KFK-116

KERNFORSCHUNGSZENTRUM

KARLSRUHE

August 1962

KFK 116

Institut für Heiße Chemie

Verwendbarkeit von Dibutyläther für die Aufbereitung bestrahlter Kernbrennstoffe mittels Extraktion

H.-J. Born, S. Krawczynski,W. Ochsenfeld, H. Scholz

KERNREAKTOR

BAU- UND BETRIEBS-GESELLSCHAFT M.B.H.

KARLSRUHE

CHEMIE-INGENIEUR-TECHNIK

Zeitschrift für technische Chemie, Verfahrenstechnik und Apparatewesen

34. Jahrgang 1962

Nr. 8

Seite 537-541

Ĵ,

Verlag Chemie GmbH · Weinheim/Bergstr.

KERNREAKTOR Bau- und Betricks-Gesellschaft m. b. H. Verwaltung der Zentralbücherej 20. Nov 1962

Verwendbarkeit von Dibutyläther für die Aufbereitung bestrahlter Kernbrennstoffe mittels Extraktion

Von Prof. Dr. H.-J. BORN, Dr. S. KRAWCZYNSKI, Dr. W. OCHSENFELD und Dr. H. SCHOLZ

Institut für Radiochemie der Technischen Hochschule München und Kernreaktor Bau- und Betriebsgesellschaft mbH, Karlsruhe, Institut für Heiße Chemie

Verwendbarkeit von Dibutyläther für die Aufbereitung bestrahlter Kernbrennstoffe mittels Extraktion

Von Prof. Dr. H.-J. BORN, Dr. S. KRAWCZYNSKI, Dr. W. OCHSENFELD und Dr. H. SCHOLZ

Institut für Radiochemie der Technischen Hochschule München und Kernreaktor Bau- und Betriebsgesellschaft mbH, Karlsruhe, Institut für Heiße Chemie

Die Aufbereitung bestrahlter Kernbrennstoffe mit Dibutyläther als Extraktionsmittel hat gegenüber dem Purex-Verfahren (Extraktion mit Tributylphosphat) einige Vorteile: Höhere Dekontaminierungsfaktoren, geringere Neigung zur Emulsionsbildung und somit einfachere Handhabung in den Extraktionskolonnen und Mixer-Settlern, kleinere Volumina an Waschphase bei der Rückwäsche des uranhaltigen Produkts aus der Solventphase, weitgehender Verzicht auf eine Reinigung der Solventphase (Wäsche mit verdünnter Salpetersäure genügt). Als Nachteil ist hingegen die Anwendung von Calciumnitrat als Aussalzagens aufzufassen, da dieses kaum rückgewinnbar ist und daher den Feststoffgehalt der radioaktiven Abwässer bedeutend erhöht.

Allgemeine Gesichtspunkte zur Kernbrennstoff-Aufbereitung

Das im Kernbrennstoff enthaltene spaltbare Material Uran-235, Uran-233 oder Plutonium-239 läßt sich in den Reaktoren nicht in einem Zuge voll abbrennen. Die Gründe hierfür sind die stetige Reaktivitätsabnahme, hervorgerufen durch die Verarmung an spaltbarem Material und die zunehmende Neutronen-Absorption durch die bei der Kernspaltung entstehenden Spaltprodukte. Ferner werden bei Heterogenreaktoren die Brennstoff-Elemente durch die Spaltprodukte sowie die Kernstrahlung selbst in ihren metallurgischen Eigenschaften so weitgehend verändert, daß man sie allein aus diesen Gründen nicht mehr länger in den Reaktoren belassen kann.

Die Aufbereitung der bestrahlten und daher sehr stark radioaktiven Kernbrennstoffe hat die Aufgabe, nicht verbrauchte oder neu erzeugte Spaltstoffe von den Spaltprodukten und gegebenenfalls voneinander zu trennen¹⁻⁴). Der erste in technischem Maßstab durchgeführte Prozeß diente der Gewinnung des in sog. Konverter-Reaktoren aus Uran-238 entstandenen Plutonium-239. Die dafür entwickelten Extraktionsprozesse sind mit verhältnismäßig geringen Abwandlungen dann auch zur Lösung aller später auftretenden Aufbereitungsprobleme herangezogen worden⁴⁻⁹). Auch die Forderung nach besonders guter Trennung von den Spaltprodukten, also nach Dekontaminationsfaktoren von 10⁶ bis 10⁸ hat man beibehalten. Die Erfüllung dieser extremen Forderung, die sich aus der Verwendung von spaltbarem Material für militärische Zwecke ergeben hatte, gestattet eine bequeme, durch besondere Strahlenschutzmaßnahmen nicht erschwerte Handhabung der abgetrennten Kernbrennstoffe bei der Herstellung neuer Brennelemente. Sie ist jedoch nicht unbedingt aus kernphysikalischen oder metallurgischen Gründen notwendig.

Schon aus dieser Sachlage folgt, daß die bisher eingerichteten Extraktionsprozesse keineswegs den Endpunkt der Entwicklung bilden. Wenn man außerdem bedenkt, daß die bisherigen Aufbereitungsverfahren sehr aufwendig sind und daher erheblich zu den Kosten der Kernenergie beitragen, so ist verständlich, daß Wege zur Verbilligung der Kernbrennstoff-Aufbereitung gesucht werden.

Die Bemühungen gehen einerseits dahin, die bekannten Extraktionsprozesse durch Erprobung neuer Extraktionsmittel sowie durch verfahrenstechnische Optimalisierung bestehender Verfahren weiter zu verbessern. Andererseits haben die Bestrebungen, einfachere Brennelement-Typen in keramischer, d. h. oxydischer oder carbidischer Form zu entwickeln, dazu geführt, auch ganz andere Aufbereitungsprozesse in Betracht zu ziehen. So erhofft man sich z. B. von pyrochemischen Verfahren erhebliche Einsparungen, weil sie viel gedrängter und daher mit weniger Aufwand für den biologischen Strahlenschutz aufgebaut werden können. Die im Vergleich zu wäßrigen Prozessen schlechteren Dekontaminationsfaktoren können in Kauf genommen werden, da die Fabrikation der neuen Brennelement-Typen relativ einfach ist und sich ohne besonderen Aufwand auch fernbedient durchführen läßt.

Im folgenden wird ein Versuch beschrieben, durch Wahl eines anderen Extraktionsmittels als des üblichen Tributylphosphats Möglichkeiten einer Vereinfachung der chemischen Kernbrennstoff-Aufbereitung mittels der Lösungsmittel-Extraktion zu prüfen. Wir verwendeten hierbei den von V. M. Vdovenko und M. P. Kovalskaia erstmals zur Kernbrennstoff-Aufbereitung benutzten Di-n-Butyläther^{10,11}, dessen Kenndaten aus Tab. 1^{12,13}) zu entnehmen sind.

> Tabelle 1. Kenndaten von Di-n-Butyläther (DBA) (entnommen aus ¹²,13))

• • • • •	
Siedepunkt K _p 760	141,97 °C
Dampfdruck p ₂₅ 0	12,5 mm
Löslichkeit in Wasser bei 20 °C	0,03%
Löslichkeit des Wassers in DBA bei 20 $^\circ\mathrm{C}$	0,19%/0
Dichte 15 °C	0,77254
20 °C	0,76889
25 °C	0,76461
Oberflächenspannung 15 °C	23,4 dyn/cm
30 °C	21,99 dyn/cm
Flammnunkt in geschlossenem Gefäß	25 °C

Löslichkeit von Uranylnitrat (UO₂(NO₃)₂)

in DBA + 15 Vol.-% CCl, im Gleichgewicht mit gesättigter Uranylnitrat-Lösung

20 °C ca. 88,4 g UO₂(NO₃)₂/1 85 Vol.-⁶/₀ DBA + 15 Vol.-⁰/₀ CCl₄

30 °C ca. 90,2 g UO₂(NO₃)₂/1 85 Vol.-% DBA + 15 Vol.-% CCl₄

40 °C ca. 106 g UO₂(NO₃)₂/1 85 Vol.-% DBA + 15 Vol.-% CCl₄ (20, 30 und 40 °C betrifft eigene Messungen)

Bestimmung der Verteilungskoeffizienten von Uranylnitrat

Der Verteilungskoeffizient von Uranylnitrat zwischen Di-n-Butyläther und einer wäßrigen Phase mit verschiedenen Konzentrationen an Aussalzmitteln wurde nach dem statischen Verfahren bestimmt.

Gleiche Volumina beider Phasen wurden in einem Glaskolben unter mechanischem Rühren bzw. Schütteln bei konstanter Temperatur bis zur Gleichgewichtseinstellung in Kontakt gebracht und nach einer Absetzzeit von 24 h dekantiert. Die Uran-Konzentration wurde als Ammoniumthioglykolat-Komplex spektralphotometrisch bei 380 m μ (Beckman-Spektralphotometer DU-G-4700) bestimmt¹⁴).

a) System Di-n-Butyläther/HNO₃

- Lösungsmittel: Di-n-Butyläther 85 Vol.- 0 (reinst, Fabrikat Merck)+Tetrachlorkohlenstoff 15 Vol.- 0 (reinst, Fabrikat Merck) (Di-n-Butyläther: $K_{p} = 141^{\circ}$ bis 142 °C)
- Wäßrige Phase: UO2(NO3)2:0,0027 m (nuklear rein, Fabrikat Degussa)

HNO, verschiedener Konzentration

Temperatur: 22 °C

Entsprechend der Verteilung von Uranylnitrat im System Tributylphosphat/HNO₃^{4,5,8}) nehmen auch beim System Dibutyläther/HNO₃ die Verteilungskoeffizienten von

Abb. 1. Verteilung von Uranylnitrat im System Di-n-Butyläther/HNO₃

Abb. 2. Verteilung von Uranylnitrit im System Di-n-Butyläther/HNO₃/Al(NO₃)₃

Abb. 3. Verteilung von Uranylnitrat im System Di-n-Butyläther/HNO₃/Ca(NO₃)₂

Uranylnitrat mit steigender HNO_3 -Konzentration steil zu: Sie erreichen jedoch die für die Praxis der Extraktion erwünschten Werte > 1 nicht, vgl. Abb. 1.

b) System	$Di-n-Butyläther/HNO_3/Al(NO_3)_3$
Lösungsmittel:	Di-n-Butyläther 85 Vol $^{0}/_{0}$ + 15 Vol $^{0}/_{0}$ Tetra- chlorkohlenstoff (wie in Versuch (a))
Wäßrige Phasé:	$UO_2(NO_3)_2 : 0,0027 m$ (wie in (a)), HNO ₃ : 0,385 m, 1,48 m, 3,14 m Al $(NO_3)_3$ verschiedener Konzentration,
Temperatur:	22 °C
Die Verteil wie im Fall des falls angewand	ungskoeffizienten von Uranylnitrat nehmen s bei der Kernbrennstoff-Aufbereitung eben- dten Methyl-isobutyl-keton (Hexon)/HNO ₈ /

wie im Fall des bei der Kernbrennstoff-Aufbereitung ebenfalls angewandten Methyl-isobutyl-keton (Hexon)/HNO₃/ Al(NO₃)₃-Systems mit steigender Al(NO₃)₃- sowie HNO₃-Konzentration zu, um bei Sättigungskonzentration von Aluminiumnitrat für die Praxis annehmbare Werte von 2 zu erreichen, vgl. Abb. 2.

c) System	$Di-n-Butyläther/HNO_3/Ca(NO_3)_2$
Lösungsmittel:	Di-n-Butyläther 85 Vol $^{0}/_{0}$ + 15 Vol $^{0}/_{0}$ Tetra- chlorkohlenstoff (wie in den Versuchen (a) u. (b))
Wäßrige Phase:	$UO_{g}(NO_{g})_{2}$: 0,0027 m, HNO ₃ : 0,385 m, 1,48 m, 3,14 m, Ca(NO ₃) ₂ verschiedener Konzentration
Temperatur:	22 °C

 $Ca(NO_3)_2$ eignet sich im Bereich der Sättigungskonzentration vorzüglich als Aussalzagens, vgl. Abb. 3. Für die Praxis der Solventextraktion bedeutet das, daß man die anderen Prozeß-Parameter (z. B. die Temperatur) so wäh-

keit nicht wesentlich unterschritten wird.

Die Abhängigkeit der Verteilungskoeffizienten im Phasensystem Di-n-Butyläther/HNO₃/Ca(NO₃)₂ von der HNO₃-Konzentration bei Sättigung an Ca(NO₃)₂ ist in Abb. 4 wiedergegeben.

len sollte, daß die Sättigungskonzentration nach Möglich-

d) Temperaturabhängigkeit der Verteilung

Eine bei 21 °C mit Ca $(NO_3)_2$ gesättigte salpetersaure (0,5 m) Uranylnitrat-Lösung (1 mg U/ml) wurde im Thermostaten mit einem gleichen Volumen Di-n-Butyläther bei verschiedenen Temperaturen in Kontakt gebracht. Die Werte für die Verteilungskoeffizienten fallen mit zunehmender Temperatur stark ab, vgl. Abb. 5a. Sättigt man hingegen die wäßrige Lösung stets mit Ca $(NO_3)_2$ nach, so nehmen die Verteilungskoeffizienten mit temperaturbedingter zunehmender Sättigungskonzentration zu, vgl. Abb. 5b.

123

Abb. 4. Verteilung von Uranylnitrat im System Di-n-Butyläther/HNO₃/Ca (NO₃)₂ bei veränderlicher HNO₃-Konzentration und jeweiliger Sättigung mit Ca(NO₃)₂

Abb. 5b. Temperaturabhängigkeit der Verteilung von Uranylnitrat im System Di-n-Butyläther/HNO₃/Ca(NO₃)₂ bei jeweiliger Sättigung der Losung mit Ca(NO₃)₂

Trennung des Urans von einer Mischung der Spaltprodukte und von einzelnen Spaltprodukten (Zirkon, Niob, Ruthen)

a) Mit Durchfluß der organischen Phase Uranylnitrat (p. a. Merck) wurde durch Extraktion mit Dibutyläther von seinen Folgeprodukten weitgehend befreit und anschließend mit bekannten Mengen trägerfreier Präparate von Zirkon-95, Niob-95 sowie Ru-106 versetzt.

Diese Spaltelemente wurden gewählt, weil sie leicht durch die üblichen organischen Lösungsmittel extrahiert werden und so die Treinung des Urans von den Spaltprodukten erschweren, d. h. die Gesamtkontaminationsfaktoren herabsetzen^{3,4}).

Dann wurde die Trennung mit Dibutyläther und zum Vergleich mit Tributylphosphat als organischem Lösungsmittel zunächst nach dem in Abb. 6 dargestellten Fließschema durchgeführt.

Abb. 6. Schema der Extraktionsversuche mit durchfließendem Lösungsmittel (M = Mixer, S = Settler)

a Zugabe von Extraktionsmittel, b Zugabe von Speiselösung, c Zugabe von Waschlösung, d Zugabe von Rückextraktionsmittel, e Abfluß des Extraktionsmittels, f Extraktion, g Wäsche,

h Rückextraktion

Der erste Extraktor enthielt die Ausgangslösung, die dort auch verblieb. Sie wurde mit dem organischen Lösungsmittel extrahiert, das anschließend in den zweiten Extraktor übertrat. Mit einer in diesem zweiten Extraktor befindlichen Waschlösung wurde die organische Phase gewaschen. Diese ging endlich in den dritten Extraktor über, in dem mit einer geeigneten wäßrigen Lösung die Rückwäsche, also die Rückextraktion des Urans durchgeführt wurde. Die in einzelnen Schritten sich abspielende "Dekontamination" von den Spaltprodukten wurde durch γund β -Messungen von Proben der einzelnen Fraktionen verfolgt. Der Gesamt-Kontaminationsfaktor DF ergibt sich 211

Spaltproduktaktivität/g Uran (nach der Trennung)

Mit der gleichen Versuchsanordnung wurde auch eine Trennung des Urans von der Gesamtheit der Spaltprodukte durchgeführt. Zu diesem Zweck wurde längere Zeit mit Neutronen bestrahltes Uran nach 100tägiger Abkühlung in Salpetersäure gelöst und diese Lösung so eingestellt, wie in Tab. 2 und 3 angegeben. (Uber die Erfahrungen bei der Auflösung des Urans wird an anderem Ort berichtet werden.)

Die Ergebnisse der Dekontaminationsversuche sind in den Tab. 2 und 3 zusammengefaßt. Dort sind die Trennfaktoren aufgegliedert in die bei der Extraktion und bei der anschließenden Wäsche beobachteten. Der experimentell bestimmte Gesamtfaktor sollte gleich dem Produkt der Einzelfaktoren sein. Das ist annähernd der Fall. Es sei noch bemerkt, daß die β -Messungen aus bekannten Gründen (z. B. Selbstabsorption) weniger verläßlich sind als die γ-Messungen. Der Vergleich der Tab. 2 und 3 zeigt jedenfalls, daß es möglich ist, mit Dibutyläther höhere Dekontaminationen zu erzielen als mit Tributylphosphat. Dieses Ergebnis ermutigte uns, den Dibutyläther-Prozeß auch im Gegenstromverfahren zu erproben.

Tabelle 2. Extraktion mit Di-n-Butyläther

Stationär:	anorg. Phasen in der Extraktions- und Waschstufe
Durchfließend:	organische Phase anorganische Phase der Rückextraktion
Temperatur:	anfangs 60 °C Ende 20 °C
Speiselösung: 100 ml	1 m UO ₂ (NO ₃) ₂ 5,3 m Ca(NO ₃) ₂ 0,5 m HNO ₃ 0,01 m K ₂ Cr ₂ O ₇ 1 mC Radionuklid bzw. 5 mC Spaltprodukt- mischung/1
Extraktionsmittel:	Di-n-Butyläther 1200 ml
Wäsche:	0,01 m HNO ₃ 10 ml
Rückextraktion:	0,01 m HNO ₃ 300 ml
	Dekontaminationsfaktoren

Nuklid	Extraktion Messung		Wäsche Messung		insgesamt Messung	
	γ-	β-	γ-	β-	γ-	β-
106Ru	70	_	12		840	
⁹⁵ Zr(Nb)	80		12		960	
Spaltprod.	108	220	11	8	1200	1760

> 99,9% des Urans extrahiert

Та	abelle	3. Extrakti	on mit 7	Cributyl	phosphat	
Stationär:		anorg. Phasen in der Extraktions- und Wasd stufe organische Phase anorganische Phase der Rückextraktion				Wasch-
Durchfließer	ıd:					1
Temperatur	:	20 °Č				
Speiselösun	g:	1 m UO _o (NO	D ,),			
100 1	nl	3 m HNO,	0.2			
		1 mC Radi mischung/l	onuklid	bzw. 5	mC Spaltpi	rodukt-
Extraktions	mittel:	30% Tribu	tylphosp	hat in 🛛	Petroläther	400 ml
Wäsche:		2 m HNO, 30 ml				
Rückextrakt	ion:	$0,01 \text{ m HNO}_{3}$ 2000 ml				
		Dekontami	nationsfa	ktoren		
Nuklid	Ext	raktion	Wäs	sche	insge	samt
	M	essung	Mes	sung	Mes	sung
	γ-	β-	γ-	β-	γ-	β-
⁹⁵ Zr(Nb)	21		3		60	
106Ru	15	—	2,3		35	_

7

6,5

320

130

46 > 99,9%/0 des Urans extrahiert

20

Spaltprod.

b) Gegenstromextraktion

Mit Spaltprodukten versetztes bzw. bestrahltes Uran wurde nach dem in Abb. 7 dargestellten Fließschema aufbereitet. Versuchsdaten und Ergebnisse sind in Tab. 4 wiedergegeben. Es wurden drei Miniatur-Mixer-Settler-Mehrfachaggregate mit je 8 theoretischen Extraktions-Stufen verwendet. Über den Aufbau und die Eigenschaften dieser Aggregate wird gesondert berichtet werden.

Um mit möglichst kleinen Mengen an bestrahltem Uran auskommen zu können, wurde das Kammervolumen der Mixer-Settler-Einheiten besonders klein gewählt. Eine befriedigende Förderung und Dosierung der kleinen Flüssigkeitsmengen wurde durch Luftförderung¹⁵) erreicht. Diese sog. "airlifts" haben bei hinreichend reproduzierbarer Dosierung noch den Vorteil, wegen des Fehlens beweglicher Teile besonders störunanfällig zu sein.

Abb. 7. Schema der kontinuierlichen Gegenstromextraktion a bis h wie in Abb. 6, i Abfluß der Abfälle, k Rückführung zur Speiselösung, l Abfluß des Produkts

Tabelle 4. G	egenstromextraktion mit Di-n-Butyläthe
Speiselösung: 200 ml/h	0,3 m UO ₂ (NO ₃) ₂ 5 m Ca(NO ₃) ₂ 0,5 m HNO ₃
Extraktionsmittel:	Di-n-Butyläther 300 ml/h
Waschlösung:	UO ₂ (NO ₃) ₃ gesätt. bei 20 °C 5 ml/h bzw. dest. Wasser
Rückextraktion:	dest. Wasser 50 ml/h

Dekontaminationsfaktoren y-Messungen

elõsung			
Konzentration	Extraktion	Wäsche	insgesamt
1 mC/l	90	20	1800
1 mC/l	400	10	3200
1 mC/l	80	20	1700
75 mC/l	3000	1,5	4500
	Plösung Konzentration 1 mC/l 1 mC/l 1 mC/l 75 mC/l	Plosung Konzentration Extraktion 1 mC/l 90 1 mC/l 400 1 mC/l 80 75 mC/l 3000	Plosung Konzentration Extraktion Wäsche 1 mC/l 90 20 1 mC/l 400 10 1 mC/l 80 20 75 mC/l 3000 1,5

Der Uranverlust im Abfall (waste) blieb unter $0,1^0/_0$.

Einen Uberblick über die Anordnung gibt Abb. 8. Die gesamte Extraktionsapparatur befindet sich in einer Glovebox. Die Gefäße mit der Ausgangslösung und den Rückständen derselben stehen hinter Blei. Ebenso ist der erste Extraktionsblock mit Blei abgeschirmt. Die Extraktion wurde bis zu 48 h lang betrieben. Es zeigte sich, daß die Anlaufperiode etwa 5 bis 6 h dauert. Zur Bestimmung der Dekontamination wurden laufend Proben aus den verschiedenen Phasen entnommen.

Bei den Aktivitätsmessungen wurde gefunden, daß gelegentlich schon nach der Extraktion sehr wenig Spaltprodukte in der organischen Phase nachzuweisen waren und infolgedessen der Reinigungseffekt der Waschstufe nicht zur Geltung kam. Die Werte in Tab. 4 haben daher keinen Anspruch auf große Genauigkeit und stellen Mindestwerte dar. Aus den Ergebnissen kann man jedenfalls schließen, daß mit Dibutyläther in zwei Extraktionszyklen, wie dies in der Praxis bei Tributylphosphat üblich ist, die geforderten Dekontaminationsfaktoren von 10⁶ bis 10⁸ sicher erreicht werden. Versuche mit wesentlich höheren Aktivitäten würden eine genaue Bestimmung der Dekontaminationsfaktoren und einen zuverlässigen Vergleich zwischen Tributylphosphat und Dibutyläther bei der Gegenstromextraktion ermöglichen.

Abb. 8. Ansicht der Laborapparatur zur kontinuierlichen Gegenstromextraktion

Vorbereitung eines "heißen" Versuches

Auf Grund dieser Ergebnisse planen wir ein Aufbereitungsexperiment im höheren Aktivitätsbereich. Das vorgesehene Prozeßfließschema dieses Versuchs im Labormaßstab würde dem der Abb. 8 entsprechen.

Der Dibutyläther könnte ohne besondere Reinigung während des Prozesses "im Kreis" geführt werden. Das Uran-Produkt der Rückextraktion ist beim Dibutyläther-Prozeß bereits so hochprozentig, daß eine anschließende Aufkonzentrierung wie bei Tributylphosphat-Prozessen mittels Verdampfung nicht notwendig wäre.

Der primäre Extraktionsteil, die Waschstufe sowie die Rückextraktion sollten Einheiten mit mindestens acht, drei und drei theoretischen Extraktionsstufen entsprechen. Das Auflösungsgefäß, die Behandlung der entstehenden Gase sowie der erste Extraktionsblock, bestehend aus

Abb. 9. Fließschema des Dibutyläther-Solventextraktionsprozesses zur Aufbereitung von bestrahltem Uran
a Brennelement-Lagerung, b Auflösung, c Abgas-Behälter,
d Filter, e 1. Extraktion, f Wäsche, g Rukextraktion,
h 2. Uran-Extraktion, i Uran-Rückextraktion, k 2. Plutonium-Extraktion, i Plutonium-Rückextraktion, m Kühlung, Kristallisation; n Eindampfen

DBA == Di-n-Butyläther

Extraktions- und Waschstufe müßten in einer vorhandenen heißen Zelle aus Schwerbeton aufgestellt werden. Der Auflösungsbehälter, der Vorratsbehälter der Speiselösung sowie die Extraktionseinheit würden innerhalb der heißen Zelle einen zusätzlichen Strahlenschutz durch Blei erhalten, um notfalls während kurzer Zeiten unter Berücksichtigung der zulässigen Strahlenbelastung in der heißen Zelle Reparaturen und unerläßliche Handgriffe durchführen zu können.

Abschließende Bemerkungen

Die Versuche haben ergeben, daß die mittels Dibutyläther als Extraktionsmittel erzielten Dekontaminationsfaktoren denen mit Tributylphosphat erreichten zumindest gleich, vermutlich sogar nennenswert besser sind.

Dazu treten nun weitere Vorzüge des Dibutyläthers. Vor allem kommt man bei der Rückextraktion mit weniger Stufen aus, da die Uran-Verteilung günstiger ist als bei Verwendung von Tributylphosphat. Man kann daher auch auf eine weitere Konzentrierung des Auswaschproduktes verzichten. Ebenso ist es möglich, auf eine besondere Wäsche des Dibutyläthers vor der Wiederverwendung im Kreislauf zu verzichten. Während nämlich bei Tributylphosphat eine Hydrolyse zu Di- bzw. Monobutylphosphat stattfindet, zersetzt sich Dibutyläther nach unseren bisherigen Erfahrungen praktisch nicht. Endlich spielt die geringe Neigung des Dibutyläthers zur Emulsionsbildung eine wichtige Rolle: die Phasentrennung ist besser als beim Tributylphosphat, es kommt nicht zur Bildung von Häuten in den Grenzschichten, die Extraktionsgefäße sind stets einwändfrei sauber. Ubrigens ist darauf hinzuweisen, daß der von Vdovenko und Kovelskaia¹⁰) vorgeschlagene Zusatz von Tetrachlorkohlenstoff zu unangenehmen Zersetzungen des Lösungsmittels führt. Wir haben deshalb auf einen Zusatz von Tetrachlorkohlenstoff verzichtet und gegen die Explosionsgefahr des reinen Dibutyläthers die üblichen Vorsichtsmaßnahmen getroffen.

Demgegenüber stellt der Zusatz von $Ca(NO_3)_2$ als Aussalzmittel einen erheblichen Nachteil des Dibutyläther-Prozesses dar. Der Feststoffgehalt der hochradioaktiven Abwässer wird dadurch wesentlich erhöht. Immerhin besteht die Möglichkeit, einen Großteil des Calciumnitrats durch Tieftemperaturkristallisation wiederzugewinnen und dem Prozeß wieder zuzuführen. Allerdings bedarf dieses Problem noch besonderer Klärung. Es muß aber auch betont werden, daß der Preis des Ca(NO₃)₂ verglichen mit dem der Salpetersäure, die beim Purex-Prozeß verwendet wird, gering ist, und daß die Rückgewinnung dieser Salpetersäure kostspielig und nicht gefahrlos ist.

Uber unsere eingehenden Untersuchungen der Verteilungskoeffizienten verschiedener Nuklide werden wir an anderer Stelle berichten.

Eingegangen am 7. März 1962 [B 1490]

Literatur

- 1) L. Küchler u. W. Schüller, Nukleonik 1, 113 [1958].
- E. Winnacker u. L. Küchler: Chemische Technologie, Bd. V, 2. Aufl., Hanser Verlag, München 1962.
- ³) M. Benedict u. T. H. Pigford: Nuclear Chemical Engineering, Mc Graw-Hill Book Comp., N. Y. 1957.
- ⁴) Reactor Handbook, Vol. II, Fuel Reprocessing, Intersci. Publ. N. Y. 1961.
- ⁵) TID-7534 Symposium on the Reprocessing of Irridiated Fuels, Brüssel, Mai 1957.
- ⁶) F. R. Bruce, J. M. Fletcher, H. H. Hyman u. J. J. Katz, Process Chemistry, in der Reihe: Progress in Nuclear Energy, Series III, Pergamon-Press Ltd., London 1956.
- 7) F. R. Bruce: Solvent/Extraction/Chemistry, Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, Vol. 7, UN, N. Y. 1956.
- ⁸) R. L. Moore, "The Mechanism of Extraction of Uranium by Tributylphosphate", AECD-3196, 1951.
- 9) S. Lawroski, "Survey of Separation Processes", Proc. of Int. Conf. on the Peaceful Uses of Atomic Energy, Vol. 9, S. 575 ff. UN, N. Y. 1956.
- ¹⁹) V. M. Vdovenko u. M. P. Kovalskaia, "Separation of Uranium and Plutonium from Fission Products by Mixture of Dibutyl-Ether and .Carbontetrachloride", Int. Conf. on the Peaceful Uses of Atomic Energy, UN 1958, P. 2216.
- ¹¹) V. M. Vdovenko, "Distribution of Fission Products in the Ether Process", Proc. of Int. Conf. on the Peaceful Uses of Atomic Energy, UN 1958, P. 2206.
- ¹²) F. A. Weissberger, E. S. Proskauer, J. A. Riddick u. E. E. Toops, Jr.: "Organic Solvents", Technique of Org. Chem., Vol. VII, Intersci. Publ. N. Y. 1955.
- 13) T. H. Durrans: Solvents, Chapman u. Hall, London 1957.
- ¹⁴) W. H. Davenport, P. F. Thomasson, Analytic. Chem. 9, 1093/95 [1949].
- ¹⁵) H. Scholz, Kerntechnik 3, 261/63 [1961].