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I. Introduction

The investigation of inelastic scattering of slow neutrons in
solids yields valuable information on the dynamic properties of
such many-pdrticle systems. If the coherent scattering is dominant,
single phonons can be "seen" and, as a result of systematic meas-
urements of phonons in certain directions in single crystals, dis-
persion curves can be constructed. If the scattering is incoherent,
this method is not possible. In this case, however, the frequency
distribution of the normal modes can be deduced in a more or less
direct way from the measured scattering distribution. Comparison

of experimental and theoretical frequency distributions often sug-
gests a more realistic picture of the properties of the scatterer.
Unfortunately, only a few substances scatter almost completely in-
coherently. From these, vanadium, with a cubic body centered lattice,
has a relative simple structure. Several workers L1 - %/'have re-
ported frequency distributions of vanadium obtained by the scatter-
ing of beryllium filtered cold neutrons. In the present paper, a
somewhat different method is described in which the scattering law
of vanadium is measured for a relatively large range of momentum
transfer, B Q, and cnergy transfer, B w (0 < Q { 14 X‘q; O0¢hul(
<2kBT)' Starting with the scattering law values and using the
extrapolation technique proposed by Egelstaff /Ef,values of the
frequency distribution function have been obtained. The only as-
sumption made for the purpose of performing the itération of the ex-
trapclated valucs is that the motions of the atoms are harmonic.
But then the separation of multi-phonon processes is straightfor-
ward and no previous evaluation of the Debye-Waller factor is

necessary.

II. Experimental Arrangement and Procedure

A beam from the Karlsruhe rotating-crystal time-of-flight spectro-
meter described earlier in detail /§/ provided the incident mono=-
energetic ncutrons in an energy range of 18 to 80 meV. Primary

energy resolution was 5 % at 18 meV and time resolution about 20

/usec/m.

A sketch of the apparatus is shown in Fig. 1. The distance sample-
-detector was 2 m. Ninc detectors at scattering angles between 20 and

140° were used simultoneously. At present, two different types of
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detectors are in use, namely He”-counters, 1 inch diameter, forming
banks with an effective area of 155 cma, and Li6F-ZnS scintillators,
5 inch in diameter. For data acquisition and reduction, a multiple
input data acquisition system (MIDAS) with a Control Data 160-A
computer (8K core memory) as central unit is cmployed /7/. This
computer handles simultaneously con~line four different reactor beam
experiments. The events recorded by the time-of-flight detectors of
the scattering experiment are fed into a multiparameter coding unit
which digitizes the experiment numbecr, the particular detector num~-
ber and the neutron timc-~of-flight. This unit is connected with the

computer by means of a central buffer station.

The scattering sample was a 7 x 4.5 cm2 vanadium plate with a thick-
ness of 0.2 cm. The transmission of the sample was 85 % for incident
neutrons of the smallest cncrgy and about 90 % for the highest encrgy
used. For each of the thrce incident energies (about 18, 40 and 80
meV) a run of approximately 50 hours duration was carried out. This
corresponds to a few hundred counts in the significant inelastic
channels. For background elimination similar runs without the sample
were made. Because of the rotational symmetry of the crystal mono-
chromator, background contributions from fast neutrons and uncor-
related slow neutrons are constant in time and are, therefore,

easily corrected.

I11. Data Processing and Results

The quantity to be directly calculated from the measured scatter-

ing distributions is the scattering law S(x,B), defined as follows:

L
S(ayn) = —Bo (A2 B/2(T0)/2 &T

T T, A+ E dndE (1)
where
d%S
353F is the double differential neutron scattering cross-section,
Sy the free atom cross-section of the scattering nucleus,
kB the Boltzmann constant,

the absolute temperature of the scatterer,

A the ratio of the mass of the scattering nucleus to the mass
of the neutron,

df the element of so0lid angle int which the neutrons are scat-

tered,



-4 -

EO and E the incident and scattered neutron energies,
E - EO
B = ———
kT (2)
E, +E-2 (EOE)1/2 cos 8
*= AT (3)

and € the scattering angle.

For incoherently scattering solids a direct relation can be estab~
lished, in the harmonic approximation, between the phonon frequency
distribution of the crystal lattice P(B) and the limiting value of
S(x,B)/x for ®=0:

£(B) = 2Bsinh B/2 (St )% -0 %)
In a first step a "callibration program! was ruﬁ for the purpose
of calculating the detector efficiency as a function of energy.
Here effects of sample thickness, mainly absorption, are taken into
account. The calculation is bhased on the Placzek heavy-mass eX~
pansion /B/. A function of the type proposed by Harris et al. /97
has been fitted to the calculated efficiency values. The resulting
parameters were fed into the computer together with the raw data
from sample-in and sample-ocut runs and a second calculation was
started with the "scattering law program'", which delivers the &,
B,S(ot,B), S(%x,B)/x and the statistical errors of the measurement
for ecach time channel, In this program the built-in possibility of
smoothing the raw-data in selected time-channel intervals has been
taken to advantage when advisable, namely for the background data
and the sample-in data at the lowest energy. A typical result for

S(%,B8)/x vs. time-channel is shown in Fig. 2.

The calculated S(x,B)/ values are then plotted against « and
extrapolated to ®= O for B values at 0.05 intervals (Fig. 3). In
the first extrapolation the resolution effects that tend to in-
crease the gradient of the SA&X curves, especially at low % , have
not been corrected for. Then the LEAP program /1Q0/ has been run
with those first exprapolated values, assuming that the gradient
of the LEAP output curves would be approximately correct. Based

on this gradient a correction for the elasfic peak resolution was
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performed using the assumption that the peak shape and also the
energy resolution for a given time-channel and a given incident

energy are independent of the scattering zngle.

It was further assumed that the & ~-dependence of the elastic am-
plitude in a given channel is described by the Debye-~Waller fac-
tor. This resoclution correcction determines a2 parallel displacement
of the curves calculated with LEAP which is of significance only

for low B values.

With the new extrapolated values a second LEAP calculation was
made and the results were agzin compared with the measured data;
this procedure was repeated until the slope of the L-lines (Fig.3)
and their 1limit at &= O stabilized themselves. Three runs were
made, (B) being normalized to one at every run. The variations
of the calculated Debye~-Wallecr factor and of the area under the
input-P(B) during the whole process were not greater than 10 %.

Figs. % and 5 show the obtained (St) and P(B) curves.

o= O

IV. Discussion of results

In Fig. 6 the final frequency distribution EJ(V) extracted from
the scattering law measurements is compared with some of the pre-
viously reported mezsurements using the beryllium-filter technique.
The area under each curve is normalized to unity. Roughly allof
them show the same shape but in details there are disagreements.
The curve 3 is corrected for the distribution of the incident
neutrons /3/. The decrease in peak height in our curve may be
partially due to some cxtra scattering at higher energies; a de~
crease may be causcd also by resolution effects in the inelastic
spectrum., But another possible explanation is the effect of mul-
tiple scattering; in our measurements we uscd much thinner samples
than the other workers did.

Thepresent curve has a small bump at v = 2-4-1012 sec-q. The ex~

istence of such a peak has been predicted previously at about

v = 2.0 sec” | and attributed to the Kohn effect /11/.

Although vanadium has & high transition temperature for the super-
-conducting state indicating a strong electron-phonon interaction
which favours a strong Kohn effect, such a peak,in principle,can

be expected also on the basis of Born-von KArmaAn-theory. Using =
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a model with noncentral nearest neighbour and central next neigh-
bour interaction Singh and Bowers /127 calculated a frequency spec~
trum showing three peaks. Unfortunately they did not use the correct
elastic constants. After the elastic constants of vanadium had been
measured by Alers /13/, calculations using the Born-von Karman and
the de Launay models have been made /14/. None of the models, how-
ever, gives a satisfactory representation of the measured frequency

distributions.

From the LEAP calculations the Debye-Waller coefficient A= 2 W/
is found to be 4.22 + 10 %. In the Debye approximation a Debye

temperature 6, = 354 * 150K can be deduced from this value. Start-

ing from the geasured freguency distribution we calculated the

specific heat as a function of temperature. The results are well
described by the above Debye temperature and are,within the ex-
perimental errors,in agreement with the low temperature specific

heat measurements by Corak et al. /15/7.
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Legends to figures:
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Schematic sketch of the rotating-crystal time-of-flight

spectrometer at the FRZ2 reactor.

Typical plot of S(o,B)/ values obtained with the "scat-

tering-law program"

Typical curves of log (Sm) vs.d; L indicates the curves
from the final LEAP calculation; R 80 and R 40 the curves
calculated on the basis of L and the resolution correc-
tion sketched in the text, for incident energies of 30

and 40 meV.

The values of (SA‘%<: vs. B.

0

P(B) deduced from the measurements.

A compariscn of several experimental freguency distri-
butions for vanadium. The number on the curve gives the
reference,

Curve 4 is the result of the present work.
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