KERNFORSCHUNGSZENTRUM

KARLSRUHE

Institut fiir Angewandte Reaktorphysik

The Balanced Oscillator Experiment







The Balanced Oscillator Experiment *

Von L. CALDAROLA **

(Institut fitr Angewandte Reaktorphysik Kernforschungszentrum Karlsruhe)
With 12 figures in the text
(Received November 3, 1964)

Abstract. The “Balanced Oscillator Experiment” is a new type of oscillator experiment to measure transfer functions of

nuclear fast reactors.

The technique consists in injecting in a reactor at the same time sinusoidal signals of reactivity and coolant flow of the same
frequency and related each other in such a way that the coolant temperatures remain constant.
In addition to the Doppler reactivity coefficient, this new method allows to measure the fuel thermal conductivity and the

heat transfer coefficient between fuel and coolant.

Numerical examples are included with reference to the Southwest Experimental Fast Oxide Reactor (Sefor). (Bibl. 3.)

1. Introduection

The “Balanced Oscillator Experiment’’ consists in
injecting in a fast reactor at the same time sinusoidal
signals of reactivity and coolant flow of the same
frequency and related each other in such a way that
the coolant temperatures remain constant.
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Fig. 1. Schematic reactor flow diagram (Sefor)

During the experiment the inlet coolant tempera-
ture must be kept constant by other means which are
discussed later in para 6.

In this way the Doppler effect is the only reactivity
temperature effect which is present during the experi-
ment. \

Fig. 1 shows the schematic reactor flow diagram.

Fig. 2 shows a schematic diagram of all the sig-
nals. The input signals to reactor are:

(i) reactivity signal Ak =Ak,, sin wt, (1)
(ii) coolant flow signal Ay = Au,, sin(wt +ao). (2)
The amplitude ratio, Ay, /Ak,, and the phase shift

13

o’ of the two input signals must be chosen at any
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frequency in such a way that the outlet coolant tem-
perature, G, , remains constant. That is:

A0y =0. (3)

The outlet coolant temperature is measured by a

" thermocouple (Fig. 2). Ay, A4k, and “a” are obvi-

ously. function of “w’
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Fig. 2. Balanced oscillator e:\"perxnlellt— Schematie Diagram of the signals

The power signal AP is measured by means of a
flux detector (Fig. 2). The “Balanced Transfer Fune-
tion Analyser” (Fig. 2) allows us to evaluate the two
transfer functions

Ap*(jo)lu

AP*Gu)lF, W
and

AP*(jw)/F,

AL7gw)i o 5

Pyt )
where

“*” indicates Laplace transform
subeseript ‘"’ indicates steady state condition

f = fraction of delayed neutrons.

2. Physical Fundamentals

In this paragraph we intend to find out which
conditions should the amplitude ratio Au,,/Ak, and
the phase shift “a” satisfy in order to keep the coo-
lant temperatures constant.
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The reactor can be considered as divided in “n
cooling channels each including a fuel rod and its
associated coolant. The heat balance equation of the
coolant in an average channel is the following:

. (1)

¢ nin oz v ot

where

h = heat transfer coeff. between fuel surface and
coolant (including the cladding)

R =radius of fuel rod

= specific heat capacity of the coolant

== fuel surface temperature

= coolant temperature

== axial coordinate

= coolant speed

= time

n = number of cooling channels.

NQNQQSG

Eq. (1) can give 60/6t =0 only if:

T, — 6 To—6€ . s
5= _ 0= _ function of “z only  (2)
" o

[ X3l

where subscript ““,”" indicates initial steady state
conditions. Taking into account (2). eq. (1) becomes:

2akh To—@y _ €6 1 0

c un ez v ft

)

1f we introduce the change of coolant temperature. 46

AO =0 -6, (4)
eq. (3) becomes:
2aRh Tog— Oy _ d6, . 610 1 £16 5)
c mn  dz U ez v it (o
It is:
2aRh Tyo—0, do,
HE TGy _ 4G (©)
¢ Holn dz
Eq. (5) becomes therefore:
cA60 1 ¢46 -
6z v &t =0 ()

Eq. (7) associated to the boundary condition that the
inlet coolant temperature, @;, is constant (16, =0),
gives:

460 =0. (8)

We have therefore shown that condition (2) is neces-
sary and sufficient in order to keep the coolant
temperatures constant with time,

Taking into account (4) and (8), condition (2) may
be written as follows:

#_ Li=0 %I‘LT,(')@ ) ()
o Teo— 0y Tio— 64
Introducing
du=p—py (10)
and
AT —1T,— 1T, ()
eq. (9) becomes:
dp AT R
o Tso— 0 ° 1)
The Laplace transform of eq. (12) is:
A% A%
Au _ ATy . (13)

Ho Tao*“@u

It is:
- R P, ,,
Lo — Op= 57 I",O 3 (2) (14)

where:

F, = reactor power at steady state
I, = volume of fuel in reactor = nxR*H
(H being the height of the fuel rod)
M(z) = normalized function expressing power dis-
tribution along the axis of a fuel rod

Y H
{1] ./‘M(z)dz—_—lj{.
0

Since the coolant temperatures are constant, it is
according to Ref. 2. para 2. eq. (20)]:
R 1

2 (13)

ATF = F.(s-t,) M(z) AP*(s)
where

A P*(s)= Laplace transform of the power change
and

Eis -

{,) = normalized transfer function between
fuel surface temperature and power
[£(0)=1]

TR 0,6

{, = radial time scale = f R =

fuel density . fuel specific heat capacity
fuel thermal conductvity
X (radius)?.

Putting (14) and (15) in (13). we have:

T 17 AP

- = F(s- 1
Ho Too— 6y Ela-ip) 5 (16)
which is independent on the axinl coordinate 2.
In the time domain eq. (16) becomes:
1 17, 1 t
G AT - eyde (7
e T -[f\(.v) APt —a)dx  (17)
0
where
[y =L [Es - 1,)] (18)

and L7 indicates antitransformation.

The demonstration given in this paragraph starts
from the assumption (2) where y can be dependent on
27 which is physically Impossible. At the end
[eqs. (16) and (17)] we find out that y is function only
of the time.

In Appendix 1 a more refined demonstration is
given: starting from condition (17) where p is only
a time dependent funetion. it is shown that the
coolant temperatures remain constant.

Lq. (16) allows us to find which conditions should
the amplitude ratio Ay, Ak, and the phase shift
“27" satisfy, in order to keep the coolant temper-
atures constant.

It is:

Dijo)— ll”"(j.w),"])’0
1E* (jw),p
= reactor power transfer function.

(19)

Taking into account (16) and (19) we have:

AP*(jew)
¥ (o)

M (jowy  ApF(jo)

(o) T AP*(w) < Dije) £ (jot) (20)

-
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and therefore: F(o)= 1/oZ (o) 3)
dpm _ . L+ y/Z(0)
A= |D(7w | 1B (ot,)] (21)  where
— radial 4 = &%
o =gp (jo) + g, (jot,). (22) {,= radial time scale = f R =
. . __ fuel density X fuel specific heat capacity 4)
gpi,()masn% ((;JZ) ;ozl:llé; }h((; a}))tll)atses respectively of the func- = fuol thermal conductivity
s X (radius)?,
3. Results obtainable from the new oscillator 2
experiment ATy I :
We have already said in para 1 that the ‘“Balanced _fuel thermal conductivity )
Transfer Function Analyser” allows us to evaluate "7 2 x heat transfer coefficient X radius ’
- _%(=o)
2 [ 1 Z(g)= e B (5)
2
/02_ Jy and J; being Bessel functions of the first kind.
,\ 4k r I P2g Putting ¢ =jv =jwt,, we can write;
z 2 ——t . . .
% T Z(j») =X(») + Y (»). (6)
I 8 i With X(») and Y (») respectively real and imaginary
4 1 Y part of Z(jv). Introducing (6) in (3), we can write:
2 f T i
| 4 vvig o i 1 R
<l BTN R PR NP L ——=—p Y ()i X () -yl w]. 7
Ty e 58/02 Z 468005 2 46800* Ei(jv) JFIXO)+yho] ™

Fig. 3. Diagram of the function —»Y(»)
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Fig. 5. Block diagram of reactor transfer functions

the two following transfer functions:

Ap* (jo)/u,

E(jot,)= AP*Goo) P, (1)
and
.\ AP*(jw)fR,

As we have already shown in para 2 [eq. (16)],
F,(jwt,) is the transfer function between fuel surface
temperature and power.

3.1. Determination of the parameterst, and y
Ap*(jo)/p.
AP*(jw)[Fy

The author has found the following theoretical ex-
pression for F; (o) with ¢ =st, (Ref. 2):

from the transfer function F,(jwt,) =

F,(jwt,) is also determined experimentally by means of

eq. (1). Indicating with M (w¢) and ¢,(wt,) respec-
tively modulus and phase of F(jwt,), we have:
1 __cosg; . sing;
E(j(i’tr) N ! My ®)
By comparing (7) with (8) we have:
== Yw) ()
and
— fl%ﬂi =vX (W) + v 0. (10)
<=8

The functions —» Y (v) and » X (v) have been calculated
and are given respectively in Figs. 2 and 4.

For a chosen value of w we can evaluate cosg, /M,
experimentally. Using eq. (9), and Fig. 3 we get v and,
since v =wt,, t, in determined.

In eq. (10) the term — sing/}M, on the left side is
evaluated experimentally for the chosen w. »X () is
also known because » is known, and we can therefore
determine p - £,.

The functions —» Y (v) and y X (v) have been pro-
grammed on the IBM 7070 computer, so that ¢, and y
can be more precisely determined by means of nu-
merical methods instead of using the graphs of Figs. 3
and 4. From ¢, and y, it is possible to evaluate the
thermal conductivity, A, and the heat transfer coeffi-
cient, k, if the density, g, the specific heat capacity, c,
and radius, R, of the fuel rod have been previously
determined.

3.2. Determination of the Doppler power coefficient and
of the parameter ayft, from the reactor transfer function,

. AP*(jw)[F,
D(jw)= Ak*‘yw)/ﬁ

Fig. 5 shows a schematic block diagram of the
reactor transfer functions defined as:

APROE, _jerg power transfer function, (11)

Do®)="stx o
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N(s)= j}lf{k (z;ﬁ) — feedback transfer function, (12) From (24) and (25) we obtain (putting s =jw):
F, @ 1 1 1
_AP*)B _ Dyls) = oo (26)
D(s)—_—Zk;*(sﬂﬁ 1 +D0(s) N(S) } (13) nH ﬂ 1+?wt1/01 .D(](l)) Do(]‘”)
= power transfer function If ¢, and ¢y, are the phases respectively of D(jw) and
where: Dy{jw), from (26) we have:

Since the coolant temperatures are constant, the
reactivity feedback (4%k;) will depend only on the fuel
temperatures. It is:

where :

y; = fuel temperature coefficient (mainly Doppler)
T = effective fuel temperature.

The effective fuel temperature is defined by:

[ O ATy dV
all rods
Alen="""" ggray —

all rods

(16)

@ and @' being respectively flux and adjoint flux,
V volume and 7T,, the average temperature of a
section of a fuel rod. Since the coolant temperatures
are constant, 47,, will depend only on AP. It is
[according to Ref. 2 para 2 eq. (22)]:

ATg =4 (14 g J Bt 27

where:

AP*(s) (17)

F,y(st,) = normalized transfer function between aver-

age fuel temperature and power [ F, (0) =1].
Putting (16) and (17) in (15), and taking into account
that V; =nn R*H, we get:

AkF=G-Fols-t;) o AP*(s) (18)
where :
G = Doppler power cocfficient }
N 1 1 (19)
=714 g (1 55
f @P'M(z)dV
all rods
="FZra (20)
all rods
Taking into account (18), eq. (12) becomes:
P 1
N(s)= —;}T "8 G-Fyy(s-t,). (2h

The author has shown in Ref.2 that the function

Fiv(s-t,) with very good approximation is given by:
1

= 1+ stfo;

— 0, being the first root of the Bessel functions equa-
tion:

Eyv(s-t)=

(22)

H(G o) o
B BATE )_7‘ (23)
Putting (22) in (21), we get:
P 1 1 5
Nis)= n;I B 1 +stfo, (24)
From eq. (13) we have
N(s)= ! (25)

D(s) ~ Dyls) -

nH 7 |Djcosgp
D2 D
L1571 —2| . | cos(@p — ¢pd) (27)
0 0
x — - J_ B —
D cos S @D,
1- D, | cos gp
and ’
D | cosep,
o Y| eos e
LSO D L singy, &)
D, | singp
It is:
. D
| 5] =o. @
lim cos ¢p, =0, (30)
w—>0
limocos op=1. (31)
Taking into account (29); (30) and (31), eq. (27) be-
comes:
1 P, G
b = aH B (32)

For o very small (in Sefor smaller than 3 - 10-3 sec™?),
the power transfer function D (jw) tends to the asymp-
totic value n H /P @. Since Fy/nH and f§ are known,
eq. (32) allows to determine the Doppler power coeffi-
cient G. We can conclude that G can be determined
by measuring the transfer function D (jw) only.

Eq. (28) allows to determine the parameter,
oyft,. From the point of view of the accuracy, it is
convenient to carry out this evaluation when ctg gp==1
that is when wz=zay/t,.

The determination of oyff, implies in the most
general cases the measurement of both the transfer
functions D(jw) and Dy(jw). In some cases the con-
ditions (29) and (30) are already satisfied in the fre-
quency region under consideration and ¢yft, is than
more simply given by

(:1 = o cotg pp. (33)
r
This happens when:
P L oo (34)
where
o = 3 : (35)

B; and 4; being respectivcl; fraction and decay con-
stant associated to the ‘¢’ th group of delayed neu-
trons. The determinatlon of o,ft, can be used as a
countercheck of the results obtained in para 3.1. Since
t, and y have already been determined (para 3.1) and
oy is function of y (Fig. 6), the ratio g,/t, can be also
theoretically calculated and compared with that
obtained experimentally.
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8 4. Numerieal examples for Sefor reactor
017 Figs. 7 and 8 show respectively amplitude (M) and
phase (g,) of the function K (jw) as it is expected to be
s in Sefor.
N Taking for example ¢ =0.0625 rad/sec, we have:
4 M, =0.4537 from Fig. 17, 1)
o8 ¢, =—>51°5  from Fig. 8. (2)
‘ From (1) and (2), we have:
4 U A S R D oy
e N OB D _1BT=—rY (),  (3)
WE 4 7092 % T0EZ % 7072 § 7002 % 7n’ M, 0.4537
7 sing,  0.7826
_ — -G = =113 =y X(»)+ylow. 4)
Fig. 6. Yirst root — o, of the equation 7}—];_’,"[9‘]—(;7):%‘)7 = M, 0.4537 T
as function of y - ! Krom Flg 3, we see that:
—vY (»)=1.375 when » =10. (5)
T l ] ' T We can therefore determine ¢,:
v 1 | s
! | s v _ 1o e
- | | ‘ t,= w = 0.0625 = 160 sees. (6)
30’5 A e o ]
w ‘ o From Fig. 4, when v =10, we have
\ : »X (»)=1.03. (7)
0 L .l I 1l i TT————
WIZ 4680722 4 66m7T 2 468/ 2 4 68M From cq. (4) we get:
w {sec]
1.73 — 1.03
Fig. 7. Yrequency response of the transfer function Fy()w)— Amplitude _ Vtr: B "‘O”OG:}};— =11.2 secs (8)
diagram (Sefor) Mt
and therefore we determine y
[ T T T 11.2 -
95 107 U T T T Y=g = 0.07. 9)
ggow [ 1 \ " JT i I ) : j ’
40—t — } - From Fig. 6 for y =0.07 we get:
TN
0% ——— + R e —t —
70° : | ‘ | \‘\‘\ ! ‘} 0'1 —v44068 (10)
800~ T == and
90° = . L . L iid - ! Ll 5 ! Lody , o 4.4068 .
032 ¥ 680072 468072 4 680°2 46800 = =0.0276 rad/sec. (11)
o [sec’] i 160
Fig. 5. Frequeney respouse of the transfer function #5Qw) — Phase Flgs @ and 10 show respective]y amplitude and phase

diagram (Sefor)

i
Sd s lyﬁ[L ,J‘.—r P
i I . .
/0" 4|L »iJL_LL 1 ‘l o L 1"_J
w32 680°%2 4681072 46810092 4 6810

w[ sec]

Tig. 9. Frequency response of the reactor power transfer function D () w)—
Amplitude diagram (Sefor)
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Fig. 10, Frequencey response of the reactor power transfer function D (j w) —
Phase diagram (Sefor)

of the power transfer function D(jw) in the low fre-
quency region as it is expected to be in the case of
Sefor.

For ;» <3 - 107* sec™!, | D(jw)| tends to the asymp-
totic value of 0.424 §-1. From eq. (28) of para 3.2
putting w =0, we get

o 1

Wi 3 = Gy —2:365. (12)
Since:
P, =20 MW, (13)
nH = 500m, (14)
B = 3.395 103, (15)
G can be determined
(= 2000 B0 NT 0 2 Ak mMW. (16)

For ¢ =0.029 sec? (which is not too different from
the theoretical value of ¢y/t, given by 11), we have:

Dy =424 (from Fig. 11), (17
0 =]

| D) =0.622 (from Tig. 9), (18)
Pp, = — bb° (from Fig. 12), (19)
gp=-+-3678 (from Fig. 10). (20)
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Using eq. (28) of para 3.2, we have:

_ 0622 082

o 424 0.8
N 7 = v T (R

4.24 0598

=0.029 - 1.33 - 0.740 = 0.0286 (sec™1).

The value of g/t calculated by (21) differs slightly
from that given by (11) because the reactivity feed-
back transfer function is only approximately expressed
by one pole [egs. (22) and (24) of para 3.2].

5. Comparison with the traditional oscillator
experiment

With the traditional oscillator experiment only
the reactivity signal is introduced in the reactor. The
advantages of the ‘“balanced oscillator experiment”
in comparison with the traditional one, are mainly
the following :

(i) Since the coolant temperatures are constant, it
is possible to separate the Doppler temperature effect
on reactivity from the other temperature effects. It
is a real clean oscillator experiment.

(ii) The normalized transfer function F(jwt,) be-
tween fuel surface temperature and powerisdetermined
by indirect measurements. The direct measurement
of F (jwt,) would imply the measurement of the fuel
surface temperature, which is technically difficult
and inaccurate. The measurement of F(jwt,) allows
to determine the parameters y and ¢, and therefore the
fuel conductivity, A, and the heat transfer coefficient,
h, can be calculated.

(iii) The normalized transfer function & (jwi,)
between average fuel temperature and power is deter-
mined and therefore the parameter o/t, can be cal-
culated.

With the traditional type of oscillator experiment
the transfer function F,(jw) cannot be determined and
therefore ¢ and ¢, cannot be evaluated.

In addition, since the coolant temperatures are not
kept constant, the Doppler temperature effect on
reactivity is not rigorously separated from the other
temperature effects. The calculation of the Doppler
power coefficient, G, and of the parameter, a,/t,, from
the power transfer function D{(jw) is therefore more
complicated and it is dependent upon the knowledge
of the other reactivity coefficients and their associated
time constants.

6. Final Comments

The method of introducing in a system two or more
sinusoidal signals related in such a way that a specifie
physical quantity easily measurable does not change,
can be considered a very general method to measure
transfer funections indirectly. This “balance techni-
que” may have a wide application especially when it
is difficult to carry out the direct measurement of a
transfer function.

A simple and well known example of “balance
technique” is the Wheatstone Bridge to measure
electric impedences. In the Wheatstone Bridge the
impedences are balanced in modulus and phase in
such a way that no current passes through the dia-
gonal. When this condition is fulfilled, the unknown

impedence can be determined by a simple relationship
with the other three known impedences.

To end our comments about the application of the
“balanced oscillator experiment” on Sefor, we must
say that the coolant flow signal may cause a noticeable
disturbance in the inlet coolant temperature, 6,,
through the primary heat exchanger. Since ©; must
be kept constant during the experiment, it is necessary
to balance this effect. This may be obtained by intro-
ducing in the system a third signal AZ=A4§,,sin(wt-+6)
to the pump of the secondary coolant circuit (Fig. 1).
Aé&,, and é must of course chosen in such a way that
no change occurs in 0;.

A better solution could be obtained by putting a
by-pass value across the primary heat exchanger from

2
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Fig. 11. Frequeney response of the zero power transfer function I, (j ) —
Amplitude diagram (Sefor)
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Fig. 12. Frequency response of the zero power transfer function Dy (jw) —

Phase diagram (Sefor)

the side of the primary coolant circuit (Fig. 1). This
valve should of course be operated in such a way that
O, remains constant during the experiment.

In the analysis developed in this paper, the thermal
capacity of the fuel ecladding has been purposely
neglected in order to show the essential parts of the
new experiment. In the heat transfer coefficient “A”
are included the heat transfer coefficients fuel to
cladding, internal to external surface of the cladding
and cladding to coolant. However. if the thermal
capacity of the fuel cladding must be taken into
account, the philosophy of the experiment is still valid,
but the mathematical relationships will be slightly
more complicated.

Appendix 1

Demonstration that the coolant temperatures, @.
remain constant during the experiment [40 (z;t) =0]

The heat balance equation of the eoolant in a
cooling channel is the following:

o
—
N
O}

2aRh T,—0O ¢
¢ um T E

w!
~y
-~
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where:

B =radius of fuel rod

b = heat transfer coefficient between fuel and

coolant (including the cladding)

¢ = specific heat capacity of the coolant

4 = coolant flow

T, = surface fuel temperature

z = axial coordinate

v == coolant speed

{ = time

n = number of cooling channels.

‘We introduce:

T, =Ty +A47T,, )
0=0,+40, (3)
p=po+Ap 4)

where subscript “;” indicates initial steady state con-
ditions and “A”’ variation from steady state condition.
The fuel surface temperature, T, , may be expressed
as function of the coolant temperature, @, and of the
power, P [according to Ref.2 para 2 eq. (20)]:

AT (st,32) = Gy (st,) AO*(s52) +
s) 5
+£nmﬂp(mJ )

where:
“*»  indicates Laplace transform
s= complex variable of Laplace transforma-
tion
V,=volume of fuel in reactor =naR*H
(H being the height of the fuel rod)
M(z)= normalized function expressing power
distribution along the axis of a fuel rod

H
{?lfflll(z)dzzl]

t, = radial time scale = Q’lf R? =
. fuel density X specific heat capacity
fuel thermal conductivity
X {radius)?
G, (st,) = normalized transfer function given in
Ref. 2 para 2 eq. (23) [G,(0) =1]
F,(st,)= normalized transfer function given in
Ref. 2 para 2 eq. (24) [F,(0) =1].

It is [Ref. 2 para 2 eq. (24)]:

G, (st,) =1 —yt.sF(st,) (6)

where:
_ A fuel thermal conductivity 7
v= 2kE 2 X heat transfer coefficient X Radius )

Eq. (5) becomes:

AT¥ (st,;2) =A0O*(s;2) [1 — yt, s Fy(st,)]+
8
+ i Blst) T AP o). ®

Antitransforming to the time domain, (8) gives:

¢
Aﬂzd@—-yt,f—f?%g—)wd@(z; t—x)dx-t-
0

9
R-M(z)

+ "hV

ffs 2)AP(t— z)dx

where:
fs(6) =L [E (s,)]
and L7 indicates antitransformation.
We shall also remember that, at steady state
conditions, it is:
2”Rh(Tso—@0)
cp/n
Taking into account (2); (3); (4) and (9), e
comes :

(10)

nR? P,
T cup Vyin

M=

(11)
q. (1) be-
{
1+ ?1,— ffs(x)AP(t—x) dx
[

Py M(z)
2 0
B Clig V,/n

v

1+ Ap
Mo

1 046

(12)
_ dk0+aA@ 120,

27 Rhyt, dfs(x) X

We must demonstrate that the condition

----- fﬂuAPU—w (13)
is necessary and sufﬁment to give 46 (z;¢) =0.
Eq. (13) is equal to condition (17) of para 2.
In the Laplace domain eq. (13) is equivalent to:
A*(s)
Ho
which is equal to condition (16) of para 2

Condition (13) is necessary because eq. (12) can
give A0 =0 only if (13) is satisfied.

Taking into account (11) and (13), eq.(12) be-
comes:

040

= E(ot) A5 (14)

1 240

oz T e T
2aRhyt, /’ afs(z) AB (23t — x) da =0 (15}
culn -
0
with the boundary condition
46(0;¢t) =0 (16)
that is inlet coolant temperature constant.
The solution of (15) is of the type
amA0
A0 = A0(0; 1) + Z — ( azh‘r)z:o‘zm (17)

m=1

where all the (0"A40)]92"™),¢ are functions of the time.
If in (15) we put z =0, we get:

(%5) 00

13 ,’

(18)

Differentiating (15) in respect to
we get [taking into account 18)]

(249)  _
722 z=0_

By successive differentiations we get for each “m

omAO
@ﬁﬂm=°

and puttingz =0,

(19)

(20)
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‘We can conclude that the solution of eq. (15) with the
boundary condition (16) is:

40 (z;t) =0. (21)
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