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An analvtical method is developed for determining the energy dependent neutron flux in
homogeneous and heterogeneous media. Using the heavy gas model scattering operator, neutron
spectra in two-dimensional rod reactors of various types are calculated in the diffusion approxi-
mation. They show a strong spatial dependence even in the epithermal region, which fact is
neglected in the numerical treatment of the problem by Honeck and Kaplan. It is just this epi-
thermal part of the spectrum, which mainly influences the values of the thermal utilization and
the g-factor. The value obtained for the latter quantity is too large if the correct neutron spectra
in moderator and fuel are replaced by Maxwellian distributions at moderator-temperature or a

suitably displaced temperature, for example.

INTRODUCTION

Many attempts have been made to obtain analyti-
cal solutions of the thermalization problem for vari-
ous scattering models. Usually this is done for
infinite, homogeneous media neglecting all effects
of heterogeneity or finiteness of the system under
consideration. A first step in the determination of
stationary neutron spectra in heterogencous as-
semblies has been made by Hifele (Z), who has semi-
analytically solved the problem for one-dimensional
slab reactors with weak absorption in the heavy gas
scattering model. The same geometry has been
treated by an improved multigroup iteration pro-
cedure by Meetz, Ott, and Sanatani using the
Wigner-Wilkins scattering operator (2). The com-
pletely numerical work of Honeck and Kaplan (3)
will be discussed briefly at the end of this paper.

The aim of the present work was to find the
analytical solution of the problem for heterogeneous
reactors with infinitely long, cylindrical fuel elements
arranged in a regular square lattice. Although the
method derived below can be extended to a far more
general character, we shall perform the calculation
in the diffusion approximation, as far as the spatial
dependence of the neutron flux is concerned, and
use the heavy gas differential operator in order to
describe the scattering of the neutrons by the mole-

cules of the moderator. l‘urthermore all neutron
absorptions shall follow a 1,7-law.

The special difficulty one faces in a treatment of
the energy dependence of the neutron flux is that in
neutron thermalization a slowing down and an
equilibration process are superposed, as has been
stated by Hifele (7). At high energies the slowing
down process is predominant; at low energies, how-
ever, the equilibration process prevails. The method
described below treats these two phenomena sepa-
rately by the appropriate mathematical methods and
joins them continuously.

First we shall calculate the neutron spectrum in a
homogeneous, infinite, absorbing medium in order
to explain the idea of our method. Then we shall
apply the method to heterogeneous reactor strue-
tures as considered by Meetz (4). The spatial de-
pendence of the neutron flux is treated by means of
Meetz’s method. The neutron spectra thus obtained
are used for calculating the thermal utilization and
the n-factor.

In a two-dimensional problem the stationary
neutron flux ¢ (z, y, E) obeys the following equation,
if no sources are present:

’

DAd(2, 3, E) + [ S(x, y, B — E)lx, y, E) dE

— Sz, y, E)olz, y, £) = 0. (1)
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x and y are space variables and F represents the
neutron energy. If we introduce a dimensionless
energy variable

3l =

m
I

’

where 7' is the temperature of the moderator, and
describe the scattering by the heavy gas model, we
can write:

[ 3 = O, v, &) dd — (w0, 6

I

2,5 (ea% + e% + 1) ola,z, e (2)

= Lo, ¥, ¢).

u is the ratio of the neutron mass to the mass of the
molecule of the moderator. 25" is the macroscopic
low energy secattering cross section of the moderator.
Thus we obtain the following equation determining
the neutron flux:

DAg(x, y, ) + Lo(z, y,
- Eﬂ(x7 Y, G)(}S(l’, Y, E) = 0.

In the reactor model described below £ is spatially
independent. The diffusion constant D is regarded as
energy independent in this work. We shall use the
eigenfunctions of the heavy gas operator £:

®3)

)
These are the Laguerre functions of the first kind:
e-e ‘LY (e) &)

with (see (5), where they are defined with an addi-
tional factor A/p -+ 1; our normalization is more
convenient for the purposes of this paper):

L) =~/p+ 1"};<-1)"

Lwpe) = wy-wy(e).

wp(f) =

6
: p: oY
nlln + 1)ip ~ n)!
Furthermore,
w, = —2uSSp. (7)

THE INFINITE, HOMOGENEOUS MEDIUM
The neutron flux in a homogeneous, infinite,
source-free medium is independent of the space
variables. Thus, under the above mentioned assump-
tion of a 1/v-absorption law, we have to solve the
following second order differential equation:

(di +edy 1) (&) — p-Pa() =0 (8)

with the abbreviation

_Z(e=1)

)
Pe = 2% "

The conditions to be imposed on the solution of
Eqg. (8) are that the slowing-down density should
vanish at ¢ = 0 and the flux should be positive for
positive energies. These conditions are satisfied if

¢(e) — 0 for (10)

e—0
and

o(e) >0 for e> 0 1

The solution of Eq. (8) satisfying (10) and (11)
is determined uniquely except for a positive factor.
Let us try now to find this solution. First we shall
look for an asymptotic representation of the neutron
flux at high energies:
N

¢ () = —3—,- (12)

y=

Equation (12) is the semiconvergent, asymptotic
expansion of a particular solution ¢ (¢) of Eq. (8).
The coefficients g, are determined by the following
recursion formula:

2 v v
P = 02 [(1 + 5) (2 +§>g” B g"“]'

(13)

go > 018 an arbitrary normalization constant.
We obtain:
g1 = —2p:go, g =21 + p’)go - -
A second linearly independent solution ¢ (¢) of!
Eq. (8) may be written asymptotically in the form:
N 4
—¢ &“
s 61)/2 .

2)

bas (6) = €-C (14)

y=

The solution of Eq. (8) required here is a linear com-

bination of the two particular solutions ¢® and
¢, both being singular at ¢ = 0:
¢(e) = ¢V (e) + 287 (o). (15)

¢ (e) is regular at ¢ = 0, but it does not belong to the
space of the eigenfunctions of the heavy gas operator
because of the contribution ¢ (¢) in (15), as can be
seen from (5) and (12).

It follows from Eq. (8) and the boundary condi-
tion (10) that the neutron flux ¢ (¢) can be expanded
in a power series in terms of €' beginning lin-
early in e:

¢=Ae+ B+ CE+DEP+ - . (16)
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Let ds now determine a three-times differentiable
function 3" (¢) in such a way that

V() = ¢l (e)  for e 2 &« (I7)
and
ae + bt + cé + de?

fore = €.

¢ () = (18)

The continuity condition for ¢" (¢) and its first three
derivatives at ¢ = ¢ determine the coefficients
“a, b, c, d. N is a finite, fixed upper limit of summa-
tion in (12).

The difference ¢(¢) — & (¢) can be determined
from an inhomogeneous differential equation because
3" (¢) does not satisfy Eq. (8) for ¢ < e and only
approximately for e = ¢ :

d ¥ d o
P [¢p(e) — ¢ ()] + € [¢(e) — ¢ (&)

+ sl = 3 = p - g0 — ey 1Y
= S%(e).
“¢(e) — &" (¢) has to satisfy the boundary conditions
¢6—3 —0 for e—0 (20)
and
el — ") =0 for e— oo, 21)

; This can be seen from (12), (14), and (15). The
“source function” S"(e¢) is found by inserting
—¢" (¢) into the left-hand side of Eq. (8).

T'or € = ¢ one obtains from (12), (13), and (8):

'SN(e) - _ {gh’(l + %AT)(z + %N)

AT (vD2

(1 + 3(NV — DI2 + $(N = 1)]

dHv+n/2
¥
v |

One recognizes from Eq. (22) that S*(e) cannot be
expanded in the eigenfunctions of the heavy gas
operator.

As is shown in (7) the source function S (e) can
be made zero for € = ¢, if instead of the 1/v-absorp-
tion law assumed in Eq. (8) a slightly changed ab-
sorption cross section is used. N and ¢ can be chosen
in such a way that this deviation of the absorption
cross section from the original 1/v-law is negligibly
small. Thus we may neglect S™ (¢) for € = ¢ in Iq.
(19). It is then possible to expand the source fune-
tion S¥(¢) as well as the solution ¢(¢) — ¢ (¢) of

+ 9% (22)

- Di

Eq. (19) in the Laguerre orthogonal functions. We
write:

SY(e) = Zocp'wp(e) (23)
and make the ansatz
() = 3 (e) = 2 app(e). (24)
oo

Equation (19) is transformed into the following
infinite system of linear equations for the coeffi-
cients a, :

€K
—Pap — P:ZO Voly = €.
—

(25)
(p: 07 172"')
Here we have introduced (8):
Ve = (wp, 6—1/2"-’4)
® , (26)
= / L;,U(e) e e e_éL;n(e) de.
0
We shall take into consideration only po + 1

modes in the expansions (23) and (24). Experience
shows the result to be independent of p, for py = 4.
The expansion coefficients a, of the function
#(e) — ¢"(e) are then determined uniquely as the
solution of the finite, inhomogeneous system of
linear equations:

Po
—pa, — Vo, = ¢p.
pap P:; pollq P @7)

(pz(),l,?,"',po)

We have now obtained the solution of Eq. (8) satis-
fying the boundary conditions (10) and (11) with
sufficient accuracy in the form:
Po
¢'(f) = %A-(f) + pzo ap"’-’p(e)- (28)
é" (¢) is given by (12), (17) and (18); the coeffi-
cients a, are determined from (27).

The method of the determination of the neutron
spectrum in an infinite, homogeneous medium as
described in this section has been applied to the
example p, = 0.25. We have chosen ¢o = 16, N = 10,
and py = 5. Figure 1 shows the result of the caleula-
tion completely agreeing with the solution obtained
numerically by Hurwitz, Nelkin, and Habetler (6).
The figure shows ep(e) in its dependence on +/e.
Turthermore, e (¢) has also been drawn. One
recognizes that this function, representing the main
part of the solution at high energies, essentially
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F1g. 1. Neutron spectrum in an infinite, homogeneous, source-free medium. The lower curve represents ep!°(e), giving
essentially the contribution of the neutrons slowed down from higher energies. The difference ep(e) — ep!%(e) describes the
contribution of the neutrons nearly in thermal equilibrium with the moderator.
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Fic. 2. Arrangement of the fuel elements in the two-
dimensional rod reactor.
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gives the contribution to the total flux of those
neutrons which are slowed down from higher energies
by collisions with the molecules of the moderator.
On the other hand, the function 2_ 5% aywy,(e)
describes the contribution of those neutrons which

are nearly in thermal equilibrium with the modera-
tor. By continuing the function ¢” (¢) steadily to the
origin of the energy scale according to Eq. (18),
we were able to compose these two functions, repre-
senting physically completely different contributions
to the neutron flux, continuously to the entire solu-
tion of Eq. (8).

THE TWO-DIMENSIONAL ROD REACTOR

It is now our task to combine the method of treat-
ing the energy dependence of the neutron flux, as
developed in the last section, with Meetz’s theory
describing the spatial behavior of the neutron flux.
We shall use here the notation of Hifele (7).

Meetz considers a reactor of the following type:
the reactor is infinitely long in the z-direction and
has a square cross section. There are N,* = (2n + 1)*
cylindrical fuel elements of radius a, likewise in-
finitely long in the direction of the reactor axis which
form a regular square lattice with the lattice param-
eter d. The side length of the reactor cross section is
2L = Nyd. Figure 2 shows the arrangement of the
fuel elements in the reactor.

The space between the fuel slugs is filled with non-
absorbing moderator. The absorption effect of the
fuel elements is described in its spatial dependence
by Dirac é-functions, i.e., the fuel rods are considered
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as linear sinks for the neutrons. This has as a conse-
quence that the neutron flux has logarithmic singu-
larities at the lattice points of the reactor thus
idealized. Therefore it may not be identified with
the real physical flux inside the fuel elements but
only in the moderator and at the boundary of the
fuel slugs. The neutron absorption rate in a fuel
element has to be determined from the mean value
¢%(€) of our solution over the boundary of the rod
and an appropriately chosen effective absorption
cross section =2, It has to be determined in such a
way that the absorption rate caleulated from it
agrees with that obtained using the real neutron flux
¢u in the fuel and the real absorption cross section
5.V, Thus the equation determining =" is:

xd’ f o

fuel
element
(kd,1d)

¢ (kd, ld; e)8(x — kd)s(y — Ild) dx dy

(29)
- ff =V (e)¢ulz, ye) drdy.

fuel
element
(kd,ld)

The effort to be applied in the determination of ¢
- depends on the accuracy required in the calculation.
TFor a first estimate we may use an energy inde-
pendent diffusion approximation inside the fuel ele-
- ments. The determination of the effective cross sec-
- tion is a point to be improved later on.

The energy of the fission neutrons is assumed as
infinite. Thus the reactor is source-free. As we shall
see below this assumption, together with the postu-
late of positivity of the neutron flux, has as a conse-
quence a simple cos (aux)eos (agy)-behavior of the
flux in the limit of an infinite neutron energy. This
does not describe the real physical situation in a
reactor. Hifele (7) has treated the heterogeneous
slowing down problem assuming the energy of the
fission neutrons as finite at e =~ 10%. At an inter-
mediate energy ¢ = 10° the neutrons then show
the above mentioned simple spatial distribution.
This energy being extremely high in comparison
with the thermal energies ¢ = 1 of interest here, we
may assume it to be infinite, thus justifying our
assumption of infinite fission energy coincidentally.

With the abbreviations

(e =1) - wd

d*2uxd (30)

D =
and

(31)

we obtain from (3) the equation determining the
neutron flux in our reactor model:

208 & 1 §
Zo (5’52 + 5‘?) ¢($, Y, 5) + 2";‘—}:50 £¢(:Ly Y, f)

+n

+n
—p - €3 D dalx — kd)s(y — d)

k=—n l=—n

(32)

- ¢"(kd, ld, ¢) = 0.

The boundary conditions to be imposed on the solu-
tion of Eq. (32) are (1) energetically: regularity of
the flux at e = 0, ie.,

¢ — 0, (33)

¢(x,y, ) =0 for

and (2) spatially: vanishing of the flux at the re-
actor boundaries, i.e.,

¢(x, £L,¢) =0

34
¢(xL,y, ¢) = 0. 30

Equation (34) means that the reactor has no re-
flector. Furthermore the neutron flux has to be
positive all over the reactor. I'rom the symmetry of
the problem it follows that the flux is an even funec-
tion of xr and y. A main result of Meetz’s work is a
representation of the neutron flux by a double
TFourier series, which in our energy dependent case
takes the form (cf. (4)):

é(x, y, €
= (35)
= Z ©ngr, wos (€) €08 (angrl) Os (awysy)

with

2Ny r + 1
ANgr = —'—O‘f_— ™ (36)
We obtain from (32) the following system of second
order differential equations for the Fourier coefhi-
clents ¢wyr,ngs (€) :
1

2“2,0 ae«’NOrvNos(E) - (alz\'or + ai’ﬁg)ro‘z‘fol\'ohh’os(f)

+x
— Dt 6—1/2 Z QoNom.Nol(f)[COS(aNom x)cos(am,; y)]RO

m,f=—0
— %, '--,—1,0,—’-1’-",—’-0(:),
(37)

The superseript R, means that the mean value over
the boundary of the central rod is to be taken.
The boundary conditions for the solution of Eqs.
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(37) are:

xgrgsle) — 0 for e—0
(38)
(r,s = =%, -0, —1,0,1, -+, 4 )
1-2a02102¢00 (¢) — const. > 0 for e — = (39)
el*2a°2102¢1»'07,n'0s(e) — 0 for ¢e— =.
(40)

((r,s) # (0,0))

The connection between the postulate that the flux
should be positive all over the reactor and the
boundary conditions (39)-(40) becomes obvious
later on.

In order to obtain the asymptotic solution of the
system (37), we make the ansatz (ef. (1)):

N v

901(\'10)r,1\'0a - Z gN o7, Ngs

us =0 et

(41)

and get a recursion formula for the coeflicients
g;\'(l’w\'os :
Gv—l
s (azzvm -+ a_}:'os)xuz + 8+ v
(3r + 8)(3v + 8 + 1)gkyr o
(@For + dfo)id® + 8 + v ’

(" > 0is an arbitrary constant. We have furthermore
introduced in (42):

g;’or,l\'gs =
(42)
+

—+oc

G = Z gfvnrwos[cos(ahvopzr)cos(aNosy)]R('. (43)

Tor v = 0, Eq. (42) must be replaced by:

gg'o"uVo«?(B + (ai'gr + 011%'03)-1"02) = 0. (44)

Equation (44) determines the indices of the non-
vanishing coefficients gi,r »,s . In order that the flux
be positive in the high energy range the indices of
the sole nonvanishing coefficient gy, x,, have to be
zero. This means that the spatial behavior of the
neutron flux in our geometry is given by a simple
€08 () €08 (agy ) -distribution at high energies. We
see that the asymptotic solution (41) satisfies the
boundary conditions (39), (40). Thus we obtain:

B = —2a 7. (45)

TFrom (42), together with (45), the gx,,~,.’s can be
easily determined.
The first coefficients are (ef. (1)):
(’0

0. . = ’_ 6 5
gAcr,Ag.e 2}0(’\/2&0 (l) 0 Og0

GO
— Pt 2 2 2 2 2
P (O‘NOT + aNos)xO — 2o Xy + ’%

1
gNgr,Nos =

G' = —p H(—2a5'2s" + §),
S C—
gnor.Ngs D (CYI?vor + al%’gs)xl)“ — 26!()“1'02 -+ 1
+ _“(1 —_ 26!021302) (2 - 201021302) (46)
(alz\'or + C(I{“:r'c»-‘f)x(l2 - 2‘102‘1:02 + 1 "
G
68 . —
" Fo(v2ma)
G = —p-GH(~2ax + 1)
+ (1 = 2a02) (2 — 20020 G°
Here we have introduced
= Jeos corl) COS rosl) 1RO
Hiy) = 3 leonlomed) 8 Lol gy

2
v + (@i + a¥ys) o

The evaluation of this double series as well as that
of all following l'ourier series is discussed briefly at
the end of this section. IF'urthermore the mean value
[cos (apx) cos (agy)]™ was replaced by a Bessel func-
tion of the first kind and zero order

Fo (\/?ao a)

-1 cos {aga cos 8) cos (opa sin ) dé.
T Jo

7,8=—0C

We now define a set of functions which have three
continuous derivatives at ¢ = ¢ by:

@xor,h’os(e) = ‘PI(VIQ)r,NQs (f) for e é €0 (48)

as

and

3/2
= QNgr,Ngs" € + bNOr.NOs'f

-N
S:Z\'Or,)\’os(E)
2 5/2
+ CNgr,Ngs* € + ngr,NOs'ed

The set. of difference functions

(49)
for e £ .

(PNOT,NQS<€) - 9-9::01‘.]\'03(6)

is then determined as the solution of an inhomogene-
ous system of differential equations obeying appropri-
ate boundary conditions. As in the homogeneous
medium the source functions Sxy,».s(e) of these
equations may be neglected for € = e . Syyr.vgs (€),
as well as the set of functions ewrxys = Bnor.vos »
can then be expanded in the eigenfunctions of the
heavy gas operator £.
We write:

Po

SIVOT,NOs(f) = (50)

Cayr Nys,p” Wp (5)
p=0

and

Po
‘PNoTvNos(e) - ‘;92;071”03(6) = ZUaNo"Nosm'wp(e)- (51)
Py
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TABLE I

PARAMETERS OF THE

TweLvE REACTORS

Reactor Moderator ( cfn) (cfn) (él»}o ) gm/cm? bt x0/d pM

I D.0O 40°C) 10 1.6 0.7115 18.4 0.1046 0.186 3.33 X 107¢

11 D0 (40°C) 16.8 1.6 0.7115 18.4 0.03705 0.1108 3.33 X 10

I1T D0 (40°C) 20 1.6 0.7115 18.4 0.02614 0.093 3.33 X 10~
v D0 (40°C) 10 1.6 2 15.4 0.2274 0.186 3.33 X 1074

Y D0 (40°C) 16.8 1.6 2 18.4 0.08058 0.1108 3.33 X 107

VI D0 (40°C) 20 1.6 2 18.4 0.05686 0.093 333 X 10
VI Graphite (300°C) 10 1.2 0.7115 18.4 0.1791 0.3925 4.34 X 107
VIIL Graphite (300°C) 20 1.2 0.7115 18.4 0.04479 0.1962 4.3¢ X 107
IX Graphite (300°C) 30 1.2 0.7115 18.4 0.61991 0.1309 4.34 X 10

X Graphite (300°C) 10 1.2 2 10 0.212 0.3925 4.34 X 107

XI Graphite (300°C) 20 1.2 2 10 0.05299 0.1962 4.34 X 107
XII Graphite (300°C) 30 1.2 2 10 0.02356 0.1309 4.34 X 107

This manipulation leads to an infinite system of form 8,-60 and

linear equations for the unknown coeflicients

Axgr.Nos,p
_ Cnor Nosp + pl'25=00 VoA,
] 2 2
P -+ (aNor + OlN(,g)xO

Axor . Ngs,p =

59
(T,S:—00,"',-1,0’+1"",+d3) (()H>
(p = 071)27 "')po)
with the abbreviation:
40
4, = Z aNovaosm{('OS (axyrr)cos (O‘NOS!/”RO (53)

TEquation (52) is multiplied by
[cos (aw,rr) cos (ay,sy) ]

and summed over 7 and s. This procedure results in a
finite system of linear, inhomogencous equations
with the unknowns 4, :

Do
4, + pcH(p) ’Zo Vied,
—
- f CNo.m‘Vos'P‘ _
re=s—w P -+ (a:’l\'or + alz\'os )IO2 (04)

-[cos (ay,-a) - cos (awosy)]Ro~

(p':oa 172a"'1p0)

The coefficients @y,r.v,s,» are then obtained from
(52). Thus the solution of (32) is found in the form:

+0 Do
¢("1"7 yy 6) = Z [{bxgr,h'gs(f) + ZO aNor,Nox,p wp(e)jl
7,8=—0C p=

(55)

All the coefficients of the above Fourier series can
be written as linear combinations of terms of the

- COS (aNOra") cos (aNQE y)‘

1
v + (o, + ok )xe

in order to obtain ¢"° (¢) the mean value of the flux
over the boundary of the fuel element is replaced
by the mean value of the flux at the four intersec-
tions of the axes with the boundary of the slug
(ef. (4)), which is a good approximation for
small a/L.

Thus series of the type

E2 008 (ayor ) €05 (axesy)

5 a )
ris=—c Y + (a)\'or + aA\'ns)IO

have to be summed. As has been shown by Meetz
one summation can be carried out exactly by means
of the calculus of residues. The remaining single
series converges rather rapidly inside the moderator,
but its convergence is very poor at the boundary
of the fuel rods because of the logarithmic singulari-
ties of the flux at the lattice points of the reactor.
But the convergence of these I'ourier series can be
improved by usual methods such that all double
series oceurring in our theory can be determined with
high accuracy.!
EXAMPLES

The theory derived in the last section has been
applied to twelve types of reactors in the limit
Ny = = (7). Besides the neutron spectra themselves,
the values of the n-factor and the thermal utilization
have been calculated. In determining the latter
quantity a 1/r-absorption law in the moderator has
been assumed. The mean values of the absorption
and fission cross sections of the fuel elements were

! For a detailed description of the numerical work in-
volved in the method see (7).
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< 16; in the
moderator the spatial average of the absorption
cross section has been ecalculated, too, by means of
the spectrum determined neglecting the neutron
absorption in the moderator.

The parameters of the twelve reactors considered
here are given in Table I. @, d, p;, 20/d have the
meaning defined in the text above; pM =
=M(e = 1)/2u= is the absorption parameter of
the moderator; and p is the density of the fuel. In
the calculation of the g-factor the fuel was assumed
to consist of p% U™ and (100 — p)% U™,

The values p = 0.7115, p = 18.4 gm/cm® corre-
spond to those of natural uranium; p = 2 and
p = 10 gm/em® are the data of uranium oxide en-
riched up to 2% U™. The macroscopic absorption
cross section of natural uranium at the moderator
temperature of 40°C was assumed tobe £,%(¢ = 1) =
0.3467 cem™. At a fuel enrichment of 2 % we
have =,V (e = 1) = 0.7541 em™" for metallic uranium
at 40°C and 2,Y(e = 1) = 0.3034 e for enriched
uranium oxide at 300°C. As the absorption cross
section in heavy water has been used Z,M(e = 1) =
7.736 X 107°cm™" at 40°C and in graphite at 300°C
SM(e = 1) = 2.58 X 10~ em ™. Finally the Sachs-
Teller mass has been used for heavy water.

Figures 3-10 show the neutron spectra in some of

taken in the energy interval 0 £ ¢ £

py = 01046 |
2 . 0186
d

. i
S - oo ‘ Ve

—

!

102

'

i
|
l
10~4+4 4
0

|
|
10-f %0 1

Fig. 3. Neutron spectrum in reactor I. The upper curve
represents the spectrum in the middle of the moderator.
MV, is a Maxwellian distribution fitted to the moderator
spectrum at low energies. ¢™°(e) gives the spectrum at the
boundary of the fuel slugs.
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Fia. 4. Neutron spectrum in reactor II. According to
the larger lattice parameter the spectrum is approximated
by a Maxwellian distribution much better than in reactor 1.

the reactors I-XII. The neutron flux ¢ is plotted
versus the energy in double logarithmic scale. There
is drawn the flux ¢"°(¢) at the boundary of the fuel
rods and the speetrum ¢ (d/2, d/2, ¢) in the middle
of the moderator, respectively.

For comparison a Maxwellian distribution A,V
has been fitted to the spectrum in the moderator at
low energies. In the low energy range all the spectra
have Maxwellian character, the maximum being
usually displaced from ¢ = 1. One recognizes clearly’
the change from the Maxwellian part of the spectrum
to the characteristic 1/e¢ slowing-down spectrum,
Diminution of the lattice parameter d results in a
simultaneous, almost equal, increase of the neutron
temperature in fuel and moderator. The neutron
temperature is here defined as the temperature of a
Maxwellian distribution fitted to the given spectrum
in its maximum. An increase in the absorption cross
section of the fuel with unchanged geometry, on the
contrary, has as a consequence a displacement of the
maximum of the spectrum in the fuel but almost
none in the moderator.

Figures 3-10 show that the spectra in fuel and
moderator are far from being identical in the
epithermal region. In an infinite reactor (Ng = )
they tend to meet asymptotically, of course. But
this becomes true only at very high energies. Honeck
and Kaplan (3) made the assumption that the
spectra in moderator and fuel are identical above
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¢ = 9 in the numerical treatment of the problem in
the Wigner-Seitz cell. This assumption was necessary
because of the limited machine capacity. It seems to
us to become dubious at least for strong absorption.
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F1c. 5. Neutron spectrum in reactor IV, i.e., in an en-
riched, D;0O-moderated, heterogeneous reactor. The dis-
placement of the maximum of the spectrum against ¢ = 1
is obvious.
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F1c. 6. Neutron spectrum in reactor VI. The neutron

temperature nearly coincides with the moderator tempera-
ture.
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Fig. 7. Neutron spectrum in reactor VII, i.e., a graphite-
moderated, natural uranium reactor. The neutron tem-
perature differs much from the temperature of the moder-
ator.
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Fic. 8. Neutron spectrum in reactor VIII. Due to the
diminution of the lattice parameter the neutron tempera-
ture approaches the moderator temperature.

According to the experience of the author a small
inaccuracy in the calculation of the high energy part
of the spectrum results in serious deviations from
the rigorous solution in the thermal energy range.
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This difficulty and a possible way of overcoming it
has been discussed in the second and third sections
of this paper for the homogeneous and heterogene-
ous case.
Table II gives the values of the thermal utilization
S caleulated for our twelve reactors I-XII. For com-
parison these quantities have been determined in a
one-group diffusion caleulation for the corresponding
Wigner-Seitz cell. There can be no pretension of
great accuracy in these values, of course. But at
present the main aim of f-factor calculations tends
to a refinement of transport-theoretical corrections,
ie., to an improvement of the treatment of the
spatial dependence of the neutron density, whilst its
energetic behavior is neglected. At most the absorp-
tion cross sections are averaged over a Maxwellian
distribution the temperature of which, however, is
dubious. Naturally, this procedure loses its meaning
as soon as the error caused by neglecting the correct,
space-dependent behavior of the neutron spectrum
1s larger than that of the monoenergetic transport-
theoretical determination of the f-factor. An estimate
of the improvement in accuracy to be expected from
a rigorous consideration of the energy dependence
of the neutron density can be obtained from a com-
parison of the f-factor values in Table II. The differ-
ence between these quantities determined by our
method and the one group approximation, respec-
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Fic. 9. Neutron spectrum in reactor X, i.e., an enriched,
graphite-moderated, uranium oxide reactor. The difference
between the spectra in moderator and fuel is large in the
epithermal region.
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Fic. 10. Neutron spectrum in reactor X1I. The neutrons
are in good equilibrium with the moderator. The spectrum
can be well approximated by a Maxwellian distribution.

tively, is negligibly small for D,O-moderated reactors
with natural uranium fuel elements (this is true only
for a 1/v-absorption law). But this is not the case in
reactors with enriched fuel elements, especially in
graphite-moderated reactors. In any case the ac-
curacy of the monoenergetic, transport-theoretical
calculation can be improved essentially if the ab-
sorption cross sections used are averaged over the
neutron spectra determined in the diffusion ap-
proximation.

In Table II the values of the p-factor determined
by means of the neutron spectra shown in Iigs.
3-10 and those calculated from Maxwellian distribu-
tions at moderator temperature and the temperature
T,V of the neutrons at the boundary of the fuel rods
are also given for comparison. Finally; the mean
values of the fission and absorption cross section of
U and of the absorption cross section of U™ are
given as obtained from the three types of spectra
just specified. As expected the mean values of these
cross sections obtained from Maxwellian distribu-
tions are too large because these functions decrease
so rapidly that the epithermal cross section values
have no influence on the mean value. Consequently,
the n-factors determined with NMaxwellian distribu-
tions are too large.

CONCLUSION

An analytical method has been derived by which
the energy dependent neutron flux in heterogeneous
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TABLE I1
VALUES OF f- AND 7-FACTOR AND oF MEAN ABSORPTION AND Fission Cross SECTIORS

=5
igr of

=3 =8

aﬂ aa
Reactor Tws (barns) (barns) (barns) K
1 0.99648 0.99606 415.96 491.09 2.037 1.30965
11 0.98750 0.98655 446.82 526.56 2.171 1.31500
111 0.98125 0.97996 452,11 532.65 2.194 1.31585
v 0.99807 0.99764 373.24 441.79 1.853 1.70659
Y 0.99217 0.99117 422.12 497.82 2.067 1.71586
VI 0.98786 0.98649 430.90 507.89 2.105 1.71731
V11 0.97453 0.97215 271.48 322.74 1.427 1.27012
VIII 0.89185 0.88192 311.89 370.06 1.606 1.28157
X 0.77493 0.75494 320.73 380.41 1.645 1.28373
X 0.97801 0.97554 263.40 313.27 1.392 1.68171
X1 0.90395 0.89361 307.96 365.49 1.589 1.69160
XI11 0.79586 0.77458 317.96 377.20 1.634 1.69351
I Maxwellian distribution at mod- 481.44 566.94 2.316 1.32037
11 erator-temperature 481 .44 566.94 2.316 1.32037
111 481.44 566.94 2.316 1.32037
v 481 .44 566.94 2 316 1.72304
Ay 481.44 566.94 2.316 1.72304
VI 481.44 566.94 2.316 1.72304
VII 341.01 403 .86 1.730 1 29026
VIII 341.01 403.86 1.730 1.29026
IX 341.01 403.86 1.730 1.29026
X 341.01 403.86 1.730 1.69962
X1 341.01 103.86 1.730 1.69962
X11 341.01 403.86 1.730 1.69962
Maxwellian distribution with displaced temperature
T,v & @ 7a
Reactor 0 (barns) (barns) (barns) K
1 74 153.78 534.45 2.203 1.31578
11 065 460.74 542.62 2.231 1.31700
ITI 56 468.11 551.26 2.261 1.31823
v 134 414,12 488.16 2.040 1.71469
AY 109 429.69 506.29 2104 1.71703
V1 105 433.59 510.85 2.120 1.71757
VIT 143 301.10 358.68 1.556 1.27680
VIII 372 319.22 379.16 1.636 1.28306
IX 357 323.21 383.67 1.653 1.28440
X 472 291.68 351.42 1.527 1.68371
X1 386 315.32 374.74 1.619 1.69121
11 346 326.506 387 .47 1.668 1.69502

reactors of regular geometry can be determined. Of
course, the theory can be applied to Wigner-Seitz
cells, too. The calculation has been carried out in the
diffusion approximation; nevertheless it can be ex-
tended to a P,-approximation of arbitrarily high
order, as has been shown in the one-dimensional case
in the example of the P;-approximation (7). As a
first improvement of the diffusion calculation the
diffusion constant D will be taken to be energy de-
pendent. The heavy gas model has been used to

describe the scattering law, but integral operators can
be treated principally in the same way. Furthermore,
a 1/v-absorption law has been assumed. This, too,
is not a necessary condition to the applicability of
the theory. The author is working on an extension
of the method in this direction at the moment. The
inclusion of resonances like the Pu™ resonance at
0.3 eV will be described in a later paper.

Another important step improving the caleulation
described above should tend to a more aceurate de-
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termination of the effective absorption cross section
from the real cross section values, as long as the
model of linear fuel sinks is used. This coincides with
a better calculation of the neutron flux inside the
fuel from the spectrum at the boundary of the rods.
Naturally the dependence of the neutron flux on a
third space variable z can be taken into considera-
tion. Thus it seems to us that many problems con-
nected with neutron thermalization can now be
solved by generalizations of the theory described
in this paper.
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