactions

The non–stationary flow field is computed by means of the PISO–procedure. According
to the Navier–Stokes equations a convection–diffusion equation
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is implemented for the mixture fraction Z(x, y, t) in the fluid dynamic code to attain
the scalar dissipation rate χ as a function of Z for the flamelet calculation. The scalar
dissipation rate

χ = 2D

(
dZ

dxk

)2

= 2D

[(
dZ

dx

)2

+

(
dZ

dy

)2
]
, (17)

which describes the influence of the flow field on the chemistry, is needed for the calcu-
lation of the species mass fractions. The heat release, calculated in the flamelet code,
serves as the external source of energy Q in the equation of total energy to feed back
the chemical relation to the flow field [6].
Back transformation of the calculated species mass fractions from the flamelet space
gives a two dimensional distribution of all chemical species included in the large chemical
system.

2.4 Moving grid method

Several types of grid–generators are discussed. The most simple class of grids are fixed
grids. The initial distribution of the grid points, equidistant or best guess problem
oriented, is maintained for all timesteps. The order selection of the BDF method is not
influenced by the grid. Either the resolution in Z of those grids is low or a high number
of gridpoints is needed to resolve all species profiles in the flame. It is not possible to
follow a propagating flame front after an ignition process, that means that this method
is only accurate for stationary problems.
In contrast to this method, irregular grids allow to resolve steep gradients. Those adap-
tive grids are calculated at each time step according to a weight function describing the
local truncation error of the applied discretisation scheme. Unfortunately, the unknown
variables, known at the old gridpoints, have to be interpolated on the new adaptive
grid. This method influences the selection of the order of the BDF method. Hence the
stepsize of the timesteps has to be reduced whenever the grid is adapted.
Moving grid techniques [7] are able to avoid the problems of interpolation and low reso-
lution. For moving grid techniques an additional convective term has to be introduced as
given in the following. The non-stationary system of conservation equations for species
mass fractions and temperature in Z formulate a parabolic system of time dependent
partial differential equations

~ut = ~f(~u, ~ux, ~uxx, x, t). (18)



Discretisation in Z leads to the following system of ordinary differential equation

Ut = F (U), (19)

where F is a nonlinear operator.
The motion of the grid points introduces an additional convective term to the system
of equations

Ut = F (U) + UxXt, (20)

where Xt is calculated from the corresponding weight function. The weight function W
is calculated as a function of the gradients of U and the solution of U . The proportion
of the gradients of U to the solution U can be varied and has to be adapted for each
combustion problem. An interpolation of the solution is avoided. The order of accuracy
is determind by the applied BDF method. The stepsize of each timestep is only slightly
influenced by the velocity of the grid motion. The moving grid techniques are able to
resolve steep gradients by using only a minimum number of grid points.

3 Results and Discussion

The grid motion for an ammonia/air flamelet is given in figure 1. In this example
the ammonia stream is diluted by air in a ratio of 1:1. The figure includes the time
dependent grid motion of every 5th gridpoint.

Figure 1: Non–stationary grid motion, temperature and NO profiles during the ignition
of an ammonia/air flamelet.



The mechanism for the ignition of ammonia includes the mechanism for the formation
of NO. The initial boundary conditions are T = 1300K and p = 1bar. During the first
phase of ignition, the grid has to resolve the pyrolysis of ammonia. Then the grid has
to be adapted to the formation of intermediate species, e.g. HO2 and OH. The ignition
delay time is found to be t ≈ 0.15sec at mixture fraction Z = 0.065. It is obvious from
figure 1, that the grid is contracted very rapidly during the ignition process. Then the
grid resolves the evolution of two flames. One flame is a fuel–lean flame burning at
the fuel lean side of the flamelet. The other flame is a fuel–rich flame burning at the
fuel–rich side of the flamelet. The propagation of this flame is indicated by the motion
of contracted grid points. In the stationary solution the grid only has to resolve the
stationary diffusion flame.
Further the non-stationary profiles of the NO mass fraction and the temperature in
the mixture fraction space Z are obvious from fig.1. The high resolution of the time
dependent profiles indicate the propagating flames.
A two dimensional non–stationary distribution of NO has been calculated by using
interactive flamelets. The domain of computation consists of a quadratic combustion
chamber, where the fuel is injected into hot air. The temperature of the air and the fuel
is 1300 K. The diameter of the inlet tube is 60 mm. The fuel is injected with a velocity
of 10 cm/s, the injection time is 0.2 sec.
Figure 2 shows the non–stationary evolution of the mixture fraction Z in the flow field.
The mixture fraction represents the contour of the injected fuel.
According to the mixture fraction Z, the velocities u and w were calculated in the
compressible PISO code. The time dependent distribution of the velocity field is given
in fig.3. The velocity field at t= 0.39 sec shows the fluid flow after the injection of the
fuel into the hot air.
In fig. 4 the non–stationary evolution of the NO mass fraction is shown. After the
injection of ammonia, the formation of NO near Z= 0.07 can be recognized in the mass
fraction plot of NO at t= 0.39 sec. For the next time steps the NO formation during
the flame propagation into the middle of the injected fuel can be shown.

4 Conclusions

Numerical modelling of NO formation in a quadratic combustion chamber has been
performed using an “interactive flamelets” model to couple the non–stationary fluid
flow with a detailed chemical mechanism.
An additional transport equation for the mixture fraction was solved to calculate the
scalar dissipation rate χ as input for the flamelet model. The heat release, calculated in
the flamelet code, serves as the external source of energy in the equation of total energy
in the fluid flow calculation.
The concept of “interactive flamelets” allows to couple large chemical systems with
the flow field. A two dimensional distribution of all chemical species, included in the
chemical mechanism, can be calculated for the ignition - as far as ignition occurs in the
flamelet regime - and combustion process.
Using moving grid methods a high accuracy of the calculated species is attained. This
method is able to resolve time dependent steep gradients. Interpolation errors or high
numbers of grid points are avoided.



Figure 2: Non–stationary two dimensional distribution of the mixture fraction.



Figure 3: Non–stationary two dimensional velocity field.



Figure 4: Non–stationary evolution of the NO mass fraction.
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