ABSOLUTE YIELD MEASUREMENTS OF RADIATION-PRODUCED RADICALS BY ELECTRON SPIN RESONANCE

W. KÖHNLEIN, A. MÜLLER
Absolute Yield Measurements of Radiation-Produced Radicals by Electron Spin Resonance

By W. KÖHNLEIN, DIPL. PHYS. and A. MÜLLER, PH.D.
Institut für Strahlenbiologie, Kernforschungszentrum Karlsruhe, Germany

(Received 13 October 1961)

§ 1. INTRODUCTION

In the course of our investigations into the possibilities of using electron spin resonance (E.S.R.) spectrography for quantitative determinations of the yield of free radicals produced by ionizing radiation, we have recently achieved some improvement in the technique of measurement. A report of the main features of our methods is thought to be useful at the present stage, as the difficulties inherent in such measurements do not appear to be generally recognized (cf. Müller and Zimmer 1959).

In addition, we have redetermined the yields for several amino acids in the way described below and compared the results with those of other authors.

§ 2. INSTRUMENTS AND METHODS

2.1. Dosimetry and Irradiations

Obviously, an exact determination of dose is an essential part of the measurements of radical yields. This is somewhat difficult to attain with soft x-rays from a tube with 1.5 mm beryllium window operated at 100 kv and 25 ma, and used without additional filter for short irradiation times. The yields obtained in these irradiations were, therefore, checked by using hard x-rays from another tube operated at 150 kv and 20 ma and emitting radiation of a H.V.L. of 6 mm Al. The radiation dose from this tube was measured by three independent methods: (i) the Fricke-actinometer (ferrous sulphate oxidation), (ii) a Baldwin-Farmer ionization chamber calibrated by the British NPL, (iii) an ionization chamber (PTW, Freiburg) calibrated by the German PTB. The mean deviation of all determinations, including those with soft x-rays, was 5%.

2.2. Recording of the Spectra

The measurements of the radical concentrations were performed in several steps.

A commercial E.S.R. spectrograph (Varian Associates) operating at 9500 Mc and recording first derivatives of microwave absorption, was used. The ordinary cavity was replaced by an improved double sample cavity shown in fig. 1, the principle of which has already been described (Köhnlein...
A new feature is the possibility of high frequency modulation (100 kc) which is fed into the cavity by four straight conductors connected outside the cavity so that they form two loops at each sample. This arrangement leaves sufficient space for a low temperature insert or liquid sample cells, and for spatial adjustment of sample tubes. Between the sample holes a tuning screw for the resonant frequency is provided, in order to avoid tuning the klystron which tends to reduce its life.

The modulation loops are energized separately at each sample from the secondary coil of an output transformer, via a low impedance flexible conductor made of copper strips separated by a thin insulating foil.

With the double cavity it is possible to record for each measurement a control spectrum of a secondary standard under identical microwave field strength immediately after registration of the sample spectrum under investigation.

2.3. Evaluation of the Spectra

From the recorded first derivatives one arrives by double integration at a figure F proportional to the spin concentration (Andrew 1953). Alternatively, the first moment M of the first derivative curve can be

† This arrangement was suggested to us by Dr. K. H. Hausser, Heidelberg.
Absolute Yield Measurements

determined. This can be shown in the following way: if \(f(H) \) denotes the absorption as a function of the magnetic field strength \(H \), it follows by partial integration:

\[
\int_{-\infty}^{+\infty} f(H) \, dH = HF(H) \bigg|_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} Hf'(H) \, dH \quad \ldots \quad (1)
\]

In any actual spectrum the first term on the right hand side of eqn. (1) vanishes, as can be verified by inserting Gaussian or Lorentzian functions. Now

\[
F = \int_{-\infty}^{+\infty} dH \int_{-\infty}^{H} f'(H) \, dH = \int_{-\infty}^{+\infty} f(H) \, dH \quad \ldots \quad (2)
\]

and

\[
M = \int_{-\infty}^{+\infty} HF'(H) \, dH. \quad \ldots \quad \ldots \quad (3)
\]

Hence, the values of \(F \) and \(M \) are equal. However, a calculation of the errors involved reveals that these can be substantially reduced by evaluating the first moment instead of integrating twice (Collins 1959). Taking advantage of this fact, a simple but accurate determination of the first moment was achieved by weighing with a modified sensitive balance, the principle of which was suggested by Burgess (1961). One of the scales of the balance, schematically drawn in fig. 2, was replaced by a light aluminium table mounted rigidly onto one arm of the balance. The spectra were cut out from the recording paper and placed upon the table as shown in fig. 2. The homogeneity of the paper (weight per unit area) was checked and found to affect the results by less than 2\%. As the spectra are not recorded to infinity, the error introduced by finite lengths of the cut out spectra was also determined. For this purpose we calculated the corresponding integrals of the Gauss and Lorentz functions. The results are given in table 1. Taking successively Gaussian and Lorentzian single-line spectra, the width \((2a)\) of the integration interval,

<table>
<thead>
<tr>
<th>(\int_{-a}^{+a} f'(H) H , dH)</th>
<th>(\int_{-\infty}^{+\infty} f'(H) H , dH)</th>
<th>(2a/\Delta H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauss</td>
<td>Lorentz</td>
<td></td>
</tr>
<tr>
<td>(0.95)</td>
<td>(2.8)</td>
<td>(41.6)</td>
</tr>
<tr>
<td>(0.90)</td>
<td>(2.5)</td>
<td>(22.6)</td>
</tr>
<tr>
<td>(0.85)</td>
<td>(2.3)</td>
<td>(14.8)</td>
</tr>
<tr>
<td>(0.80)</td>
<td>(2.2)</td>
<td>(11.0)</td>
</tr>
</tbody>
</table>
which will include any given fraction of the area under the infinite curve, is presented in table 1 as a multiple of the interval \((\Delta H)\) between points of maximum slope on the curve.

It can be seen that a sufficient accuracy can easily be obtained with a Gaussian distribution whereas it is rather difficult to reach with a Lorentzian distribution. In practice, \(2a/\Delta H = 15\) was chosen, which according to table 1 corresponds to an error of 15\% with the Lorentzian and to a negligible error with the Gaussian distribution.

2.4. Calibration of Standard Samples

Secondary standards of carbon diluted with calcium carbonate were calibrated with a \(10^{-4}\) molar solution of diphenylpicrylhydrazyl (DPPH) in carbon tetrachloride. The radical content of the DPPH was determined by titration with quinone (Goldschmidt and Renn 1922). The resulting value was also checked by other methods (Köhlein, to be published).

Fig. 2. Schematic top and front view of first moment balance.
§ 3. Results

Numerical values of the radical yields of some amino acids are given in table 2. The chemicals used by us were obtained from the California Biochemical Research Foundation and from Merck, Darmstadt. Irradiations and E.S.R. measurements were done in air at room temperature. The main sources of error in determinations of the yields of radicals produced are the following: (i) radical decay, (ii) saturation of radical concentration, and (iii) saturation of microwave power. The last phenomenon in particular may be the cause of some of the larger discrepancies shown in table 2, as we noticed that it occurred at very different power levels for different compounds. The first source of error was avoided by evaluating only samples which did not show any decay over a period of 10 min and which had been irradiated 10 min before the measurement. Saturation of the radical concentration usually occurs between 5 and 10 megarads. Yields given by us were obtained from compounds irradiated with different doses in the linear dose-effect region. Finally, the microwave power was reduced sufficiently to prevent saturation.

Table 2. Energy expenditure per radical (electron-volts)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine</td>
<td>10–100</td>
<td>60</td>
<td>140</td>
<td>105</td>
<td>17</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Glycyglycine</td>
<td>100</td>
<td>44</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL-α-Alanine</td>
<td>110</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Alanine</td>
<td>1300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>DL-Phenylalanine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>172</td>
</tr>
<tr>
<td>Creatine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>DL-Leucine</td>
<td>1200</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histidine</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>L-Proline</td>
<td></td>
<td></td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>DL-Serine</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>L-Valine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>DL-Valine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>DL-Tryptophane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2500</td>
</tr>
<tr>
<td>L-Tyrosine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>580</td>
</tr>
<tr>
<td>Glutamic Acid</td>
<td>80</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Cysteine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

It is seen (last column) that the values for amino acids containing aromatic rings, i.e. phenylalanine, tryptophane and tyrosine are higher than for the other substances, which vary between 20 and 80 ev. This is in accord with the results obtained by other authors, except some early figures given by Randolph and Parrish (1958).

Summary

The method of measuring the concentration of paramagnetic centres is considered systematically. Some new points of view, and some instrumental accessories are discussed.
in detail or partially double sample study for comparisons at different temperatures which allow the determination of relative concentrations which are measured by the use of relative concentrations in a very simple way. In addition the yields of radicals produced by X-radiation in amino acid compounds were re-measured and the results compared with those of other authors. The values are between 20 and 80 ev per radical, except for aromatic amino acids which need higher energies.

Zusammenfassung

Referenzen