KERNFORSCHUNGSZENTRUM

KARLSRUHE

APRIL 1960

INSTITUT FÜR KERNVERFAHRENSTECHNIK

DAS TRENNDUSENVERFAHREN

III. ENTMISCHUNG DER URANISOTOPE

VON E. W. BECKER UND R. SCHUTTE

KERNREAKTOR

BAU- UND BETRIEBS-GESELLSCHAFT M. B. H.

KARLSRUHE
Das Trenndüsenverfahren

III. Entmischung der Uranisotope

Von E. W. Becker und R. Schütte
Das Trenndüsenverfahren

III. Entmischung der Uranisotope

Von E. W. Becker und R. Schütte

Kernforschungszentrum Karlsruhe, Institut für Kernverfahrenstechnik

Mit einer einstufigen Trenndüsenanordnung wird die Entmischung der Uranisotope im UF₆ in Abhängigkeit vom Einladvorschub, vom vorderen und hinteren Gegenwind, von der Einlaßtemperatur und von der Geometrie des Trennsystems bestimmt. Mit den experimentellen Ergebnissen werden die optimalen Betriebsbedingungen und die spezifischen Aufwandsgrößen des Trenndüsenverfahrens für den Fall der Uranisotope ermittelt. Es zeigt sich, daß die spezifische ideale isotherme Kompressionsarbeit beim Trenndüsenverfahren in derselben Größenordnung wie beim Diffusionsverfahren liegt.

Als schwächster Punkt des Trenndüsenverfahrens erweist sich das große spezifische Ansaugvolumen, das verhältnismäßig hohe Investitionen für die Kompressor- und Rohrleitungen bedingt.

In zwei früheren Arbeiten 1, 2 wurde ein neues Gas- und Isotopenentröpfenverfahren beschrieben, das auf der teilweise räumlichen Entmischung verschiedener Gasen in einer expandierenden Über schallströmung beruht. Die Entwicklung wurde hauptsächlich mit dem natürlichen Gemisch der Argonisotope durchgeführt, dessen Häufigkeitsverhältnis sich massenspektrometrisch besonders schnell und genau bestimmen läßt.

Da das Verfahren vor allem für die Anreicherung des in der Kerntechnik benötigten Uranisotops U²³⁵ interessiert, wurden die Versuche in der Zwischenzeit auf Uranhexafluorid ausgedehnt. Über das Ergebnis dieser Untersuchungen wird im folgenden berichtet 3.

Die verwendeten Bezeichnungen

Um das Lesen der Arbeit zu erleichtern, sollen die in den früheren Veröffentlichungen eingeführten Bezeichnungen nochmals kurz zusammengestellt werden:

\[V_s = \frac{2RT}{\varepsilon A^\theta (1—\theta)} \left(\frac{\theta}{p_\theta} + \frac{1—\theta}{p_\theta} \right) \]

(1)

Spezifische ideale isotherme Kompressionsarbeit:

\[E_s = \frac{2RT}{\varepsilon A^\theta (1—\theta)} \left(\theta \ln \frac{p_\theta}{p_0} + (1—\theta) \ln \frac{p_\theta}{p_0} \right) \]

(2)

Spezifische Schlitzzähne:

\[l_s = \frac{2}{\varepsilon A^\theta (1—\theta)} \frac{\text{Schlitzzähne}}{L} \]

(3)

Die Apparatur

Wegen der korrodierenden Eigenschaften des UF₆ (s. Anm. 4) wurden die Anreicherungsversuche in einer auswechselbaren Apparatur aus V2A-Stahl mit stopfbuchsenlosen Ventilen ausgeführt 5. Ihr Aufbau und die Versuchstechnik sollen an Hand der schematischen Darstellung Abb. 1 erläutert werden.

Das Trennsystem S besteht aus einer 15 mm langen Schlittdüse und einem ebenso langen Abscheider, die im gewünschten Abstand zu einer mechanisch starrer Einheit zusammengebaut sind. Das System wird als 1

6 Heraeus-Membran-Vakuumanemeter VM-M. Wir danken der Firma Heraeus für die Überlassung einer korrosionsgeschützten Ausführung dieses Gerätes.
7 Beim Siedepunkt der flüssigen Luft ist der Dampfdruck des UF₄ nicht mehr meßbar.
8 Mg und Mg₆ sind korrosionsfeste Ausführungen des von E. W. Beeza u. O. Sztec, Z. Angew. Phys. 4, 20 [1952].
führung der Proben sicherzustellen, wird nach der mutmaßlichen Beendigung des Überfrierens das Ventil der jeweiligen Kühlfalle zur Kammer geöffnet und der Restdruck mit den Drucksäuggeräten kontrolliert.

<table>
<thead>
<tr>
<th>Bezeichnung der Geometrie</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Düsenweite (mm)</td>
<td>0,085 – 0,045 – 0,049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abschrägwinkel f</td>
<td>0,29 – 0,19 – 0,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstand Düse – Abschluß d (mm)</td>
<td>0,10 – 0,08 – 0,11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die massenspektrometrischen Messungen

Abb. 4: Registrierung der Haufigkeitsverhältnisse r = (U₁₈₅F₆)² / (U₁₈₆F₆)².

Zwei abwechselnd in das Massenspektrometer eingebessene UF₆-Proben mit den sich ergebenden Einzelwerten der Trennfaktoren A. Der Mittelwert des Elementareffektes der Trennung beträgt r = (3,50 ± 0,02) · 10⁻⁵.

auffänger über zwei Verstärker gepeilte Streifenblattsammler registriert unmittelbar das Verhältnis (U₁₈₅F₆)² / (U₁₈₆F₆)², der durch Elektronenbeschluß erzeugten (UF₆)³⁺-Ionen. Bei konstanter Magnetfeldstärke wird der Beschleunigungsspannung eine schwache Sägezahnspannung überlagert, die das Ionenbündelpaar etwa zweimal in der Minute über den Auffängerspalt wandern läßt. Dadurch wird erreicht, daß das als Messwert benutzte Maximum des Ionenstromverhältnisses mit Sicherheit erfaßt wird.

Vor der Messung werden die an den Einlaufkabel des Spektrometers angeschlossenen UF₆-Proben auf ihre Reinheit geprüft. Dazu werden die Probenbehälter in
Versuche mit niedrigen Gegendrucken

Zunächst wurden mehrere Versuchsreihen bei völlig geöffneten Ventilen V_F und V_G (Abb. 1) durchgeführt. Die Gegendrucke p_F und p_G lagen dabei so niedrig ($<10^{-1}$ Torr), daß sie keinen messbaren Einfluß auf die Entmischung mehr hatten. Es war daher nicht erforderlich, p_F und p_G auf bestimmte Werte einzustellen, was die Versuchstechnik wesentlich vereinfachte.

a) Zimmertemperatur

Abb. 5 zeigt die Abhängigkeit des Abschlußverhältnisses θ und des Elementareffektes der Trennung s_A vom Einlaßdruck p_F für die 3 Kombinationen der geometrischen Parameter (vgl. Tab. 1).

Das Abschlußverhältnis ist bei großen Werten von p_F nahezu vom Einlaßdruck unabhängig, wie dies für eine isentrope Expansion mit konstantem Adiabatenexponenten zu erwarten ist. Die Abweichungen, die zu kleineren Drucken hin auftreten, dürften mit dem Übergang der gasdynamischen in die molekulare Strömungsform und mit dem steigenden Einfluß der Reibung zusammenhängen.

Der Elementareffekt der Trennung durchläuft in allen Fällen ein ausgeprägtes Maximum. Der Abfall bei großen Werten des Einlaßdruckes ist darauf zurückzuführen, daß der entmischende Druckdiffusionsstrom in diesem Bereich vom Absolutdruck weitgehend unabhängig ist, während der Einstrom I des zu entmischenden Gases mit steigendem Druck zunimmt. Der Abfall bei kleineren Werten von p_F kann wieder mit dem Übergang der gasdynamischen in die ohne räumliche Trennung verlaufende molekulare Ausströmung erklärt werden. Dieser Übergang wird durch die Kennzahlen-Zahl, d.h. das Verhältnis aus Strahlädike und gaskinetischer freier Weglänge beschrieben. Da die Düsenweite und damit die Strahlädike bei der Geometrie B nur etwa halb so groß wie bei A ist, tritt eine bestimmte Entmischung im Fall B bei einem etwa doppelt so großen Druck wie im Fall A auf.

Beider Geometrie C liegt das Abschlußverhältnis nahezu um einen Faktor 2 höher als bei der mit praktisch gleicher Düsenweite arbeitenden Geome-

19 Wegen der theoretischen Beschreibung des Trenndüsen-effectes vgl. II sowie die demnächst erscheinende Arbeit von F. Zugs.

20 Die bei dieser Betrachtung benötigte Ähnlichkeitsbeziehung gilt streng nur dann, wenn die Wicklänge aller geometrischen Parameter im gleichen Verhältnis verändert wird. Dies ist beim Übergang von der Geometrie A zur Geometrie B nach Tab. 1 aber nicht der Fall. Die Betrachtung dürfte demnach den Kern der Sache treffen, da die beiden Geometrien etwa dasselbe Abschlußverhältnis liefern und Entmischungen, die im Bereich der Grenzentmischung liegen (vgl. II, Abb. 3).
Abb. 5. Der Elementareffekt der Trennung ε_A und das Abschälverhältnis ϑ in Abhängigkeit vom Einlaßdruck p_B bei niedrigen Gegendrucken (p_F, $p_G < 10^{-1}$ Torr) und Zimmer- temperatur für die Geometrien A, B und C.

Abb. 6. Der Elementareffekt der Trennung ε_A und das Abschälverhältnis ϑ in Abhängigkeit von der Einlaßtemperatur T_B bei einem Einlaßdruck $p_B = 30,0$ Torr und niedrigen Gegendrucken (p_F, $p_G < 10^{-1}$ Torr). Geometrie C.

Das Verhältnis von Gasdurchsatz L und Einlaßdruck p_B war bei allen Geometrien oberhalb von $p_B = 5$ Torr praktisch konstant. Die Mittelwerte betrugen in diesem Bereich bei Zimmertemperatur:

<table>
<thead>
<tr>
<th>Geometrie</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/p_B</td>
<td>11,5</td>
<td>6,9</td>
<td>$7,2 \cdot 10^{-3}$ g Mol/h Torr.</td>
</tr>
</tbody>
</table>

b) Erhöhte Temperatur

Abb. 6 zeigt die Abhängigkeit des Abschälverhältnisses ϑ und des Elementareffektes der Trennung ε_A von der Zimmertemperatur T_B für die Geometrie C bei einem Einlaßdruck von 30 Torr.

Das Abschälverhältnis nimmt zwischen Zimmertemperatur und 210 °C von 0,33 auf 0,26 ab. Der Effekt ist im Rahmen der vorliegenden theoretischen Ansätze nicht zu erklären. Es muß in Erwägung gezogen werden, daß er auf einer Temperaturabhängigkeit der geometrischen Parameter des Trennzyums als Folge der thermischen Ausdehnung beruht. In diesem Temperaturbereich nahm gleichzeitig der normierte Durchsatz L/p_B innerhalb der Fehlergrenze linear von $7,2 \cdot 10^{-3}$ auf $6,2 \cdot 10^{-3}$ g Mol/h Torr ab.

Der Elementareffekt der Trennung steigt im untersuchten Temperaturbereich praktisch linear um den Faktor 1,64 an. Der Effekt kann zum größten
Teil auf die Verminderung des Abschlierverhältnisses zurückgeführt werden, die regelmäßig zu einer Steigerung von e_A führt. Darüber hinaus ist eine positive Temperaturabhängigkeit von e_A zu erwarten, weil der Einlaßdruck p_0 mit 30 Torr beträchtlich über dem aus Abb. 5 folgenden optimalen Einlaß-
druck (≈5 Torr) liegt und eine Temperaturerhöhung bezüglich der für die Entmischung maßgeblichen Knudsen-Zahl wie eine Vermindernng des Druckes wirkt.

Abb. 7 zeigt die Abhängigkeit des Abschälverhältnisses \(\Theta \) und des Elementareffektes der Trennung \(\varepsilon \) vom Einlaufdruck \(p_0 \) bei einer Temperatur von 152°C für die Geometrie C. Zum Vergleich sind die entsprechenden Kurven für Zimmer- temperatur aus Abb. 5 mit eingezeichnet. Man bemerkt, daß das Maximum der Entmischung für die höhere Temperatur bei einem größeren Einlaufdruck liegt, wie dies auf Grund der negativen Temperaturabhän- gigkeit der Knudsen-Zahl zu erwarten ist.

Versuche unter Variation der Gegendrucke

Zur Ermittlung der günstigsten Betriebsbedingun- gen mußten, neben der Geometrie des Trennsystems, auch der Einlaufdruck und die Einlaßtemperatur in Betracht gezogen werden. Der erforderliche Variationsbereich liegt dabei auf Grund der früheren Versuche mit leichten Isotopenmischungen in verhältnismäßig engen Grenzen voraus- sehen. Bei den Geometrien A und B wurden die Versuche bei Zimmertemperatur mit jeweils 3 verschiedene Einlaufdrucken durchgeführt, wobei besonders Gewicht auf die Geometrie B gelegt wurde. Bei der Geometrie C wurde mit nur einem Einlauf- druck \(p_0 = 20.9 \text{ Torr} \) gearbeitet, dafür aber eine weitere Methode bei 152°C angeschlossen. Die für das Abschälverhältnis \(\Theta \) und den Elementareffekt der Trennung \(\varepsilon \) erzielten Werte sind in Abb. 8 bis 10 für verschiedene vordere Gegendrucke \(p_e \) jeweils in Abhängigkeit vom hinteren Gegendruck \(p_0 \) dargestellt. Der qualitative Verlauf der Kurven ist ähnlich wie bei den leichten Isotopen:

Das *Abschälverhältnis nimmt, bei konstantem Einlaufdruck \(p_e \), mit fallendem \(p_e \) und steigendem \(p_0 \) zu. Dies beruht darauf, daß mit kleiner werdendem vorderen Gegendruck das Expansionsverhältnis und damit der Strahldurchmesser zunimmt, während mit steigendem hinterem Gegendruck der Durchtritt des Strahls durch die Abschlägeröffnung erschwert wird. Mit steigendem Einlaufdruck \(p_0 \) wird das Abschälverhältnis \(\varepsilon \) mit \(p_0 \) unempfind- licher. Dies ist verständlich, da für die Eigenschaften des Strahls im wesentlichen die Druckverhältnisse \(p_a/p_e \) und \(p_a/p_0 \) maßgeblich sind.

Der *Elementareffekt der Trennung nimmt, bei konstantem Einlaufdruck \(p_e \), im Mittel mit fallendem \(p_0 \) zu, obwohl das Abschälverhältnis gleichzeitig an- steigt. Der Effekt ist bei kleinen Werten von \(p_0 \) besonders ausgeprägt. Er kann auf die mit der Steige-

\[8.003 \]

13 Vgl. II, Abb. 8.
14 Für die Entmischung ist die auf die Strömflächen bezogene *Normalkomponente des relativen Druckgradientes maßgeblich*. Bei einer Erhöhung des Expansionsverhältnisses steigt diese u. a. wegen der starken Drallbilung verstärkt, der sich die positive Wirkung des gesteigerten Expansionsverhältnisses mit der negativen Wirkung.
Abb. 11. Das spezifische Ansaugvolumen \(V_s \), die spezifische ideale isotherme Kompressionsarbeit \(E_s \) und die spezifische Schlitzlänge \(l_s \) berechnet aus den in Abb. 9 wiedergegebenen Meßwerten für die Geometrie A.

Abb. 12. Das spezifische Ansaugvolumen \(V_s \), die spezifische ideale isotherme Kompressionsarbeit \(E_s \) und die spezifische Schlitzlänge \(l_s \) berechnet aus den in Abb. 9 wiedergegebenen Meßwerten für die Geometrie B.
Abb. 15. Die Minimalwerte der spezifischen Kompressionsarbeit, der spez. Schlitzlänge und des Quotienten aus dem spez. Ansaugvolumen und der Düsenweite in Abhängigkeit vom Produkt aus Einlassdruck p_B und Düsenweite für die Geometrien A und B.

bis (3) das spezifische Ansaugvolumen V_A, die spezifische ideale isotherme Kompressionsarbeit E_A und die spezifische Schlitzlänge l_0 berechnet aus den in Abb. 10 wiedergegebenen Mittelwerten für die Geometrie C.

Ermittlung der günstigsten Betriebsbedingungen

Aus den in den Abb. 8 bis 10 dargestellten experimentellen Ergebnissen wurde mit den Glg. (1) bis (3) das spezifische Ansaugvolumen V_A, die spezifische ideale isotherme Kompressionsarbeit E_A und die spezifische Schlitzlänge l_0 berechnet. Die Ergebnisse sind in den Abb. 11 bis 13 dargestellt.

Für die am besten untersuchte Geometrie B sind in Abb. 14 die bei der Variation von p_G erzielten Minimalwerte der spezifischen Aufwandsgrößen in Abhängigkeit vom vorderen Gegendruck p_F dargestellt. Man bemerkt, daß die Kurven für das spezifische Ansaugvolumen auch im untersuchten Bereich
DAS TRENNDUSENVERFAHREN III

Die aus Abb. 12 folgenden Minimalwerte \(V_{s, \text{min}} \), \(E_{s, \text{min}} \), und \(I_{s, \text{min}} \) der spezifischen Aufwandsgrößen der geometrischen Formabhängigkeit vom vorderen Gegendruck \(p_g \).

Abb. 14. Die aus Abb. 12 folgenden Minimalwerte \(V_{s, \text{min}} \), \(E_{s, \text{min}} \) und \(I_{s, \text{min}} \) der spezifischen Aufwandsgrößen der Geometrie B in Abhängigkeit vom vorderen Gegendruck \(p_g \).

Durch die Erhöhung der Einlaßtemperatur \(T_B \) von 21\(^\circ\)C auf 152\(^\circ\)C werden nach Abb. 13 alle Aufwandsgrößen merklich vermindernt. Dabei ist jedoch zu berücksichtigen, daß \(V_s \) und \(E_s \) in Einheiten von \(R \text{Torr} \) angegeben sind. Der aus Abb. 13 hervorgehende Vorteil der Temperatursteigerung läßt sich daher nur realisieren, wenn sich die Temperatursteigerung auf die Trennelemente beschränkt und die Kompressoren in beiden Fällen auf derselben Temperatur gehalten werden.

\[\text{bei der spezifischen Schlitzlänge, deren Definitionsgleichung (3) die Gegendrucke nicht enthält, kann ein Minimum im Bereich endlicher Gegendrucke nur auftreten, wenn ein Gebiet mit positiver Gegendruck-Abhängigkeit des Trompeteneinsatzes existiert. Ein solcher Effekt kann sich als Folge der im vorherigen Abschnitt beschriebenen positiven Wirkung des Rückflusses des Keramikgases ergeben.} \]
Diskussion der Ergebnisse

In Tab. 2 sind die bei Zimmertemperatur mit den drei Geometrien erzielten Minimalwerte der spezifischen Aufwandsgrößen in Abhängigkeit vom Einlaßdruck p_B dargestellt.

In Tab. 3 sind die mit der Geometrie B erzielten Werte der spezifischen Aufwandsgrößen zusammengestellt, die sich unter den Optimalbedingungen „kleinste spezifische Kompressionsarbeit" bzw. „kleinstes spezifisches Ansaugvolumen" ergeben. Daneben sind die Werte eingetragen, die in der früheren Veröffentlichung ² auf Grund der Entmischungsversuche mit den Argonisotopen für UF₆ abgeschätzt wurden. Zur Zeit dieser Veröffentlichung lagen noch keine Erfahrungen über den Einfluß des gaskinetischen Wirkungssquerschnitts und des Adiabatenexponenten auf die Entmischung vor. Die Abschätzung konnte daher nur unter der Voraussetzung durchgeführt werden, daß die optimalen Betriebsbedingungen beim Argon und Uranhexafluorid dieselben seien, während sich die Elementareffekte der Entmischung wie die relativen Massendifferenzen der Isotope und die molaren Durchsätze durch die Düse umgekehrt wie die Wurzeln aus den mittleren Massen der Isotopenmischung verhalten.

Nach Tab. 3 liegen im Fall der spezifischen Schlitzlänge die gemessenen Werte im Mittel um den Faktor 3,1 und im Fall des spezifischen Ansaugvolumens um den Faktor 1,8 höher als die abgeschätzten Werte. Diese Diskrepanz kann damit erklärt werden, daß der gaskinetische Wirkungssquerschnitt von UF₆ etwa um einen Faktor 3,5 größer ist als der von Argon.¹⁷ Nach der gaskinetischen Ähnlichkeitsbeziehung geht die Schicht-Thrésse-Einheit, wie deren opt. Beitrage durch Ihre dissoziation Abnahme.

18 Aus dem Vergleich scheint hervorzugehen, daß der Unterschied im Adiabatenexponenten von Argon und \(UF_6 \) ohne größere Bedeutung für die Entmischung ist. Dies beruht möglicherweise auf einer unvollständigen Akkommodation der inneren Freiheitsgrade des \(UF_6 \) während der mit nur wenigen Zusammenstoßen verlaufenden Expansion.

20 Da bei der Vergrößerung des Abstandes zwischen Düse und Abschalter (Übergang von der Geometrie B zur Geometrie C) nach Tab. 2 alle Aufwandsgrößen ansteigen, kann erwartet werden, daß ein etwas kleinerer Abstand günstiger wäre. Dafür sprechen auch die früheren Versuche mit den Argonkotopen, bei denen die niedrigsten Werte der spezifischen Aufwandsgrößen bei einem Verhältnis Düsenweite zu Abstand Düse–Abschalter \(\approx 1:1 \) erreicht wurden.

21 Das spezifische Ansaugvolumen kann theoretisch durch weitere Verminderung der kritischen Abmessungen des Trenndüensystems herabgesetzt werden. In der Praxis ist jedoch eine untere Grenze durch mechanische Probleme gegeben.