KFK-236

KERNFORSCHUNGSZENTRUM KARLSRUHE

Juni 1964

KFK 236

Institut für Neutronenphysik und Reaktortechnik

The Infinite Dilute Resonance Integral of Thorium

M. Brose

Gesellschaft für Ker-forschung m.b.H.
Zentrolbücherei

13. Nov. 1964

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

KARLSRUHE

Letters to the Editors

The Infinite Dilute Resonance Integral of Thorium

Previous measurements of the infinite dilute resonance integral of thorium show wide discrepancies. Values between 67 barns¹ and 106 barns² have been reported. Therefore, and due to the importance of the resonance integral as a check for resonance parameters, a redetermination of this quantity was performed.

In the measurements the cadmium-ratio technique was used, comparing the activation of thin circular thorium and gold foils. To eliminate self-shielding effects, foils containing only 50 μg/cm²thorium were prepared by alloying thorium and aluminum. The gold foils were about 700 μg/cm² and therefore show some self-shielding; this was, however, corrected by using previous experimental results (see below). The irradiations were performed in the pool of the Munich research reactor at a core distance of about 20 cm, where the epithermal neutrons follow a 1/E spectrum. Bare and Cd-covered Au and Th foils (Cd thickness 1 mm) were irradiated simultaneously by placing them on a rotating Plexiglas turntable. Thus the average neutron flux was the same for all foils. The activity of the foils was counted with single-channel γ spectrometers using the ${
m Hg}^{196}$ 412-keV line in the case of gold and the 105-keV Pa²³³ line in the case of thorium.

The results of the measurements were evaluated by the well-known equation

$$\left(\frac{I}{\sigma_{\rm eff}}\right)^{\rm Th} = \left(\frac{I}{\sigma_{\rm eff}}\right)^{\rm Au} \frac{R_{\rm cd}^{\rm Au} - 1}{R_{\rm cd}^{\rm Th} - 1}$$

where

I is the resonance integral

 σ_{eff} the effective thermal cross section.

 $R_{\rm cd}$ the cadmium ratio.

We found

$$R_{cd}^{Au} = 8.40 \pm 0.05$$

$$R_{\rm cd}^{\rm Th} = 10.80 \pm 0.05$$

and thus

Using I = 1461.8 barn and $\sigma_{eff} = 99.3$ barn for gold foils³ and $\sigma_{eff} = 7.45 \pm 0.15$ barn for thorium⁴, we get

$$I^{\text{Th}} = 82.7 \pm 1.8 \text{ barn}$$

for the infinite dilute resonance integral of thorium under 1 mm cadmium. This value is in good agreement with that obtained by Johnston⁵. From the resonance parameters published in BNL - 325, one calculates 96 barn for this quantity (including a correction of 3.89 barn for unresolved sresonances and 2.86 barn for the 1/v part).

M. Brose*

Institute für Neutronenphysik und Reaktortechnik Kernforschungszentrum Karlsruhe Germany

Received December 27, 1963

Gesellschaft für Vr-ferschung m.b.H.
Zentranducherei

¹R. L. MACKLIN and H. S. POMERANCE, "Resonance Activation Integrals of U²³⁸ and Th²³²," J. Nucl. Energy, Part A: Reactor Sci. 2, 243-246 (1956).

²R. B. TATTERSALL, TNCC (UK)-53.

^{*}Present address: 3202 Bad Salzdeffurth, Horststrasse 24.

³M. BROSE, "Zur Messung und Berechnung der Resonanzabsorption von Neutronen in Goldfolien," *Nukleonik* (in print).

⁴E. HELLSTRAND and J. WEITMANN, "The Resonance Integral of Thorium Metal Rods," *Nucl. Sci. Eng.* 9, 507-518 (1961).

⁵F. J. JOHNSTON *et al.*, "The Thermal Neutron Absorption Cross-section of Th²³³ and the Resonance Integrals of Th²³², Th²³³ and Co⁵⁹," J. Nucl. Energy, Part A: Reactor Sci. 11, 95-100 (1960).