KFK-319

KERNFORSCHUNGSZENTRUM KARLSRUHE

April 1905

THE ROLL

Institut for had a con-

Ternare Oxide des dreis his siehenwertiger Teghnesiams mit Asabien

C Keller, B. Kane in applied

GESELLSCHAFT FUR KERNFORSCHUNG M. B. H KARLSRUHE

TERNÄRE OXIDE DES DREI-BIS SIEBENWERTIGEN TECHNETIUMS MIT ALKALIEN

C. KELLER und B. KANELLAKOPULOS

Lehrstuhl für Radiochemie, Techn. Hochschule Karlsruhe und Institut für Radiochemie, Gesellschaft für Kernforschung mbH Karlsruhe

(Received 26 October 1964)

Zusammenfassung—Im System Alkalioxid-Technetiumoxid-Sauerstoff wurden durch Festkörperreaktion je nach Reaktionsbedingungen folgende ternäre Oxide erhalten: $L_{15}TcO_6$, Na_3TcO_5 , Na_5TcO_6 K_3TcO_5 mit siebenwertigem Technetium; α - $L_{14}TcO_5$, β - $L_{14}TcO_5$, α - $L_{16}TcO_6$, β - $L_{16}TcO_6$ mit sechswertigem Technetium; α - $L_{13}TcO_4$, β - $L_{13}TcO_4$, $NaTcO_3$ mit fünfwertigem Technetium, $L_{12}TcO_3$, Na_4TcO_4 mit vierwertigem Technetium und $NaTcO_2$ mit dreiwertigem Technetium. Die Mehrzahl dieser Verbindungen ist isotyp mit den entsprechenden Rhenium-Verbindungen.

Die chemischen und strukturellen Eigenschaften der erhaltenen Verbindungen werden einzeln und im Vergleich mit den entsprechenden Mangan- und Rhenium-Verbindungen diskutiert.

Abstract—In the system alkalioxide-technetiumoxide-oxygen the following ternary oxides were prepared by solid state reactions: Li_5TcO_6 , Na_3TcO_5 , Na_5TcO_6 and K_3TcO_5 with heptavalent technetium; $\alpha\text{-Li}_4\text{TcO}_5$, $\beta\text{-Li}_4\text{TcO}_5$, $\alpha\text{-Li}_6\text{TcO}_6$ and $\beta\text{-Li}_6\text{TcO}_6$ with hexavalent technetium; $\alpha\text{-Li}_3\text{TcO}_4$ and $\alpha\text{-Li}_3\text{TcO}_4$ with pentavalent technetium; $\alpha\text{-Li}_3\text{TcO}_4$ with tetravalent technetium as well as $\alpha\text{-Na}_4\text{TcO}_4$ with trivalent technetium. Most of these compounds are isotypic with the corresponding ternary oxides of rhenium.

Chemical and structural properties of the above-mentioned ternary oxides are discussed and compared with those of the corresponding compounds of rhenium and manganese.

1. Einleitung

In den vergangen Jahren wurde die Festkörperchemie der Oxide der Elemente Mangan und Rhenium besonders von Scholder⁽¹⁻⁵⁾ sowie Ward⁽⁶⁻⁹⁾ eingehend untersucht. Tabelle 1 enthält eine Übersicht der im Zusammenhang mit den folgenden Untersuchungen über Technetium interessierenden ternären Oxide der verschiedenen Wertigkeitsstufen des Mangans und Rheniums mit Alkalien.

In einer früheren Arbeit⁽¹⁰⁾ berichteten wir über die Datstellung und die Eigenschaften der Alkalipertechnetate des Typs Me¹TcO₄(Me¹ = Li, Na, K, Rb, Cs, Ag, Tl). In dieser Arbeit sollen die Ergebnisse weiterer Untersuchungen am System Me(l)–Tc-O (Me = Li, Na, K) aufgeführt werden.

- (1) R. SCHOLDER, Angew. Chem. 70, 583 (1958).
- (2) R. Scholder, K.L. Huppert u. P. P. Pfeiffer, Angew. Chem. 15, 375 (1963).
- (3) R. SCHOLDER u. P. P. PFEIFFER, Angew. Chem. 75, 376 (1963).
- (4) R. SCHOLDER u. K. L. HUPPERT, Z. anorg. allg. Chem. 334, 209 (1964).
- (5) R. SCHOLDER u. P. P. PFEIFFER, Diss. P. P. Pfeiffer, TH Karlsruhe (1963).
- (6) A. W. SLEIGHT, I. LONGO u. R. WARD, Inorg. Chem. 1, 245 (1962).
- (7) A. W. SLEIGHT u. R. WARD, J. Amer. Chem. Soc. 83, 1088 (1961).
- (8) I. LONGO u. R. WARD, J. Amer. Chem. Soc. 83, 2816 (1961).
- (8) I. Longo u. R. Ward, J. Amer. Chem. Soc. 82, 5958 (1960).
- (10) C. Keller u. B. Kanellakopulos, Radiochim. Acta. 1, 107 (1963).

Wertig-	$\frac{X}{e}$ Verbindung $\frac{X}{Mn}$ Re Wertig-	X		1	Wertig-	Verbindung	X	
keitsstufe		keitsstufe	veromading	Mn	Re			
	Li ₃ XO ₅	_	neg.	1	v	Li₅XO₅		neg.
	Na ₃ XO ₅	_	-			Na ₅ XO ₅	\pm	neg.
	K ₃ XO ₅		-			Li ₇ XO ₆		neg.
VII	Li ₅ XO ₆					Na ₇ XO ₆	-	neg.
	Na ₅ XO ₆		**	ť			·	
	K_5XO_6		neg.			Li ₂ XO ₃		neg.
						Na_2XO_3	_	+
	Li_2XO_4		neg.			Li_4XO_4	-	neg.
	Na ₂ XO ₄		neg.			Na ₄ XO ₄	-	neg.
VI	Li ₄ XO ₅	-	-		1V	Li_6XO_5	_	neg.
	Na ₄ XO ₅		neg			Na ₆ XO ₅	-	neg.
	Li_6XO_6		4.			Li_8XO_6		neg.
	Na ₆ XO ₆		neg.			Na_8XO_6	_	neg.
	LiXO ₃	neg.	neg.			LiXO ₂	<u></u>	+
37	NaXO ₃	neg.	neg.			$NaXO_2$	+	
V	L ₁₃ XO ₄	-	-		Ш	Li_3XO_3		
	Na ₃ XO ₄		neg.	i		Na ₃ XO ₃		

TABELLE 1.- -ALKALIOXOMETALLATE DES MANGANS UND RHENIUMS(1-8)

2. Darstellungsbedingungen und Untersuchungsmethoden

- 2.1. Darstellungsbedingungen. Infolge der hohen spezifischen Aktivität des Technetiums (99 Tc: 1 mg = $17\cdot7$ μ Ci) mußten sämtliche Versuche mit pulverförmigen Tc-Verbindungen in Glove-Boxen durchgeführt werden. Die auf $\pm 0\cdot1$ -0·2 Prozent genau eingewogene, feinst pulverisierte Reaktionsmischung wurde in Schiffchen aus Sinterkorund, Thoriumdioxid, Gold oder Platin zur Reaktion gebracht. Die Symproportionierungsversuche erfolgten in evakuierten Quarzampullen ($p \le 10^{-4}$ mmHg).
- 2.2. Analytische und röntgenografische Untersuchungen. Von sämtlichen Technetium-Verbindungen wurde nur der Tc-Anteil quantitativ bestimmt, der Alkaligehalt stets als Differenz zu 100 Prozent berechnet. Die Bestimmung des Technetiums erfolgte entweder spektralfotometrisch mit Thioglykolsäure⁽¹¹⁾ oder durch Fällung als Nitronpertechnetat anolog dem Verfahren zur Re-Bestimmung.⁽¹²⁾ Die Bestimmung der Wertigkeit des Technetiums (O_v -Wert) erfolgte cerimetrisch.

Die Röntgenaufnahmen wurden mit $Cu_{K\alpha}$ -Strahlung in 114·6 mm Röntgenkameras nach der asymmetrischen Methode von Straumanis durchgeführt. Die Gitterkonstanten wurden nach Nelson-Riley⁽¹³⁾ berechnet.

2.3. Analysenergebnisse. Tabelle 2 enthält die Ergebnisse der analytischen Untersuchungen der Systeme Me_2O/Tc_xO_y (Me = Li, Na, K).

3. Ergebnisse

In den Systemen Me₂O/Tc_xO_y wurden folgende ternäre Oxide dargestellt und ihre Existenz durch chemische und röntgenografische Untersuchungen bewiesen:

^{+ =} existiert; neg. = Versuche mit negativem Ergebnis;

^{- =} nicht untersucht bzw. keine Angaben vorhanden.

⁽¹¹⁾ F. I. MILLER u. P. F. THOMASON, Analyt. Chem. 32, 1429 (1960).

⁽¹²⁾ W. GEILMANN u. A. VOIGT, Z. anorg. allg. Chem. 193, 311 (1930).

⁽¹³⁾ I. B. NELSON u. D. P. RILEY, Proc. Phys. Soc. Lond. 57, 160 (1945).

Ternäre Oxide des siebenwertigen Technetiums

System Li₂O-Tc₂O₇: LiTcO₄, Li₅TcO₆;

System Na₂O-Tc₂O₇: NaTcO₄, Na₃TcO₅, Na₅TcO₆;

System $K_2O-Tc_2O_7$: $KTcO_4$, K_3TcO_5 ;

System Rb₂O-Tc₂O₇: RbTcO₄; System Cs₂O-Tc₂O₇: CsTcO₄.

Ternäre Oxide des sechswertigen Technetiums

System $\text{Li}_2\text{O-TcO}_3$: $\alpha + \beta - \text{Li}_4\text{TcO}_5$; $\alpha + \beta - \text{Li}_6\text{TcO}_6$;

System Na₂O-TcO₃: keine Verbindungsbildung

Ternäre Oxide des fünfwertigen Technetiums

System $\text{Li}_{2}\text{O}-\text{Tc}_{2}\text{O}_{5}$: $\alpha + \beta - \text{Li}_{3}\text{TcO}_{4}$;

System Na₂O-Tc₂O₅: NaTcO₃

Ternäre Oxide des vierwertigen Technetiums

System Li₂O-TcO₂: Li₂TcO₃;

System Na₂O-TcO₂: Na₂TcO₃; Na₄TcO₄;

Ternäre Oxide des dreiwertigen Technetiums

System Li₂O-Tc₂O₃: keine Verbindungsbildung

System Na₂O-Tc₂O₃: NaTcO₂

Versuche zur Darstellung von Kalium-, Rubidium- und Cäsium-Verbindungen des drei- bis sechswertigen Technetiums wurden nicht durchgeführt.

TABELLE 2.—ANALYSENDATEN DER TERNÄREN OXIDE DER SYSTEME TC,O,-Me2O

				Tc-Oxid:	
System	Substanz	Tc-Oxid	Me ₂ O*	Me ₂ O	Tc(VII):O,
	Li ₅ TcO ₆	gef. 67·4% Tc₂O ₇	32 6 % L12O	1:5 02	
		ber. 67 48% Tc ₂ O ₇	32·52 % Li ₂ O	1:5.00	
	Na ₃ TcO ₅	gef. 62.5% Tc ₂ O ₇	37.5% Na ₂ O	1:3.00	
Tc_2O_7/Me_2O		ber. 62·50% Tc ₂ O ₇	37·50 % Na₂O	1:3.00	`
	Na ₅ TcO ₆	gef. 49.9% Tc ₂ O ₇	50 1% Na ₂ O	1:501	
		ber. 50.00% Tc ₂ O ₇	50 00% Na ₂ O	1:5 00	
	K_3TcO_5	gef. 52·3% Tc ₂ O ₇	47·7% K ₂ O	1:3.00	
		ber. 52·30% Tc ₂ O ₇	47·70% K ₂ O	1:3.00	
	Li ₄ TcO ₅	gef. 71·0% TcO ₃	29.0% L ₁₂ O	1:2:01	1:0 50
T-0 M- 0		ber. 71.09% TcO ₃	23.91 % Li ₂ O	1:2 00	1:0.50
TcO ₃ /Me ₂ O	Li ₆ TcO ₆	gef. 62·1% TcO ₃	37.9% Li ₂ O	1:3.00	1:0.50
		ber. 62·11 % TcO ₃	37·89 % L1 ₂ O	1:3.00	1:0.50
	Li ₃ TcO ₄	gef. 75.6% Tc ₂ O ₅	24·4% Li ₂ O	1:3.01	1:1.01
T- 0 M- 0		ber. 75.61 % Tc ₂ O ₅	24·39% L ₁₂ O	1:3.00	1:1.00
Tc_2O_5/Me_2O	NaTcO ₃	gef. 81·0% Tc ₂ O ₅	19.0% Na ₂ O	1 · 1 04	1:0.91
		ber. 81.76% Tc ₂ O ₅	18·24 °, Na ₂ O	1.1.00	1:1.00
	Li ₂ TcO ₃	gef. 81·4% TcO ₂	18·6% Li ₂ O	1:1.00	1:1.48
		ber. 81.42% TcO ₂	18.58% Li ₂ O	1:1.00	1:1.50
ToO /Mo O	Na ₂ TcO ₃	gef. 67.9% TcO2	32·1% Na ₂ O	1.1.00	1:1:49
TcO ₂ /Me ₂ O		ber. 67 88 % TcO ₂	32·12 % Na ₂ O	1:1.00	1:1 50
	Na ₄ TcO ₄	gef. 51·3% TcO ₂	48.7% Na ₂ O	1:201	1:1-51
		ber. 51-38 % TcO ₂	48.62% Na ₂ O	1:2.00	1:1 50
Tc ₂ O ₃ /Me ₂ O	NaTcO ₂	gef. 79·1% Tc ₂ O ₃	20.9% Na ₂ O	1:1.05	1:1.80
_ 😽 _	-	ber. 79.87% Tc ₂ O ₃	20·13 % Na ₂ O	1:1.00	1:2 00

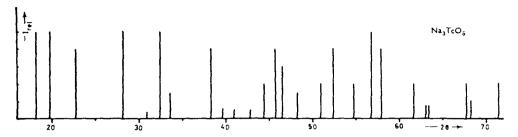
^{*} Als Differenz zu 100%

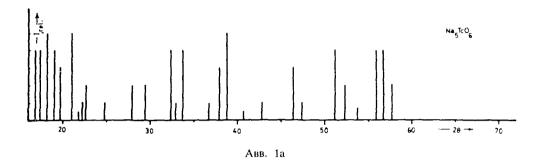
3.1. Ternäre Oxide des siebenwertigen Technetiums. Die Darstellung der höhersauerstoffkoordinierten Tc(VII)-Verbindungen Li_5TcO_6 , Na_3TcO_5 , Na_5TcO_6 und K_3TcO_5 erfolgte durch Reaktion der aus wässriger Lösung erhältlichen Pertechnetate des Typs MeTcO₄ mit der berechneten Menge Alkalioxid bzw. Alkaliperoxid im Sauerstoffstrom bei Temperaturen von 250–450°C (2 × 8 Stunden). Für die Darstellung von Li_5TcO_6 ist auch die Verwendung von Li_2CO_3 anstelle Li_2O möglich (Reaktionstemperatur 600–650°C). Versuche zur Darstellung von Li_3TcO_5 und K_5TcO_6 waren ohne Erfolg. Bei Reaktionen $LiTcO_4$: $Li_2O=1$: < 2 konnte stets nur die anteilmässige Bildung von Li_5TcO_6 festgestellt werden. Die höhersauerstoffkoordinierten ternären Oxide sind im Gegensatz zu den farblosen MeTcO₄-Verbindungen braun gefärbt.

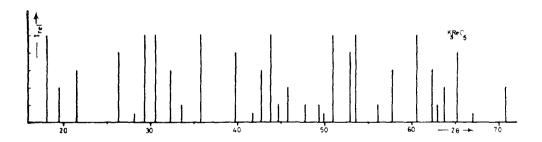
Die Alkalipertechnetate sind im Vergleich zu den entsprechen Perrhenaten erwartungsgemäss thermisch instabiler. So zersetzt sich z.B. Li₅TcO₆ oberhalb 650°C zu α -Li₆TcO₆ unter gleichzeitiger Verflüchtigung von Tc₂O₇.

Die Alkalitechnetate(VII) der Zusammensetzungen Me_3TcO_5 und Me_5TcO_6 sind zumindest isotyp mit den entsprechenden ternären Oxiden des Rheniums. Tabelle 3 enthält die Gitterkonstanten von Li_5TcO_6 und β - Li_6TcO_6 , ferner Abbildung 1 die Strichdiagramme von Na_3TcO_5 , Na_5TcO_6 , K_3TcO_5 sowie K_3ReO_5 .

TABELLE 3.—HEXAGONALE	GITTERKONSTANTEN	VON	Li ₅ TcO ₆	UND	Li ₆ TcO ₆
	(INDIZIERUNG NACH	4))			


Substanz	a(Å)	c(Å)	c a	Rontg. Dichte (g. cm ⁻³)
L ₁₅ TcO ₆	$5,04 \pm 0,01$	14,10 = 0,02	2,80	3,69
L ₁₆ TcO ₈	$5,05 \pm 0,01$	14,20 = 0,02	2,81	3,76


Tabelle 4.—Darstellung von Li₄TcO₅


Nr.	Temp.	Erhitzdauer (Stunden)	erhaltene Substanz (aus Rontgenuntersuchung)
1	320	60	β -Li ₆ TcO ₆ - α -Li ₆ TcO ₆ - LiTcO ₁
2	400	50	α -Li _b TcO ₆ - LiTcO ₁ - Tc
3	500	25	α -Li _b TeO ₆ - LiTeO ₄ - Te
4	550	40	α -Li ₆ TcO ₆ – LiTcO ₄ (schwach)
5	640	44	α -Li ₈ TcO ₆ - β -Li ₁ TcO ₅
6	740	40	β -Li ₄ TcO ₅ (rein)

3.2. Ternäre Oxide des sechswertigen Technetiums. Durch Symproportionierung aus Tc(VII) und Tc(O) erhält man je nach dem Verhältnis Tc("VI"): Li₂O die beiden Verbindungen Li₄TcO₅ und Li₆TcO₆. Zur Darstellung von Li₄TcO₅ ist dabei eine Reaktionstemperatur von mindestens 650°C notwendig, unterhalb dieser Temperatur erfolgt nur eine Bildung von Li₆TcO₆ (Tabelle 4).

Li₄TcO₅ und Li₆TcO₆ existieren in zwei Modifikationen. Die Umwandlungstemperaturen liegen mit 310-320°C (Li₆TcO₆) bzw. 800°C (Li₄TcO₅) niedriger als diejenigen der entsprechenden Re-Verbindungen. Die Hochtemperaturform von

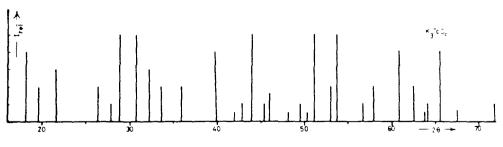


ABB. 1b

Abbildung 1.—Strichdiagramme von Na_3TcO_5 , Na_5TcO_6 , K_3TcO_5 und K_3ReO_5 .

3

Li₆TcO₆ (α-Modifikation) zersetzt sich oberhalb 750° zu β -Li₄TcO₅; α-Li₄TcO₅ ist mindestens bis 900°C thermisch stabil.

Die ternären Oxide des Tc(VI) lösen sich in Wasser. Die dabei gebildete rosa Lösung von Tc(VI) disproportioniert nach kurzer Zeit unter Ausfällung von TcO₂:

$$3\text{TcO}_4^{2-} + 2\text{H}_2\text{O} \rightarrow 2\text{TcO}_4^{-} + \text{TcO}_2 + 4\text{OH}^{-}$$

Die Disproportionierung erfolgt stöchiometrisch und erlaubt durch Bestimmung des gelösten bzw. ausgefällten Technetiums eine quantitative Analyse der Wertigkeit der primär gelösten Verbindung.

α-Li₆TcO₆ (blauschwarz), β-Li₆TcO₆ (dunkelgrün), α-Li₄TcO₅ (blauschwarz) und β-Li₄TcO₅ (schwarz) sind zumindest isotyp mit den analogen Verbindungen des Rheniums, wobei mit Ausnahme der β-Modifikationen die Strukturen unbekannt sind. β-Li₄TcO₅ besitzt die von Lang⁽¹⁴⁾ aufgeklärte Struktur des Li₂SnO₃, was durch die Schreibweise Li₂(Li_{0.40}, Tc_{0.60})O₃ ausgedrückt wird. Die Gitterkonstanten für die monokline bzw. orthorhombische Aufstellung betragen:

	β -Li ₄ TcO ₅	β -Li ₄ ReO ₅ (5)
a _{orthorh.} (A)	5·055 ±-0·002	5·059 ± 0·002
borthorh, (Å)	8.755 ± 0.002	8.747 ± 0.002
Corthorh (Å)	$28\ 59\ \pm\ 0\ 02$	$28\cdot32\pm0\cdot02$
C _{monoklin} (Å)	9.67 ± 0.01	9.59 ± 0.01
ß	99⋅8°	96∙7°
V (Å)3	1265-2	1253-2
ρ rontg. (g cm ⁻³)	3.90	5.61

Tabelle 5 enthält die $\sin^2 \theta$ -Werte für α -Li₆TcO₆.

Im System Na_2O-TcO_3 konnte wie im analogen Re-System keine Verbindungsbildung festgestellt werden.

3.3. Ternäre Oxide des fünfwertigen Technetiums. Durch Symproportionierung aus $LiTcO_4 + Tc(0) + Li_2O$ konnte Li_3TcO_4 (schwarzgefärbt) erhalten werden. Li_3TcO_4 existiert in 2 Modifikationen. Die Niedertemperaturmodifikation besitzt

α-Li ₆ T	CO ₆		α -Li ₆ TcO ₆		
sin² θ	$I_{ m rel.}$:	sin² θ	$I_{\rm rel}$	
0.0266	5		0.1374	5	
0.0289	4		0.1432	2	
0.0386	3		0.1477	2	
0.0436	3		0.1661	1	
0.0506	1	1	0.2259	1	
0.0701	4		0.2811	4	
0.0838	3				
0.0943	3	- 1			
0.1039	2	i			

TABELLE 5.—SIN² θ-WERTE UND INTENSITÄTEN FÜR α-Li₆TcO₆

⁽¹⁴⁾ G. LANG, Z. anorg. allg. Chem 276, 77 (1954).

	β -Li ₃ TcO ₄	β -Li ₃ ReO ₄ (5)
a _{orthorh} , (Å)	5·038 ± 0·002	5·013 ± 0·002
b _{orthorh.} (Å)	8.726 ± 0.002	8.673 ± 0.002
Corthorh. (Å)	29.02 ± 0.02	29.22 ± 0.01
C _{monoklin} (Å)	9.82 ± 0.01	9.88 ± 0.01
β°	99.8	96.4
V (Å)3	1275.7	1270 5
ρ röntg. (g cm ⁻³)	4.31	6.37

wie β -Li₃ReO₄ die Struktur von Li₂TiO₃ analog der Schreibweise Li₂(Li_{0·25}, Tc_{0·75})O₃. Die Gitterkonstanten betragen:

Oberhalb 950°C wandelt sich Li₃TcO₄ in eine 2. Modifikation mit Kochsalzstruktur um: $a=4\cdot17\pm0\cdot02$ Å (α -Li₃ReO₄: $a=4\cdot138$ Å). Aus dem Fehlen von Überstrukturreflexen im Röntgendiagramm von α -Li₃TcO₄ ist gemäß (Li_{0·75}, Tc_{0·25})O eine statistische Verteilung von Li⁺ und Tc⁵⁻ auf die Gitterplätze des Na⁺ im NaCl-Gitter anzunehmen. Die Umwandlungstemperatur von Li₃TcO₄ liegt auch hier niedriger als bei der analogen Re-Verbindung (1000°C).

Oberhalb 1000°C disproportioniert Li₃TcO₄ gemäß:

$$11\text{Li}_3\text{TcO}_4 \rightarrow 8\text{Li}_4\text{TcO}_5 + 2\text{Tc} - \text{LiTcO}_4$$

wobei das LiTcO₄ an die kälteren Teile der Versuchsanordnung sublimiert. Durch Disproportionierungsreaktion oberhalb 500°C gelang im System Na₂O–Tc₂O₅ die Darstellung von NaTcO₃. In Gegenwart von überschüsigem Na₂O disproportioniert NaTcO₃ in Na₄Tc^{1V}O₄ und NaTc^{VII}O₄ (15). Das schwarz gefärbte NaTcO₃ ist mindestens bis 800°C stabil. Das Röntgendiagramm von NaTcO₃ läßt sich nicht hochsymmetrisch indizieren.

3.4. Ternäre Oxide des vierwertigen Technetiums. Durch Sympropertionierung aus LiTcO₄ + Tc(O) + Li₂O (4:3:5)(450-650°C, 30 hr) bzw. durch Reaktion von TcO₂ mit Li₂O (1:1)(400-500°C, 10 hr) gelang im System Li₂O-TcO₂ die Darstellung von Li₂TcO₃. Mit überschüssigem Li₂O tritt bei Li₂TcO₃ weder eine Reaktion zu Li₄TcO₄ o.ä. noch eine Disproportionierungsreaktion ein. Ein dem Li₂TcO₃ analoges ternäres Oxid des Rheniums konnte nicht erhalten werden. (5)

Das schwarze, gegen Wasser stabile Li₂TcO₃ ist isotyp mit Li₂SnO₃. Die Gitterkonstanten betragen:

 $a_{\text{orthorh.}}$:
 $4.988 \pm 0.002 \text{ Å}$
 $b_{\text{orthorh.}}$:
 $8.639 \pm 0.002 \text{ Å}$
 $c_{\text{erthorh.}}$:
 $29.63 \pm 0.02 \text{ Å}$
 c_{monoklm} :
 $10.01 \pm 0.01 \text{ Å}$
 β :
 99.4°

 V:
 1276.5 (Å)^3
 ρ röntg.:
 5.02 (g cm^{-3})

Auf analoge Weise gelingt im System Na₂O-TcO₂ die Darstellung des olivgrünen Na₂TcO₃.Na₂TcO₃ ist ebenfalls gegen Wasser stabil, disproportioniert jedoch oberhalb 500°C gemäß

$$7\text{Na}_2\text{TcO}_3 \rightarrow 4\text{Na}_3\text{Tc}^{\text{VII}}\text{O}_5 + 3\text{Tc} - \text{Na}_2\text{O}$$

(15) B. KANELLAKOPULOS, KFK-Bericht 197 (1964).

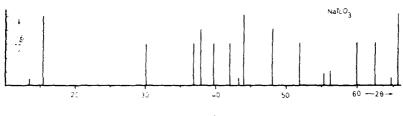


ABB. 2a

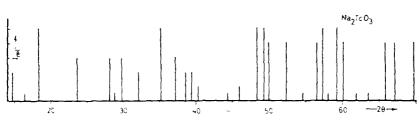
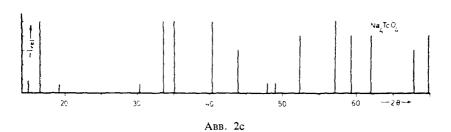



ABB. 2b

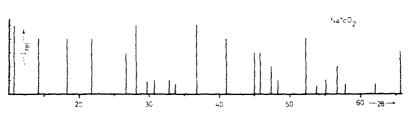


ABB. 2d

ABB. 2.—Strichdiagramme von NaTcO₃, Na₂TcO₃, Na₄TcO₄ und NaTcO₂.

 Na_2TcO_3 ist isotyp mit Na_2ReO_3 , die genaue Struktur ist nicht bekannt. Na_2TcO_3 reagiert im Gegensatz zu Na_2ReO_3 mit überschüssigem Na_2O unter Bildung des rostbraunen, sehr hygroskopischen Na_4TcO_4 (450°C, 20 hr). Oberhalb 800°C disproportioniert Na_4TcO_4 in $Tc(O) + Na_3TcO_5$ bzw. Na_5TcO_6 .

Na₄TcO₄ ist isotyp mit Na₄SnO₄.⁽¹⁶⁾ Die beiden Diagramme lassen sich nicht hochsymmetrisch indizieren. Abbildung 2 enthält die Strichdiagramme von NaTcO₃, Na₂TcO₃, Na₂TcO₃, Na₄TcO₄ sowie von NaTcO₂.

3.5. Ternäre Oxide des dreiwertigen Technetiums. Während im System $\text{Li}_2\text{O}-\text{Re}_2\text{O}_3$ die Darstellung von ReO_2 möglich ist (Disproportionierungsprodukt der Reaktion $\text{Li}_2\text{O}+\text{ReO}_2^{(5)}$), waren Versuche zur Darstellung einer analogen Tc-Verbindung ohne Erfolg, Dagegen gelang die Synthese von NaTcO₂ aus Tc(IV) + Tc(O) + Na₂O bzw. Tc(VII) + Tc(IV) + Tc(O) + Na₂O (600°C, 10 hr). Das Röntgendiagramm der tiefvioletten Substanz läßt sich nicht hochsymmetrisch indizieren und zeigt keine Verwandtschaft mit Röntgendiagrammen von Verbindungen gleichen Formeltyps.

4. Diskussion

Durch Vergleich der Alkalioxometallate der verschiedenen Wertigkeitsstufen von Mangan, Technetium und Rhenium ergeben sich folgende Unterschiede:

- (a) Die thermische Stabilität der Alkalioxometallate der höheren Wertigkeitsstufen nimmt in der Reihe Mn-Tc-Re zu, allerdings ist der Unterschied bei Mn-Tc bedeutend grösser als bei Tc-Re. Die höhersauerstoffkoordinierten Alkalipertechnetate der Zusammensetzung Me₃TcO₅ bzw. Me₅TcO₆ sind hierbei thermisch nicht stabiler als der Grundtyp MeTcO₄.
- (b) In den Wertigkeitsstufen +4 und +3 zeigt das Technetium eine nahe Verwandschaft mit dem Mangan. Die Tendenz zur Disproportionierung ist im Vergleich zu Rhenium geringer.
- (c) Die Umwandlungstemperaturen für verschiedene Modifikationen eines Formeltyps liegen für Technetium niedriger als für analoge Rheniumverbindungen. Dies dürfte darauf zurückzuführen sein, dass die Bindungfestigkeit der Re-O-Bindung größer ist als die der Tc-O-Bindung.
- (d) Vergleicht man das Elementarzellvolumen entsprechender Verbindungen des Tc und des Re und setzt dieses in Beziehung zu den Ionenradien der einzelnen Wertigkeitsstufen, so ergibt sich, daß Tc(VI) und Re(VI) einen annähernd gleichen Ionenradius besitzen, Tc(VII) einen etwas kleineren Ionenradius als Re(VII) aufweist, während der Radius von Tc(VII) grösser ist als der jenige von Re(VII)-einschließlich des Tc(I) in K₅ [Tc(CN)₆].¹⁷

Allgemein lässt sich jedoch die erwartete starke Verwandtschaft des Technetiums mit dem Rhenium feststellen. Unterschiede in chemischen und strukturellen Eigenschaften sind mehr von graduellem als prinzipiellem Charakter.

Acknowledgement—Herrn Prof. Dr. W. Seelmann-Eggebert danken wir für die stetige Unterstützung dieser Arbeit, der Deutschen Forschungsgemeinschaft für die leihweise Überlassung eines Röntgengeräts.

⁽¹⁶⁾ E. ZINTL u. H. MORAWIETZ, Z. anorg. allg. Chem. 236, 372 (1938).

⁽¹⁷⁾ K. Schwochau, Z. anorg. allg. Chem. 73, 492 (1961).