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Abstract:

The excitation energies of isobaric analogue states, i.e.
the energetically lowest states with a given isobaric spin
T, have been related to the symmetry and pairing energies

of the respective nuclei. Symmetry parameters a(A) and pair-
ing energies (S(A) were extracted from the experimental da-
ta. The parameter a(A) exhibits shell structure. An express-
ion for the energetic difference between isobaric analogue
states was established which reproduces the over 200 known
values (known experimentally or calculated from the known
masses of neighbouring isobars) up to A = 80 with a stand-
ard deviation of about 0.5 MeV. The same formula can be us-
ed to predict unknown excitation energies of isobaric ana-
logue states and the masses of unknown neutron-rich and
proton-rich nuclei. The above expression is in accordance
with a theoretical expression based on an effective two-
nucleon interaction. There exist small but systematic de-
viations from the supermultiplet model.

Submitted to Nuclear Physics



1. Introduction

Recently, isobaric analogue states have become of inter-
est, both experimentally 1,2) and theoretically 5>. Such
excited states, i.e. the energetically lowest states with
a given isobaric spin T in a given nucleus, can be form-
ed in direct nuclear reactions with a well defined change
in isobaric spin,for instance certain (p,n), (p,d) or
(pyt) reactions. It is of major interest to know what the
excitation energies of these states are. Related is the
problem of predicting and estimating the masses of un -
known nuclei with a large excess of neutrons or protons.
This is of particular interest for the very light nuclei
like the tetra-neutron etc. because the BetheJWeizsécker4

and related mass formulae 5"9) cannot be used.

10-15) are given in the

Several procedures and methods
literature which permit an estimate of the masses of un-
known light nuclei and of the excitation energies of iso-
baric analogue states. These methods, however, are appli-

cable only over a restricted range of nuclei.

The method reported by Baz and Smorodinsky 1) is of par-
ticular interest with regard to the present paper. They
evidenced the existence of regularities concerning the
energy differences:ﬁTT. between isobaric analogue states
of isobaric spin T and T' and they showed empirically

that A oq, A51 and also A3/2 1/29 /_\5/2 4/o &re rela-
tively smooth functions of A while A,, and [321 split
into two branches. From a reasonable interpolation or ex-
trapolation ofA[X2O, for instance, one can predict the ex-
citation energies of the lowest T = 2 states in certain
self-conjugate nuclei. By taking into account the differ-
ent Coulomb energies one obtains approximate masse311’14’16)
for the nuclei with T, = + 2 and the same A.

Franzini and Radicati 17) recently studied the excitation
energies of isobaric analogue states up to A = 110 in
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terms of the supermultiplet model 18). They came to the
conclusion that this model appears to give a good inter-
pretation of the ground state energy for a very large
number of nuclei.

The purpose of the present paper (see also ref. 19) is
to establish a semi-empirical equation which allows to
predict within certain limits the excitation energy of
any isobaric analogue state. The existence of regulari-
ties which interconnect all energetic differences_[&TT.
between analogue states will be shown. Remarks on the
theoretical significance underlying these regularities
will be made.

In section 2 the excitation energies of isobaric analogue
states are calculated from the known masses of neigh-
bouring nuclei. In sections % and 4 relations and regu-
larities are deduced from the symmetry and pairing ener-
gies of the respective nuclei which extend far beyond

11). Section 5

the ones reported by Baz and Smorodinsky
gives empirical parameters which allow to predict un-
known excitation energies and masses. The inversion of
isobaric spin states and the validity of and the devia-
tions from the relation T = ITZI for the ground states

of nuclei is considered in section 6. The A-dependence

of the above parameters is discussed in section 7. In
section 8 the T-dependence of the above relations is dis-
cussed and attention is given to the guestion whether or
not snd to what extent the supermultiplet model or other
theoretical expressions are compatible with the experi-

mental data.

2. The Excitation Energies of Isobaric Analogue States

Fig. 1 on the left-hand side shows a plot of the masses
(filled circles) of isobaric nuclei as a function of the
z—component of the isobaric spin. Isobaric analogue sta-



tes are shown as open circles. The energetic position of
these states 15) for a given T depends quadratically on
TZ. The figure corresponds to nuclei with an atomic weight
which is a multiple of 4. Plots for nuclei with A = 4n+2
or with odd A look similar, except that for odd A because
of (§= O there is only one parabola-like curve. On the
right-hand side of fig. 1 the states are shifted in such
a way that corresponding analogue states have an equal
energetic position. The situation is idealized because
the Coulomb energies may depend not only on TZ and A but
also on T, particularly when the configurations involve
nucleons belonging to different shells. Effects due to a
vielation of charge independence of nuclear forces are
also ignored. The curves show a cusp at Tz = 0. The ener-
gy differences ZXTT' between the isobaric analogue states
are indicated in fig. 1.

Most of the excitation energies [&10 of the lowest T = 1
states in the self-conjugate nuclei are known experimen-
tally 20, 21). Additional excitation energies,_‘AB/2 1/2
and;ﬁzo in particular, have also been measured recently
1, 2,722, 25). These experimental values are plotted in
fig. 2 for the odd-A nuclei and in fig. % for the even-A
nuclei as a function of A as filled circles. In addition,
about 200 wvalues of.ZATT, up to A = 80 and T = 4 were cal-

24) of isébaric nuclei and

culated from the known masses
an estimate 25) of the corresponding Coulomb energy dif-
ference. They are shown in figs. 2 and % as open circles.
Errors are indicated when exceeding 0.4 MeV. The_LXTT.
appear as rather continuous functions of A with weak os-
cillations for odd A, and also for even A when T -~ T' is
even. For even A but odd T - T', however, there are two
such branches, one for the nuclei with A = 4n and the
other for A = 4n + 2 (n integer). The significance of the

curves shown in figs. 2 and % will be pointed out later.



3. Symmetry and Pairing Energies

The A- and T-dependence of the.LXTT, as shown in figs. 2
and 3 can be described in terms of the corresponding
symmetry and pairing energies. In good approximation one

can express A qpp. as
A g (8) = (Egym + Epairiot,a = Bgym * Fpair)ma. (1)

This representation implies (i) the validity of a Bethe-
Weizsacker type mass formula * s 1.e. the separability in
an A-dependent term (for instance volume and surface ener-
gy), a Coulomb energy term and terms representing the
symmetry and pairing energy and (ii) the T-independence

of the Coulombenergy as mentioned before.

For Esym and Epai

Eon= - H (1740w D (2)

- the following expressions will be used

for the ground states
+(§(A) of even nuclei and its
analogue states

for the ground states
E aip = -(§(A) of 0dd nuclei and its (3)
p analogue states

0 for odd-A nuclei.

Eq. (3) with its secondary conditions can also be written
as

A
E = 31+ (DY (0270 dw. ()

The expression for the symmetry energy Esym contains a
term proportional to T2 and a term proportional to T.
The former term corresponds to the usual term in the Bethe-

Weizsdcker mass formula which is proportional to (N - Z)2



if one equates T with ITZl and extends the validity of

the equation to the respective analogue states. The latter
term corresponds to the term 18) which is proportional

to [(W - Z)[ . The quantity b(4) stands as an adjustable
parameter which is expected to be either constant or on-
1y weakly A-dependent. Contradicting values of 1, about
2.5, and 4 were derived theoretically 2098118) for p(a).

Inserting egs. (2) and (4) into eq. (1) immediately gives
an explanation for the gross structure of the‘ZXTT. as
shown in figs. (2) and (3), namely the smooth A-dependen~-
ce and the energetic difference between the two branches
of ZXTT‘ for even A and odd T - T' which is particularly
obvious for 1310’ i.e. for the excitation energies of the
lowest T = 1 states in the self-conjugate nuclei. This
energy difference becomes just 40 (A). Thus, one has a
method of deriving from experimental data the pairing
energies (A) down to the lightest nuclei.

4, Relations between the Energies_Z&TT.

From eqs. (1), (2) and (4) one can easily verify relations
like

A2O ~ 2AXB/z 1/2

(5)
A3172 A5/ 372

or in general

Ao 1220370 14172 (6)

for integer TZ 0 and neighbouring A. Eq. (6) is inde-
pendent of the particular values of a(A) and b(A). From
fig. 4 one can see that eq. (6) is indeed fulfilled, at
least for T=0, T=1and T = 2. The accﬁracy is of the
order of 1 MeV. The lowest array of points represents the
sum of the wvalues of 4310 for the two branches with A = 4n



and A = 4n+2. This quantity which will be used below ex-
hibits a similar A-dependence.

Based on eqs. (1), (2) and (4) one can show that the ratios
Rppr and R which are defined below in eq. (7) depend on

Ty, T' and b(A) only and not on a(i) and A (except for a
possible A-dependence of b(4)).

Apo 1 =AT+3/2 m1/e 2T4+2+4b(A)

T "Apio or Boizse miaze 210424b(4)
] Aso 4320 44+2b(4)

=7 = = E=hn+o,
AN 17400, n+A10 ) i)

(7)

R

R

These equations can be used to determine the parameter
b(A). In fig. 5 the experimental values for the ratios
R1O’ 321, R2O’ and R are plotted as a function of A.

The experimental ratios are indeed practically constant
and independent of A. They are close to the constants b
given on the right-hand side of the figure. Constants

a, b, ¢, and d refer to b(A) = O (Bethe-Weizsicker for-
mula), b(4) = 1, b(4) = 2.5 and b(A) = &4 (supermultiplet
model; see section 8). Averaging the experimental ratios

one obtains

Ry = 1.615 + 0.037 a,p = 2.00
(A =37 ... 65) bag = 1.67

Cho = Vb4

d10 = 1.33

Ryq = 1.385 + 0.027 8,9 = 1.50
(A = 4‘7 eo o 75) be/l = '].4—0

021 = 1.51

d21 = 1.25

(A =47 ... 65) beo = 2033

Chg = 1.89

d = 106‘7



R = 2.995 + 0.045 a = 4.00
(A =8 ... 52) b = 3.00

c = 2.57

d = 2.40

One clearly sees that the experimental ratios RTT' and R
are best described by the constants b calculated from
b(A) = 1. Consequently, the T-dependence of the symmetry
energy Esym of eq. (2) is of the form T(T + 1). It must
be emphasized that the ratios RﬂO’ qu, R2O and R are
more sensitive to the exact va%g§ of b(A) than the ratios

terms of the supermultiplet model.

used by Franzini and Radicati in their analysis in

The experimental ratio R which‘comes close to the value
of % proves that (i) the T(T + 1) dependence of the sym-
metry energy E__ holds down to the very light nuclei (at
least A = 8) and that (ii) the pairing energy Epair can
indeed be described by eq. (3) and (4).

Combining egs. (1), (2) and (4) with b(A) = 1 gives

for A odd

0 and A even, T-T' even

for A even, T-T' odd,
Agpe = B2 (2(2e1)-1 (241 { +2 5(A) 5 - T even

-2 §a) for A even, T-T' odd,

A '
5 ~ T' odd

(8)

or

A A
- P oo
Appe = 28 (2(me)-0 (241D 22 DE T -2 hdaa.
(9)

This is essentially a one-parametric equation forAZKTT.
because for odd A and also for even A when T - T' is even
the second term vanishes. Only for even A and odd T - T!



the pairing energy é;CA) is needed as a second parameter.

5. Empirical Parameters and the Prediction of Excitation

Energies and Masses

+)

and subsequently the mass of any neutron-rich or proton-
rich light nucleus can be predicted from eq.(9)within
certain limits if reasonalle parameters a(A) and (4)

The excitation energy of any isobaric analogue state

can be derived theoretically or at least empirically.
Empirical parameters will be extracted below.

Individual symmetry parameters a(A) and pairing energies
S (L) were calculated from all known ZKTT' using eq.(9)

Fig. 6 shows the result. Indeed, all a(A) and O (A) are

clustered and smooth curves can be drawn through the

points. In principle, the filled circles and filled squa-

res which are extracted from 43A84n and”43%84n+2 alone are

sufficient to obtain a(A) and ¢ (4A) up to A=50. However, in
order to obtain the best overall fit it appears most reason-
able to use averaged parameters a(4) and d(A) which are de-
rived from all known ZXTT" These parameters are shown in
fig. 6 as full lines.

Energy differences ZSTT' were calculated from eq.(9)us—
ing the averaged empirical symmetry parameter a(A) and

*) Por the pin and parity of the states under consideration
simple rules can be given: For the odd-A nuclei spin and
parity J"® have a strong tendency towards jn of the last
unpaired nucleon (holds only if the state has lowest

seniority). For the even~A nuclei JT is equal to ot for

% - T = even and follows the revised Nordheim rules

35)

given by Brennan and Bernstein

for £ _ T = o0ad.
2

with positive parity
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pairing energy (§(A) from fig. 6. The results are shown
in figs. 2 and 3 as full lines. There are apparently no
obvious systematic deviations between the experimental
and calculated values except, possibly, for the region
slightly below A = 50. Deviations >1 MeV appear for
Asp 4y 86 A =13, 19, 29, and 65 fox-435/2 12 8%

A =65, fox~£&7/2 4/2 8 A = 65, for,137/2 5/ 85 A = 47,
forA2O at A = 26 and 40, for AE’] at A = 26, for A32

at A = 40, for,[342 at A = 48 and 50, for‘£X43 at A = 48,

are too high which seems to indicate that the measured
maximum B-energy of the decay Ge®2—> a2 or 3.7 + 0.4 MeV
is too low'’ by about 1.35 MeV.

Fig. 7 shows the distribution function for the difference
between the over 200 experimental values of ZATT' and the
calculated values. The distribution has a Gaussian shape
with a standard deviation of about 0.5 MeV. This means
that the experimental ZﬁT . are reproduced by eq.C9)with
the parameters a(A) and (?(A) from fig. 6 with a standard
deviation of about 0.5 MeV. From this finding it follows
that eq.(9)can as well be used to predict the excitation
energies of unknown analogue states. These energies can
be read directly from figs. 2 and 3. By adding or subtract-
ing proper Coulomb energy differences the mass of any un-
known nucleus can also be predicted with an estimated
error of about + 2 MeV up to A = 10 and + 1 MeV up to

A = 80. This procedure of estimating the masses of un-
known nuclei is of particular interest when the mass of
the higher-order mirror nucleus is not known, i.e. for
21l unknown neutron-rich and the unknown very proton-rich
nuclei. Tables for the estimated masses and decay charac-
teristics of unknown proton~rich and neutron-rich nuclei

29)

are in preparation

+) See also comment D for A = 65 of ref. 28.
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Up to A = 8 one obtains the following values with an
estimated accuracy of about + 2 MeV:

L\,,O oz 22.5 MeV  for A =

A3/2 1/2 A~ 20.0 MeV for A =

!
0 o0 F 3V W F

435/2 1/2 Az 15.9 MeV  for A =

Ao A2 38.2 MeV  for A =

Ao A 33.9 MeV  for A =
2 30.0 MeV For A = 8.

20

From these energies it follows that the tri-neutron and
tetra-neutron are expected to be highly unstable with re-
gard to disintegration into single neutrons by about

12,% MeV and 10,7 MeV, respectively. No conclusive state-
ments can be made concerning Hq, H5, and He8. Of these
the nucleus He8 experimentally appears to be the only one

which is stable with regard to the emission of neutrons

and undergoes a B—decay5o) instead. The nuclei H6 and He7

(see ref. 31) are expected to be unstable with regard to
the spontaneous emission of a neutron by about 9.6 MeV and
5.2 MeV, respectively.

6. The Inversion of Isobaric Spin States

Eq.(9)describes within the accuracy shown in fig. 7/ the

inversion of the bwest T = O and T = 71 states in the odd
self-conjugate nuclei. The ground states of 0154, 8042,
V46, and possibly MnSO and Co54 are known experimentally

211’52"54)130 have isobaric spin T = 1. The calculated ener-
gy difference %84n+2, on the other hand, is indeed close
to zero or slightly negative for A = 34 ... 58. For larger

A the quantity [lﬁ84n+2 becomes more negative and conse-

quently the ground states of the T, = O nuclei (Ga62), As66,

Br7o, Rb74 etc. are most likely to have T = 1. They then
have spin and parity 0" and undergo a super-allowed pure
Fermi B-decay with ft= 3100 sec. Isomerism is likely in

34,35)

these nucleil
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Inversion occurs whenever 4lT+1q;s negative. From eq.(9)
one can easily derive the conditions for such an inversion
in terms of the parameters a(i) and JkA). One obtains

A
A=4n+2 a(
APy = 0 for Ay > a“‘(ry
a(Az)
A=4n -
\ £ 0 for A, > 2 10;
ApY 2 ST (
a(A

\ A=4n+2
*352 < 0 for Az > 3 ?

The first inequality has been discussed before. Using the
parameters a(A) and JkA) from refs. 8 and 36 one esti-
mates 108 xtAg A,124 A2 %;192 and A5’” 290.

The obove considerations show that the relation T = (TZ‘
holds for the ground states of most nuclei. There are
only a few exceptions when T = {T | + 1.

The relation T = [T | holds
(1) for all odd-A nuclei

(ii) for all even nuclei
(iii) for most odd nuclei except for the nuclei with

T = 0; A = 4n+2; A = 34, 42, 46, 50 (2), 54 (2) and 2 62

To= 4+ 15 A= 4n; 108 = A £124 (uncertain) and A3 192
T, o=+2; & =40+ 2; AZ290
The exceptions from the rule T = ITZjare of practical

interest only for Tz = 0.
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7. Discussion of the Empirical Parameters

The parameters a(fA) and 5(A) are shown in fig. 6. The
symmetry parameter a(A) exhibits shell structure with
maxima at A = 16, 28, 40 and 56. This is reasonable. The
configurations of the states under consideration are very
simple because they are analogue to the ground states of
the neighbouring isobars with Tz = 4+ T. In a simplified
picture the energiesAB/2 /0 OT Aogs for instance, can
be interpreted as the energies needed to raise one or two
nucleons into higher orbits without changing the number of
antisymmetrically coupled pairs. This energy is indeed ex-
pected to be higher near closed shells. In the same pic-
ture one can also, at least qualitatively, understand re-
lations like Zl20¢s2433/2 q/p Or other similar relations
between the wvarious ZﬂTT"

For small A the parameter a(A) becomes small and a(A) —=0
for A—0. As a consequence, éiél remains finite for
small A and so do the excitation energies of the analogue
states. For larger A up to A = 80 the parameter a(A) can
be compared with the parameters given for the symmetry

term proportional to (N - Z)2 = 4 Tg of known semi-empi-

rical mass formulae 4=9)

. There is qualitative agreement
in the range of overlapping A. The parameter a(A) of this
paper exhibits shell structure though, while the known

parameters do not.

The pairing energies 5(A) shown in fig. 6 were extracted
from the energy differences 4110, 1121 etc.y i.€. from
Anppe for even A and odd T - T'. There are two branches,
one for nuclei with A = 4n and the other for nuclei with
A = 4n + 2. The separation energy between these branches
is equal to 4({(A). From eq.(9)it becomes clear that there
exist additional relations which allow the extraction of
values for CS(A). The simplest relations are

4n

(11)
b §(a) =Anpa) = 3 L40(8)  for &

4n+2.
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These relations are of special interest because recently
experimental values for the excivation energies of the
lowest T = 2 states in TZ = 0 nuclei have become availableg>.

Nemirovsky and Adamchuk 36) calculated the pairing energies
n and.d of two neutrons and two protons for nuclei from
A =10 to A = 252. They used the second differences of the
known binding energies EZ N of adjacent nuclei (isotopes
and isotones, not isobarss and applied corrections due to
the curvature of the mass surface. For the corrections they
considered the surface energy, the Coulomb energy and the
symmetry energy. Below A = 40 the pairing energy Cf(A) of
our paper is appreciably smaller than given in the detailed
. This discrepancy
is at least in part due to the symmetry energy, which was
taken by the authors to be proportional to T2 and thus re-
sults in a not quite adequate description of the actual

analysis by Nemirovsky and Adamchuk 36

curvabture of the mass surface.

8. Discussion of the T~dependence

Eq.(9)and its T-dependence in particular can be compared
with corresponding expressions which were obtained theo-
retically 18,8,26 . In this paper the symmetry energy is
given with a T-dependence of the form T(T+1). The empiri-
cal Bethe-Weizsicker mass formula a uses only a Te—de—
pendence. Contradicting dependences of the form T(T+4),

T(T+ appr. 2.5) and T(T+1) were derived theoretically.

Franzini and Radicati have shown that the supermultiplet
modequ)
energy for a large number of nuclei. The supermultiplet
model leads to a proportionality between cg(A) and a(4).
This fact has the advantage that the\ p+ then can be given
in a completely one-parametric form 17?.'From the analysis

given in the present paper, however, it follows that there exist

gives a good interpretation of the ground state

small but systematic deviations between the experimental
data and the description in terms of the supermultiplet
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model.

(i) The T-dependence of the symmetry energy does
not seem to be of the form T(T+4) but of the
form T(T+1).

(ii) The pairing energy (g(A) does not seem to be
proportional to the quantity a(A)ﬁ; Instead
§ (8)< a(l)/h for A< 34, § (L) & a(A)/A for
4L A< 58, and § (A) > a(A)/A for A>58.

(iii)  The relation L§ﬁ84n+2 = O does not hold, i.e.

the lowest T = 1 and T = O states in the odd
self-conjugate nuclei are not degenerate.

In the supermultiplet model Wigner and Majorana forces on-
ly are used. The above deviations show that Bartlett and
Heisenberg forces cannot be neglected, i.e. the supermul-
tiplet model represents an approximation only.

Ayres et al.8) theoretically derived for the quantity b(4)

in ES = é%&l (T2 + b(A) T ) the expression

ym
b(A) = 2 %—E—% ( 1 + small terms). (12)

(b(4) = 2,/2 a_ in their notation). Here « = 12V/>'V is
the ratio of the singulet-even to triplet-even forces.

The small terms are slightly A-dependent and, in addition,
contain the quantities B = 22V/2 1V and vy = 11/ which
are the ratios of the triplet-odd and singulet-odd forces
to the triplet-even forces. With an o = 0.754 as given by
Ayres et 21.8) tne quantity b(A) varied for & = 20 to

A = 267 from 2.4 to 2.9. It is only for an unreasonable
ratio o of about -1 that the quantity b(LA) becomes + 1.

De Shalit and Talm126>
for the binding energies of n nucleons in a given j-shell

have given a theoretical expression

based on effective two-nucleon interactions. The T-depen-
dence derived empirically in the present paper is in
agreement with the above expression. Therefore it becomes
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possible to equate the quantities a(4)/A and.JkA) with the
respective coefficients. These coefficients are functions

of j and the effective two-nucleon interactions which ac-
cording to fig. © appear not to be completely constant within
given shells., It has been shown before from the experimental
data that dﬂ(A)ib a(A)/A over a range of atomic weights A.
This fact leads to an additional relation between the ef-
fective interactions+>.

Brief mention shall be made of the fact that the level
structure of the isobaric analogue states (analogue to
the ground states of the nuclei with T, = + T) as shown
in fig. 8 and described by eq.(9)bears close similarity
to rotational bands. T stands for J and a(A)/A stands for
the rotational energy. For even A the pairing energy‘dYA)
must be added or subtracted in a way which is similar to
the decoupling term in K = 1/2 rotational bands. Thus,
one may at least call the level structure of the isobaric
analogue states "isobaric spin rotational bands" which
seem o exist in all atomic nuclei.

After the completion of this work Zeldes, Gronau and Lev57)
published a shell - model semi - empirical nuclear mass
formula which reproduces the experimental masses of not

too light nuclei very well.

26)

+) In the notation of De Shalit and Talmi this relation

can be written as
— - > . _ A L3y
(V, - V,) A 2813 (v _7.) rord 21 £ A<58
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Fig, 1

-1 -

Relationship between the masses (filled
circles) of nuclei with A = 4n(n integer)
and T, = 5 (N - 2). The left-hand side is
without any corrections, the right-hand
side is corrected with regard to the n-p
mass difference and the different Coulomb
energies. The quantity Cfis the pairing
energy. lsobaric analogue states are shown
as open circles. The energy differences
4$IT' between these states are indicated.

Figs. 2 and 3 Energy difference ZSTT' between the ener-

Fig. 4

Fig. 5

getically lowest states of isobaric spin T
and T' as a function of A, Fig. 2 is for
odd-A nuclei, fig. 3 for even-A nuclei. Ex-
perimental values are shown as filled cir-
cles. Values calculated from the known mas-
ses of isobars are shown as open circles.
Errors are indicated when exceeding O.4 lMeV.
The curves are calculated from eq.(9)with
the help of the semi-empirical symmetry
parameter a(A) and pairing energy'JkA) of
fig. 6.

Plot of the quantities 1320, [}51, and £l42
(filled circles) as well as 2435/2 1/29

2 1&5/2, 3/21 and 2 [&7/2 5/2 (open circles)
as functions of A. The points are arranged
in three groups which proves eq. (6) for
T=0, T=1and T = 2. The A-dependence of
(Zﬁﬁgqn + Lﬁﬁ84n+2)(open triangles) is of a
similar structure as compared with the other
quantities.

Plot of the experimental ratios RﬂO’ R21,
Roys and R (for definition see eq. (7))as
functions of A. The constants a, b, c, and
d given on the right-hand side refer to the
constants calculated with b(A) = 0 (Bethe-



Fig. 6

Fig. 7

Fig. 8

- 22 -

Weizsdcker formula), b(A) = 1, b(4) = 2.5 and
b(A) = 4 (supermultiplet model). The experi-

mental points come closest to the respective

constants b calculated with b(4) = 1.

Symmetry parameters a(A) and pairing energies
(4) calculated from the experimental energy
differences ZlTT" Values for a(fA) derived from
even-A and odd-A nuclei are shown as circles and

triangles, respectively, Values for 0O (4) are
shown as squares. Values for a(A) and ({(A) de-
rived from.g&ﬁ84n and [}%84n+2, in particular,
are shown as filled circles and squares. Averag-

ed curves are shown as full lines.

Distribution function for the difference bet-
ween experimental and calculated{LSTT.. The
distribution is compatible with a Gaussian
function with a standard deviation of about
0.5 MeV,

Energetic position of the isobaric analogue
states for odd-A and even—-A nuclei. The ener-
gy scale is in units of a(4)/A. The pairing
energy O (A) in the figure was arbitrarily
chosen equal to 0.9 a(A)/A. The level struc-
ture resembles rotational bands.
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