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"The neutron excitation cross sections for the individual energy levels of U2 below 1 Mev have
been caleulated for neutron cnergies up to 1 Mev with the statistical theory of Hauser and Fes),-

bach.

INTRODUCTION

Yor the caleulation of the performance of fast
breeder reactors which use U™ as the fertile material,
it is necessary to know the reaction cross sections of
U™ with fast neutrons fairly precisely. Particularly
important are the partial inelastic scattering cross
sections, which play the chief role in the energy loss
process. Also important is the (n, v) cross section,
which influences the breeding gain through absorp-
tion. At present, there are five experimental meas-
urements of the inelastic cross section known (/1-9),
but these, quite unfortunately, are not at all con-
sistent with one another. Therefore, we shall com-
pare these measurements with theoretical calcula-
tions in order to try to decide among the different
results.

For this purpose the cross sections must be caleu-
lated rather exactly. The results of the simple opti-
cal model (6) are generally too inaccurate for this
purpose. Consequently, we employ in this work the
formulas of the statistical model of nuclear reactions
(7, 8), as we would have if we had used the optical
model, but determine the necessary physical param-
eters which appear in these formulas (e.g., trans-
mission coefficients), not from pure theory, but
rather from the most credible part of the experi-
mental results. Then with the help of a few simple
theoretical assumptions, we calculate the remaining
reaction cross sections and make a meaningful com-
parison with experiment.

This work is divided into three parts. In the first,
we discuss briefly the experimental results up to 1
Mev. In the second, we describe the theoretical

*On leave from Oak Ridge National Laboratory, Oak
Ridge, Tennessee (operated by Union Carbide Corporation
for the U. 8. Atomic Energy Commission).
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basis for the caleulations, and in the third, we cor
pare the caleulations with the experiments, a
recommend what in our opinion are the hest eurre,
results up to 1 Mev.

I. DISCUSSION OF THE EXPERIMENTAL RESULY

The inelastic scattering cross section has be
measured by three different methods. The fir
method consists of a transmission experiment wi
spherical shells. Measurements of this kind in whi
proportional counters were employed as detecto
have been published by Allen (1), Batchelor (2
and Beyster ef al. (3). As a result of the use of pr
portional counters, neutrons which excited low lyi
energy levels were only partly resolved from ela
tically scattered neutrons. This represents a serion
disadvantage of this method. Moreover, in most ¢
these measurements the spherical shells were ¢
thick that the neutrons were multiply scattere
The order of magnitude of this last effect can |
estimated and a correction for it made, but this h
been omitted by some authors. The results of t]
three cousidered measurements are tabulated
Table I, together with some brief remarks.

Another way to obtain the inelastic scatteri
cross section is to subtract the integrated measur
differential scattering cross seetion from the tot
measured eross section. Also in this method tl
difficulty of insufficient resolution of elastical
scattered neutrons and neutrons which excite lo
lying states appears, particularly in the measur
ment of the differential elastic scattering cross se
tion. In Table T are values obtained by this methc
by Allen (1) and Walt and Barschall ().

The third method with which the partial inelast
cross seetions ean be measured is the time-of-flic
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TABLE 1
SUMMARY OF THE EXPERIMENTAL DaTa oN INELASTIC SCATTERING 1N U238 vp 1o 1 MEgv

E o(44) (146) a(300) a(730) i tot
(kev) (mb) (mb) (mb) (mb) (mb) Refs.
150 1440 £ 200¢ 440 £ 2007 k
250 >190 + 100« ¥ 200 + 150¢ 480 £ 1807

500 >180 £ 100+ ® 490 + 250« 670 + 2707
1000 1400 + 200%

500 >800 £ 2004+ c
1000 >1100 £ 200+ »
1000 1350 £ 200¢ !
550 1430 = 200c- 4 200 + 60¢ 1720 + 2107 m
1000 >900 + 2507 ¢ ¢ 600 £ 190 ¢ 90 £ 50c- ¢ 520 + 80°- ¢ 2100 4 330¢
1000 1200 = 7004 +. ¢ »

= Sphere transmission value, correction for radiative capture made with an assumed value of o(n, v).

» Lower limit due to bad resolution.
< Time-of-flight value.
¢ Differential inelastic scattering cross section measured.

e 47 times the differential inelastic scattering cross section at 90°.

/ 145°/90° scattering ratio 1.00 £ 0.2,
¢ Sum, not a directly measured value.

» Value obtained from measured total and differential elastic scattering cross sections and an assumed value of o(n, v).

* Without excitation of the levels at 44 and 146 kev.
7 Error estimate by L. Cranberg (LA-2177).

& See reference 1. Includes results of R. C. Allen, R. B. Walton, R. B. Perkins, R. A. Olson, and R. F. Taschek, Phys

Rer. 104, 731 (1956) and R. C. Allen, ¢bid. 105, 1796 (1957).
! See reference 3.
» See reference 5.
n See reference 4.
¢ See reference 2.

method. In this method resolution and multiple
scattering difficulties also enter, but not as strongly
as in other methods. In Table I are given the time-
of-flight results of Cranberg and Levin (5).

When one examines the entries in Table I, one
secs that they sharply contradict one another. The
exact reasons for these contradictions are not known,
but Cranberg has suggested in a new work (9) that
they originate in the resolution and multiple scat-
tering difliculties’already mentioned.

In any case, we believe that the time-of-flight
values are the most reliable. Particularly, we assume
that the two time-of-flight values at 550 kev are es-
sentially correct. For, firstly, the resolution at 530
kev was rather good, as can be seen from the pub-
lished time spectra; and, secondly, the extent of
multiple scattering was not large. For this latter
Cranberg has tried to correct with the help of Monte
Carlo caleulations. (Ifurthermore, Cranberg ef al.
measured the angular distribution at 550 kev,
whereas at 1 Mev they only measured the differ-

ential scattering cross section at 90°). These two
550 kev values will then be used in what follows to
determine the other inelastic cross sections.

II. THEORETICAL BASIS OF THE CALCULATIOXNS

In the caleulations we employ the well-known
method of Hauser and Feshbach (7), augmented
however, in the following respects:

1. The strength functions will not be determined
from the optical model but will be taken as free
parameters. (However, we will use the optical model
as a guide in what follows.) In order to calculate the
cross sections, we must consider neutrons of orbital
angular momenta, [, up to [ = 4. To each angular
momentum belongs a strength function, so that we
have, in all, five free parameters. These parameters
can be determined for low energies as follows: IFor
! = 0 one can obtain the strength function from the
resonance data of Rosen (10). For the special case
of U™ we can set the strength functions belonging
tol = 2 and ! = 4 equal to that belonging tol = 0.
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Tor, the curve of the I = 0 strength function as a
function of mass number has a minimum near A =
938 (11). In this case the strength functions belong-
ing to partial waves of even [ are in antiresonance,
from which one can conclude, that the even! strength
functions are all virtually equal (at least for not too
large ). This particular problem has been dealt
with by the author in somewhat greater detail in
another work (72), and the conclusion sucecessfully
compared with the simple optical mode! of Fesh-
bach et al. (6) in a special case.

Since the strength functions belonging to odd 1
are nearly in resonance at A = 238, they are not
equal to one another. These two remaining param-
oters then are those which shall be determined from
the experimental data.

2. The energy dependence of the strength funec-
tions is largely determined by two things: (¢) by the
“giant” resonances of a single nucleon (6, 13), and
(%) by the interference of the many particle reso-
nances of the compound nucleus at high energies.
We approximate these two energy dependences in
the following way:

For an ordinary central interaction between the
nucleus and neutron the following equation holds
(14):

481/1][[

T, = 1

CTINY = AY/MP L+ (/M) W
where

T = the transmission coeflicient of the nucleus

for neutrons with angular momentum /[;

N; = the real part of the logarithmic deriva-

tive, (1/¥)(d/dr)(rg), of the radial wave
function of the neutron on the nuclear
surface;
— M, = the corresponding imaginary part; and
s;and A; = the penetration factor and level shift
factor, respectively, defined by the fol-
lowing recursion relation:

S = X, AO = 0 (23)
2
T 81
8 = 2b
! (l - Al—1)2 -+ 83—1 ( )
2
] —
Al X ( Al-—l) —1 (20)

Bl (l - Al-1)2 + 8?-1

where z is the nuclear radius, R, times the wave
number, k, of the incident neutrons.

According to Blatt and Weisskopf (74) the de-
pendence of N; — 23/; on energy is described by the
function —KZR tan [Z(E) + iq], where Z(E) is a
monotone increasing function of E, and KR and ¢
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are positive numbers. When ¢ is small the trangy,,
sion coefficients will exhibit characteristic giy
resonance behavior. This happens near Z(E) = 4,
at which point N; = 0 and A; & ¢KR, its minimy, .
value. Actually, the peak value of the transmigsi,.
coefficient lies virtually at the point at whi,,
N; = A;, which is the familiar level shift phenom,
non. When Z(E) = (n + )7, N; = 0 and M, -
KR/q, its maximum value. These latter condition,.
characterize partial waves in antiresonance; for then;
it follows from (1) that

T; = 481/11[1 (r \

since in most cases of interest A7, >> s;, A; at antj-
resonance. If we assume that 37, varies slowly with
energy, (3) then implies that the transmission co-

,
-
4
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efficients of partial waves which are not in resonarcc .\‘
7Y

are proportional to s;.

For orbital angular momenta which are in reso-
nance, we neglect the expression [(N, — A;)/M Fin
(1) and obtain for the transmission coefficients

481/11[[
0T Gi/AE (4)

Again we assume that Al; varies only slightly with
energy, although in this case this supposition cannot
be very accurate.

In case the resonances of the compound nucleus
are well separated, the equations

Ty = 2a0w/D

T, =

(5a)

Tur = 281701 (ab)

also hold, where
T,.: = neutron width for neutrons of angular
momentum /;
v = the corresponding reduced width; and
D the average spacing between adjacent
resonances.
With the help of thesc relations one can relate the
ratio ¥4/ D, the so-called strength function, with the
transmission coefficient as follows:

Tl = 47:‘81(‘)/3, z/D)

il

(©)
Equation (6) applies, however, only when 77 & 1,
which is the condition for good separation of the
compound nucleus’ resonances. To fulfill this condi-

tion, let us consider very low bombarding energics,
for which the s;, and therefore T, are very small.

1 It is worth noting here that in general D depends on J,
the spin of the relevant levels of the compound nucleus.
When there is only a pure central interaction between the
neutron and nucleus, y%; must have the same J dependence
as D, and the ratio v%:;/D be J independent.

R R —

v
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In this case from (6) and (3) or (4), respectively,
follows

2 1
RALY L.
(D >0 =M,

where the index zero denotes the value of the strength
function corresponding to zero energy. We now as-
sume that Iq. (7) also holds for higher energy. Then,
one can employ Eq. (6) also at high energy if one
defines

(for resonance
- (7)
and antiresonance)

2
% = (v%i/D)o (for antiresonance) (8a)

9 2
Yul _ /D (for resonance)

- 2 2 (Sb)
D 1 + 7si(ynt/D)dl

Equation (8a) is partly a tautology since (3) and (6)
only apply under the conditions that T; < 1. In our
calculations (8a) sufficed for those angular mo-
menta which were in antiresonance, because for
these T was never greater than 1. When, however,
values of v21/D and v%;/I were obtained from the
experimental data at 550 kev, and from them values
of T; and T calculated with (8a), occasionally these
latter values were greater than unity. This, of course,
cannot be since it implies the production of neu-
trons. Thus (8b) must be employed at all energies
for [ = 1 and [ = 3. This problem has been discussed
in detail by Thomas (8), and has also been men-
tioned by Lane and Lynn (15).

3. In the formula of Hauser and Feshbach (7)
expressions of the following form appear:

s 2J +1 ) T, e(ILT) - Ty (I'VJ)
221+ 1) > Tpe(I""J) (9)
i

= o,(II; I'l")

where I and I’ are, respectively, the spins of the
target and residual nuclei and e({lJ), which can
only be equal to 0, 1, or 2, is the number of channel
spins with which neutrons of orbital angular mo-
mentum ! and a target or residual nucleus of spin 1
can combine to form a compound nucleus of spin J.
The sum in (9) contains all possible modes of decay
of the compound nucleus (with spin J). The expres-
sion (9) is actually one of the partial cross sections
for a transition from an initial state with spin  to a
final state of spin I’ through intermediate compound
states of spin J.

In the case that the resonances of the compound
nucleus are well separated, (5a) holds. Then, how-
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ever, ,(Il; I'l") is proportional to
Pnl E(IU)FM'E(IIIIJ)
2 TuweI"1"J)

iregs

(10)

According to Porter and Thomas (16), the T',; are
not constant, but rather are statistically distributed.
They have determined this distribution and it is, as
a matter of fact, a chi-squared distribution of one
degree of freedom (17). Consequently we must
average the ratio (10) over this distribution and em-
ploy this average in (9).

The author has dealt with this problem in another
work (12, 18) as follows: Let us set

R=< I‘aI‘b \
T+ T+ T+ -/

ATa) 4+ (Tp) + (Te) + - -~
(T'a)(Ts)

In general, the caleulation of R entails an N-fold
integration where N is the number of partial widths
involved. When the partial widths are distributed in
member distributions of the chi-squared family,
however, these N integrations can be reduced to just
one. This single integration can be easily evaluated
numerically.

In (9) the products T',;e(IlJ) appear in the fol-
lowing way: €([lJ) T, is the sum of the I',; for all
the different channel spins which are consistent with
1,1, and J. Now the widths are not, by supposition,
dependent on channel spin. In this case, when they
are constant for all compound levels of the same J,
we interpret the sum simply as a number equal to
e(JlJ)Tn . If the widths, however, are statistical
variables we must interpret this sum as a statistical
variable with the average ¢(I1J)(T,;) which is dis-
tributed in a chi-squared distribution of (I1J)
degrees of freedom. A slightly more detailed discus-
sion of this point can be found in references (12)
and (18).

It is quite necessary to apply the correction repre-
sented by (11), since it can occasionally influence
the terms (9) by as much as a factor of 2 (12, 18).
In case T,; is not <D, (8a) no longer holds, but
rather (8b). When the second term in the denomi-
nator in (8b) is not too large, we can neglect its
statistical variation and retain the correction
factor (11).

4. In the calculation of the inelastic eross section
the J and energy dependence of D plays no role (12).
Since, however, these dependences are important in
the calculation of the radiative capture cross section,
we assume, following Lang and Le Couteur (19),

(11)
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that D, is proportional to (2J ~+ 17! and that it
varies with energy according to the formula pub-
lished by these authors. Finally we assume that Ty,
the radiative width, is energy-independent and is the
same for all resonances.

3. For this caleulation one must know the spin
and parity of each level which is excited. In [
besides the ground state, there are four excited
states known helow 1 Mev, lying, respectively, at
44, 146, 300, and ~ 730 kev (1-§). For even-even
nuclei the ground state is 0+ ; the first excited state
at 44 kev has been found by Coulomb excitation and
is clearly determined as a 2+ level (20). The ener-
gies of the first three excited states are nearly in the
ratio 3:10:21, which characterizes a rotational band
(21). Therefore, we can be relatively sure that the
spins and parities of these levels are, respectively,
24, 44, and 6+.

TFor the level at 730 kev, there are no such simple
considerations available with which one can deter-
mine its spin and parity. Nevertheless the possibili-
ties are few in number. For nuelel, two possible kinds
of levels are known, ordinary “‘nucleonic” levels and
collective levels. For heavy, even-even nuclei only
spins and parities of 0+ or 2+ have been observed
for the first excited “nucleonic” level (22). The most
probable collective motions are either the g8 or v

0 3+ 1076 kev
D 2+ 1030
c 2+ 986
¢ 0+ 935
B - 605
A 8+ 514
A 6+ 303.7
A 4+ 146.0
A 2+ 44 44
A O+ 0

Py 238

Fi1a. 1 The level scheme of Pu®$ up to about 1 Mev

quadrupole vibrations of Bohr and Mottelsa, )
or octupole vibrations (22, 23). The first tyw,
tions imply the respective choices 0+ or 24§,
spin and parity. In the case of octupole vibra:.
one obtains levels of negative parity, of whicl,
Jevels have already been observed at low excity:
energies in heavy even-even nuclei (23). Thus
expect a spin and parity for the state at 730 1.
most probably of either 0+, 24 or 1.

We can test these ideas on the well-known Je.
scheme of Pu™ (24), which is given in Iig. 1. The.
the determination of spins and parities is relativels
sure. There are four groups of different levels. Tt
first, marked A, is the ground-state rotational haud.
The second, marked B, consists of a single 1— lovel,
The third, marked C, is 2 0+ level, upon which
further rotational level is built. Presumably this 04
level is a 8 vibration. The fourth group, marked D
is a 24+ level, also upon which a further rotutiona{
level is built. This 2+ level is presumably a y
vibration.

If these levels are rez&lly collective, then one ex-
pects that two nuclei which differ only in the ex-
change of a pair of protons for a pair of neutrons will
have quite similar level schemes. With this presup-
position we can compare the level schemes of T
and Pu®™®. From this comparison it follows that the
level at 730 kev is probably a 1— level, while the
group of poorly resolved levels in U* which lie at
about 1 Mev probably are 8 and v vibrations.

Upon the 1— level a rotational band can be built.
Sinee this level is one of K = 0 [in the sense of the
colleetive model (21}], the next level of the rota-
tional band is a 3— level. If the moment of inertia
is the same for this band as for the ground-state
band, then the 3— level must lie at 805 kev. The
next level of this band, the 5— level, can be neg-
lected.” In our caleulations both the 1— and 3—
levels were included although experimentally only
one level was observed. (It is clear that levels at 730
and 800 kev would quite probably not be resolved in
a sphere transmission experiment with 1 Mev neu-
trons. This explanation is also a possibility in the
time-of-flight method, in which no level at 800 kev
was observed.)

Calculations have also been performed in which
the two levels at 730 and 805 kev were chosen to have
spins and parities of 0+ and 2, respectively, thus
characterizing a 8 vibration. In this case the 2+
level does not lie at 805 kev, but rather at 775 kev,
this shift, however, introduces only a small perturba-
tion. One also expects here a 4+ level at 880 kev,

2 This neglect is discussed further in the next section

it
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which has been neglected.” FFurther ealculations have
been performed in which the levels at 730 and
805 kev were taken as 24 and 3+ levels, respec-
tively, thus characterizing a vy vibration. Again the
805-kev level really appears at 775 kev, while a
further 44 level is expected at 835 kev. This last
level is again neglected.”

I11. DESCRIPTION OF THE CALCULATIONS AND
COMPARISON WITH EXPERIMENT

The author has already published a calculation
done by the above described method at 550 kev
(12, 18), the purpose of which was the determina-
tion of the strength functions for !/ = 1 and I = 3
from the experimental results given by Cranberg at
this energy. The author used for { = 0 and | = 2
(I = 4 is negligible at 550 kev) the value of the
strength function v5e/D = 0.036. This value came
from the data published in BNL-325 (25). The
results of these earlier calculations were

2

Yn3

D= 0.120

'Y:rlzl
== = 0.040;
) 0.040;

at 550 kev (12)
Not long ago Rosen (10) measured a new value of
the [ = 0 strength function, namely, v5o/D = 0.025,
and as a result the values for { = 1 and [ = 3 have
changed. TFortunately, it is not necessary to repeat
the earlier calculations. For, at 550 kev all the levels
which can be excited have the same parity. There-
fore, the sum which gives the cross section splits into
two groups of terms, all having the same form as in
(9), but where, however, one group contains only
even [-values while the other group contains only
odd l-values. Since we have taken vho/D equal to
v2w/D the terms of the first group are directly pro-
portional toyhe/D. (This result is quite independent
of the statistical considerations previously men-
tioned). Therefore, we can correct these terms for
the changed value of the { = 0 strength function.
The treatment of the second group if terms, which
refer to odd [-values, is similar but somewhat more
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complicated and is further discussed in reference 12.
With the help of the assumption

2 2
Yno - M - M _ ox .
D D ) 0.025 (13)
we obtain finally
2 2
Tl = 0050; X = 0135  at 550 kev (14)

In addition we have taken T, = 0.025 ev and
D, (E = 0) = 18 ev (10).

Table IT gives the results of the new calculations
at 1 Mev, as well as the values from reference 12,
and the corresponding calculated radiative capture
cross sections. It is interesting to note that the exci-
tation cross section of the first three levels at 1 Mev
is nearly independent of the choice of spins and pari-
ties of the upper levels, so that we cannot distinguish
between the three possibilities considered on this
ground at all. In distinetion to the first measured
partial excitation cross section, which represents a
lower limit, the other measured partial cross sections
at this energy can be directly compared with the
calculated values. The agreement is quite good.
Against 600 4= 190 mb measured for the excitation
cross section of the 146 kev level we obtain in the
three cases considered, respectively, 720, 725, and
660 mb. Against 90 4 50 mb measured for the
300 kev level we obtain, respectively, 80, 80, and
70 mb. The three calculated excitation cross sections
of the +4 kev level at 1 Mev are, respectively, 1380,
1390, and 1320 mb, although the measured value
amounts to only 900 mb. We see in this difference
the influence of insufficient resolution of the elasti-
cally scattered neutrons from those which excite the
44 kev state. We consider the calculated value more
reliable than the measured one in this case, and in
any case, consider our caleulated values more trust-
worthy than the published experimental values in
Table T due to authors other than Cranberg e al.

TABLE 1I
CALCULATED NEUTRON ExcitaTioxn Cross SEctions AXD Raprative CartrrRe CRross SECTIONS

Eer a(4d)m, (146) mn (300) mn a(730)mn a(803)mm Trot mb Tyl
150 810 — — — — 810 180
550 1430¢ 200 — — — 1720 140
1380 720 80 395 (17> 245(37) 2820 140
1000 51390 725 80 190 (0*) 400 (2+) 2785 150
t 1320 660 70 480 (2%) 290 (3+) 2820 140

« Normalization.
* Choice of spins and parities.
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1500

1000

o (mb)

500

0
¢] 200 400

600 800 1000

ENERGY (kev}

Frc. 2. The caleulated partial neutron excitation cross sections assuming the level at 730 kev is a 1— level

Finally, the caleulated capture cross sections agree
well with the data published in BNL-325 (25).

Against 520 == 80 mb which presumably represents
the sum of the excitation cross sections of the remain-
ing levels at 730 kev and above, the calculations
give, respectively, 640, 690, and 895 mb. The last
two values contain estimated contributions to the
sum from the hitherto neglected 4+ states of 100
and 125 mb, respectively. The corresponding contri-
bution to the first value from the 5— level has been
estimated to be of the order of magnitude of 10 mb,
in the case where this level lies as low as 835 kev.’
In the third case the caleulated value is certainly too
large. Therefore, we discard the choice 2+ for the
spin and parity of the 730 kev state. Between the
other two possibilities we still cannot decide.

The accuracy of the caleulated values of the exci-
tation cross sections depends strongly on three dif-
ferent things. First, we have employed approximate
values of the strength functions and transmission co-
efficients. We have, however, chosen these quantities
so that the calculations necessarily give the experi-
mental values at 350 kev, so that only small errors
are expected from this source. Secondly, we have
presupposed the spin-independence of the strength
function, although it is known that the interaction
between neutrons and nuclel is spin dependent.
Again, however, we do not expect large errors from
this for the same reason as before. Thirdly, there is
the possibility that some of the levels may be excited

3 Moszkowski (22) has noticed that in Ra??® in the case
of a rotational band of negative parity, the moment of
inertia is about twice as large as in the case of positive
parity. If this holds for U2® also, then the 5— state really
appears at 835 kev.

by direct interaction of the neutrons with the non-
spherical surface of the nucleus.

This direct excitation was first treated by Brink
(26) using first-order perturbation theory. In first
order if the ground state is 0+, only 24 levels can
be excited through quadrupole deformation. The
author has carried out this perturbation caleulation
(12) for the -+ kev level at 550 kev and finds a direct
excitation cross section of about 100 mb. Chase ef al.
(27) have performed this caleulation much more
accurately without the use of perturbation theory
and find essentially the same result. With octupole
deformation only 3— levels can be excited mn first
order. The excitation cross section depends strongly
on the magnitude of the deformation; we presume it
is quite small in the case of octupole deformation.
For these reasons we have neglected the direct exci-
tation process.

In Iig. 2 are plotted the excitation cross sections
for which the spin and parity of the 730 kev state
have been chosen as 1 —. In the case of the cross see-
tions for the 44- and 146-kev levels we have suffi-
ciently many points to draw a relatively good inter-
polation curve. In the case of the 300-kev level we
have ouly two points, which we have joined by a
reasonable curve. This curve is, of course, not very
reliable, but the cross section is quite small, and the
errors in it probably unimportant.

In the case of the 730-kev Ievel (which is at the
moment being considered as 1—) we have pro-
ceeded as follows: at 1 Mev about 90 % of the cross
section is contributed by those channels in which
the emitted neutrons have / = 0 or 1. At lower
cnergy this contribution is still larger. Thercfore, we

Ve
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F16. 3. The calculated partial neutron excitation cross sections assuming the level at 730 kev is a 0 + level

can approximate the energy dependence of the exci-
tation cross section for the 730-kev level as

solz”) sy(z” -

o(E) = 114 {so(x’)} + 242 [ (@) ] (15)
where +” = the value of x corresponding to an
energy J — 730 kev, &' = the vaue of x correspond-
ing to an energy of 270 kev, and the numbers 114
and 242 are the respective contributions of the [ = 0
and [ = 1 exit channels. At 1 Mev we have employed
the value from Table II [some 10 % higher than the
value given by (15)] and drawn a smooth curve
through this point which becomes tangent to (15) at
lower energies. In the case of the 805-kev level,
which in this discussion is a 3— level, we have em-
ployed the same method. In both cases one obtains
a nearly linear increase in the cross section. In Fig. 3,
are plotted excitation cross sections obtained in the
same way as above for the case that the spin and
parity of the 730-kev level is 0+.

The caleulated values are considered by the author
to be more reliable than any measurements save
those by Cranberg ¢t al. IFor the excitation cross sec-
tion of the level at 44 kev the calculated values are
still, however, considered the more trustworthy. Ior
the levels at 146 and 300 kev the caleulated values
and the measured ones agree within experimental
error, so that a decision between them has little
sense. FFor the levels between 730 kev and 1 DMev,
the calculated values are just outside the quoted ex-
perimental error, so that a slight reduetion may be
applied to the calculated cross sections. In any case
both the variation of these cross sections with
energy, and the calculated ratio of excitation cross

sections for the several states considered, is felt to
be reliable.
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