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Abstract: 

The exci ta t ion energies o f  i sobar ic  analogue s t a t e s ,  i .e .  
t h e  energetically lowest s t a t e s  with a given i sobar ic  spin 
T, have been re la ted  t o  the symmetry and pair ing energies 

o f  the  respective nuclei .  Sgmmetry parameters a(A)  and pair-  
ing  energies 6 ( ~ )  were extracted from the  experimental da- 
t a .  The parameter a(A) e a i b i t s  s h e l l  s t ructure .  A n  express- 
ion  f o r  the energetic differente between i sobar ic  analogue 

s t a t e s  was established which reproduces the over 200 known 
values (known experimentally o r  calculated from the  known 
masses of neighbouring isobars)  up t o  A = 80 with a stand- 
ard deviation of about 0.5 MeV. The Same formula can be us- 

ed t o  predict  unknown exci ta t ion energies of isobar ic  ana- 
logue s t a t e s  and the  masses of unknown neutron-rich and 

proton-rich nuclei.  The above expression i s  i n  accoraance 
w i t h  a theore t ica l  expression based on an ef fec t ive  two- 

nucleon interact ion.  m e r e  ex i s t  s m a l l  but  systematic de- 
via t ions  f r o m  the supermultiplet model. 

Subnitted to Nuclear Physics 



1. Introduction 

Recently, isobar ic  analogue s t a t e s  have become of in t e r -  
e s t ,  both experimentally and theore t i ca l ly  Such 
excited s t a t e s ,  i .e .  the energet ical ly  lowest s t a t e s  wia 
a given isobar ic  spin !I' i n  a given nucleus, can be form- 
ed i n  d i r e c t  nuclear reactions with a well defined change 

i n  isobar ic  spin,for ins tance c e r t a i n  (p,n), (p,d) o r  
( p , t )  reactions.  It i s  of major i n t e r e s t  t o  know what the  
exci ta t ion energies of these s t a t e s  are. Related i s  the 
problem of predicting and estimating the masses of un - 
known nuclei with a large excess of neutrons o r  protons, 

Ws i s  of pa r t i cu la r  i n t e r e s t  f o r  the  very l i g h t  nuclei  
4) l i k e  the tetra-neutron etc.  because the Bethe-Weizsäcker 

and re la ted  mass formulae 5-9) cannot be used. 

Several procedures and methods 10-15) a re  given i n  the 
l i t e r a t u r e  which permit an estimate of the  masses o f  un- 
known l i g h t  nuclei  and of the  exci ta t ion energies of iso- 
bar ic  analogue s t a t e s .  These methods, however, a re  appli- 
cable only over a r e s t r i c t e d  range of nuclei .  

The method report  ed by Baz and Smorodinsky Par- 
t i c u l a r  i n t e r e s t  with regard t o  the present Paper. mey 
evidenced the  existence o f  r egu la r i t i e s  concerning the 
energy differences between i sobar ic  anaiogde s t a t e s  
of isobar ic  spin T and T' and they showed empirically 

that A209 a31 arid A3/2 1/29 '5/2 1/2 a re  re la-  
t i v e l y  smooth functions of A while Al0 and AZ1 s p l i t  
i n t o  two branches, From a reasonable in te rpola t ion  o r  ex- 
t rapolat ion of n20, f o r  instance,  one can predict  the  ex- 
c i t a t i o n  energies of the lowest T = 2 s t a t e s  i n  ce r t a in  
self-conjugate nuclei .  By taking i n t o  account the  d i f fe r -  
ent  Coulomb energies one obkains approximat e masses 11,14,16) 

f o r  the  nuclei  with TZ = - + 2 and the same A. 

Franzini and Raäicati 17) recently studied the  exci ta t ion 
energies of i sobar ic  analogue s t a t e s  up t o  A = 110 i n  



terms of the  supermultiplet model 18). They came t o  t h e  
conclusion t h a t  this model appears t o  give a good in te r -  
pre ta t ion  of the ground s t a t e  energy f o r  a very large 
number of nuclei .  

'Phe purpose of the  present paper (see a lso r e f .  19) i s  
t o  es tab l i sh  a semi-empirical equation which a l l o w s  t o  
predict  within c e r t a i n  limits the exci ta t ion energy of 
any isobar ic  analogue s t a t e .  The existence of regulari-  

t i e s  which interconnect energetic diff erences AT9, 
between analogue s t a t e s  w i l l  be shown. Remarks on the 
theore t ica l  significance underlying these r e g u l a r i t i e s  
w i l l  be made. 

I n  sect ion 2 the exci ta t ion energies o f  i sobar ic  analogue 
s t a t e s  are  calculated from the known masses o f  neigh- 
bouring nuclei .  I n  sections 3 and 4 re l a t ions  and regu- 
l a r i t i e s  a re  deduced from the symmetry and pair ing ener- 
gies  of the respective nuclei which extend f a r  beyond 
the ones reported by Baz and Smorodinsky "). ~ e c t i o n  5 
gives empirical parameters which allow t o  predic t  un- 
known exci ta t ion energies and masses. The inversion of 
i sobar ic  spin s t a t e s  and the  v a l i d i t y  of and the devia- 
t ions  from the  r e l a t i o n  T = ) TZI f o r  the  ground s t a t e s  
of nuclei  i s  considered i n  sect ion 6. The A-dependence 
of the  above parameters i s  discussed i n  sect ion 7. In 

sect ion 8 the T-dependence of t h e  above re l a t ions  i s  dis- 

cussed and a t t en t ion  i s  given t o  the  question whether o r  

not and t o  what extent the  supermultiplet model o r  other 
theore t ica l  expressions a re  compatible with the  experi- 
mental data. 

2. The l k c i t a t i o n  Energies o f  Isobaric Analogue S ta te s  

Fig. 1 on the left-hand s ide  shows a p l o t  of the  masses 
( f i l l e d  c i r c l e s )  of i sobar ic  nuclei as a function of the  
z-component of the  isobar ic  spin. Isobaric analogue s ta-  



t e s  a re  shown as Open c i r c l e s .  5 e  energetic posi t ion of 
these s t a t e s  15) fo r  a given T depends quadrat ical ly  on 
Tz. The f igure  corresponds t o  nuclei  with an atomic weight 
which i s  a multiple of 4. Plots  f o r  nuclei  with A = 4n+2 
o r  with odd A look s imilar ,  except t h a t  f o r  odd A because 
o f  6 = 0 there  i s  oniy one parabola-like curve. On the  
right-hand s ide of f i g .  1 the s t a t e s  a re  sh i f t ed  i n  such 
a way t h a t  corresponding analogue s t a t e s  have an equal 
energetic posit ion.  The s i tua t ion  i s  ideal ized because 
the  Coulomb energies may depend not only on T z  and A but 
a l s o  on T, pa r t i cu la r ly  when the  configurations involve 
nucleons belonging t o  d i f fe rent  s h e l l s ,  Effects  due t o  a 

vio.lation of charge independence of nuclear forces a re  
also ignored. The curves show a cusp a t  Tz = 0. The ener- 
gy dif f  erences between the i sobar ic  analogue s t a t e s  

- 
are  indicated i n  f i g .  1, 

Most of the exci ta t ion energies Ale of the lowest T = 1 

s t a t e s  i n  the  self-conjugate nuclei  a re  known experimen- 
t a l l y  209 21). Additional exci ta t ion energies, 312 112 
and4,20 i n  par t icu lar ,  have also been measured recent ly  

229 23). These experimental values a re  p lo t ted  i n  
f i g .  2 f o r  the odd-A nuclei  and i n  f i g .  3 f o r  the  even-A 
nuclei  as a function of A as f i l l e d  c i r c l e s .  I n  addition, 

about 200 values of ATTl up t o  A = 80 and T = 4 were cal-  
culated from - t he  - , known masses 24) o f  i sobar ic  nuclei  and 

an estimate ") of the  corresponding Coulomb energy d i f -  
ference. They are  shown i n  f i g s .  2 and 3 as Open c i r c l e s .  

Errors are  indicated when exceeding 0.4 MeV. The TTl 

appear as r a the r  continuous functions of A with weak os-  
c i l l a t i o n s  f o r  odd A, and also f o r  even A when T - T' i s  
even. For even A but odd T - T ' ,  however, there  are  two 

such branches, one f o r  the  nuclei  with A = 4n and the 
other  f o r  A = 4n + 2 (n integer) .  The significance of the  
curves shown i n  f igs .  2 and 3 w i l l  be pointed out l a t e r .  



3. Symmetry and Pairing lhergies 

The A- and T-dependence of the 4 TT, as shown in figs. 2 
and 3 can be described in terms of the corresponding 
symmetry and pairing energies. In good approximation one 

can express TT, as 

This representation implies (1) the validity of a Bethe- 

Weizsäcker type mass formula i. e. the separability in 

an A-dependent tern (for instance volume and surface ener- 

gy) , a Coulomb energy term and terms representing the 
symmetry and pairing energy and (ii) the T-independence 

of the Coulomb energy as mentioned before. 

For E arid Epair the following expressions will be used 
SYm 

and 

for the ground states 
+ J(A) of even nuclei and its 

analogue states 

E - - 
pair 

for the ground states 
- &(A) of odd nuclei and its (3) 

analogue states 

0 for odd-A nuclei. 

Eq. (3) with its secondaqy conditions can also be mitten 
as 

IZie expression for the symmetry energy E contains a 
s P 

term proportional to T2 and a term proportional to T. 
The former term corresponds to the usual term in the Bethe- 

Weizsäcker mass formula which is proportional to (N - 2 )  
2 



if one equates T with 1 ezl and extends the  v a l i d i t y  of 

the  equation t o  the respective analogue s t a t e s .  The l a t t e r  
term corresponds t o  the term 18) which i s  proportional 
t o  ((N - z ) I  . The quanti tg b(A) stands as an adjustable 

parameter which i s  expected t o  be e i t h e r  constant o r  on- 
l y  weakly A-dependent. Contradicting values of 1, about 
2.5, and 4 were derived theore t ica l ly  2698918) f o r  b ( ~ ) .  

Inser t ing  eqs. (2) and (4) i n t o  eq. ( I )  immediately gives 
an explanation f o r  the  gross s t ruc ture  of the ,,,Y, as  
shown i n  f igs .  (2) and ( 3 ) ,  namely the smooth A-dependen- 
ce and the  energetic differente between the  t w o  branches 

of nTT, f o r  even A and odd T - T' which i s  pa r t i cu la r ly  
obvious f o r  Lq0, i. e. f o r  the  exci ta t ion energies o f  the  
lowest T = 1 s t a t e s  i n  the self-conjugate nuclei .  !Bis 

energy d i f  f erence becomes jus t  4 (B). Thus , one has a 
method of deriving from experimental da ta  the pair ing 
energies 6 (A) down t o  t h e  l i g h t e s t  nuclei .  

4. Relations between the Energies - nTTt 
From eqs. ( I ) ,  (2)  and (4) one can eas i ly  ve r i fy  r e l a t ions  
l i k e  

o r  i n  general 

n T + 2  Tw4T+3/2  T+1/2 

f o r  in teger  T 2 0 and neighbouring A. Eq. (6) i s  inde- 
pendent o f  the  pa r t i cu la r  values of a(A) & b(A). Prom 
f ig .  4 one can See t h a t  eq. (6) i s  indeed f u l f i l l e d ,  a t  

l e a s t  f o r  T = 0, T = 1 and T = 2. The acc&racy i s  of the  
order of 1 MeV. The lowest array of points represents the  
swn of the values of AIO f o r  the  two branches with A = 4n 



and A = 4n+2. This quanti ty which w i l l  be used below ex- 

h i b i t s  a similar A-dependence. 

Based on eqs. ( I ) ,  (2) and (4) one can show t h a t  the r a t i o s  

R and R which are  defined below i n  eq. (7) depend on 

T, T t  and b(A) only and not on a(A) and A (except f o r  a 

possible A-dependence of b(A)) . 

n r + 2  T 2~+2+b  ( A) 

R~~ Tt+2 T'  T13/2 Tt+1/2 2Tt +2+b (A) 

20 - 4+2b (A) 
- 

,1n.L;4n+ aA=4n+2) . 
10 l+b (A) 

These equations can be used t o  determine the parameter 

b(A). I n  f i g .  5 the  experimental values f o r  the r a t i o s  

RIO, RZ1, RZ0, and R a re  p lo t ted  as  a function of A. 

The experimental r a t i o s  a re  indeed p rac t i ca l ly  constant 
and independent of A. They are  close t o  the  constants b 

given on the right-hand s ide  of the f igure.  Constants 

a, b, C ,  and d r e f e r  t o  b(A) = 0 (Bethe-Weizsäcker f o r -  
mula), b ( A )  = I ,  b(A) = 2.5 and b(A) = 4 (supermultiplet 

model; See sect ion 8) .  Averaging the experimental r a t i o s  

one obtains 



One c lea r ly  Sees t h a t  the experimental r a t i o s  RTTl and R 
are  bes t  described by the constants b calculated from 

b(A) = 1. Consequently, the  T-dependence of the  symmetry 
energy E of eq. (2) i s  of the  form P(T + 1 ) .  It must Sm 
be emphasized t h a t  the r a t i o s  RIO, R21, RZ0 and R are  
more sens i t ive  t o  the exact value of b(A) than the  r a t i o s  

used by Franzini and Radicati 17) i n  t h e i r  analysis i n  
t e m s  o f  the supermultiplet model. 

The experimental r a t i o  R which Comes close t o  the value 
- 

of 3 proves t h a t  ( i )  the  T(T + 1 )  dependence of the  sym- 
metry energy E holds down t o  the very l ight  nuclei  ( a t  

SYm 
l e a s t  A = 8)  and t h a t  ( i i )  the  pair ing energy Epair C an 

indeed be described by eq. ( 3 )  and (4). 

Combining eqs. ( I ) ,  (2) and (4) with b(A) = 1 gives 

io 
f o r  A odd 
and A even, T-T' even 

f o r  A even, T-T' odd, 
a A A dTT, = 9 (T(T+I)-T' (T'+I* - T' even 

f o r  A even, T-T' odd, 
- - T' odd 2 

(8) 

This i s  es sen t i a l ly  a one-parametric equation f o r  dTT, 
because f o r  odd A and also f o r  even A when T - T'  1s even 
the second term vanishes. Only f o r  even A and odd T - Pt 



the  pair ing energy &(A) i s  needed as a second parameter. 

5. Rnpirical  Parameters and the  Prediction of Ekcitation 

Energies and Masses 

The exci ta t ion energy of any isobar ic  analogue s t a t e  +> 

and subsequently the  mass of any neutron-rich o r  proton- 

r i c h  l i g h t  nucleus can be predicted from eq. C9) within 
ce r t a in  limits i f  reasonaue parameters a(A) and &(A) 

can be derived theore t ica l ly  o r  a t  l e a s t  empirically. 

Empirical parameters w i l l  be extracted below. 

Individual symmetry parameters a(A) and pair ing energies 

& (A) were calculated from a11 hown LTT, using eq.(g). 

Fig. 6 shows the  r e su l t .  Indeed, a l l  a(A) and 6 ( ~ )  a re  

clustered and smooth curves can be drawn through the  
Points. I n  pr inciple ,  the f i l l e d  c i r c l e s  and f i l l e d  - squa- 

r e s  which are  extracted from A=4n and A ~ G ~ ~ + ~  alone are  

suf f ic ien t  t o  obtain a(A) and 3 f A )  up t o  A=50. However, i n  

order t o  obtain the  bes t  overal l  f i t  it appears most reason- 
able t o  use averaged parameters a(A) and d ( ~ )  which are  de- 

rived from known ATTl . These parameters a re  shown i n  

f i g .  6 as f u l l  l ines .  

Energy d i f f  erences TTt were calculated from eq.(g)us- 

ing the averaged empirical symmetry parameter a(A) and 

For the q i n  and p a r i t y  of the s t a t e s  under consideration 

simple ru les  can be given: For the odd-8 nuclei  spin and 

pa r i ty  J= have a strong tendency towards j" of the l a s t  
unpaired nucleon (holds only i f  the  s t a t e  has lowest 
senior i ty)  . For the even-A nuclei  J" i s  equal t o  0+ f o r  
A 
2 - T = even and follows the revised Nordheim ru les  

given by Brennan and Bernstein 35) with pos i t ive  p a r i t y  
A f o r  - - T = odd. 
2 



pair ing energy (A) from f i g .  6. The r e s u l t s  a re  shown 
i n  f i g s .  2 and 3 as  f u l l  l i nes .  There a re  apparently no 
obvious systematic deviations between the  experimental 
and calculated values except, possibly, f o r  the  region 

s l i g h t l y  below A = 50. Deviations t 1 MeV appear f o r  

312 112 at  A = 13, 19, 29, and 65 f o r  A5/2 a t  
A =65, f o r  A7/2 11/ a t  A = 65, fern„ 512 a t  A = 47, 
f o r A 2 0  a t  A = 26 and W), f o r  d21 a t  A = 26, f o r  d32 
a t  A = W), f o r  LQ2 a t  A = 48 and 50, f o r b q j  a t  A = 48. 

3/2 1 /29 512 'l/2 andA7/2 1/2 f o r  A = 65 
are  too high which seems t o  indica te  t h a t  the  measured 27 

maximum B-e~ergy of thhe decay of 3.7 2 0.4 MeV 
i s  too low" by about 1.35 MeV. 

Fig. 7 shows the  d i s t r ibu t ion  function f o r  the  difference 
between the over 200 experimental values of ATT, and the  
calculated values. The d i s t r ibu t ion  has a Gaussian shape 
with a standard deviation of about 0.5 MeV. 'Phis means 
t h a t  the  experimental 

O" 
, a r e  reproduced by eq. (9)with 

the  parameters a (A)  and (8)  from f i g .  6 with a standard 
deviation of about 0.5 MeV. From this finding it follows 
t h a t  eq.[9)can as well be used t o  predict  the  excitat ion 
energies of unknown analogue s t a t e s .  These energies can 
be read d i rec t ly  f r o m  f igs .  2 and 3. By adding o r  subtract- 
ing proper Coulomb energy differentes the mass of any un- 
known nucleus can also be predicted with an estimated 
e r ro r  of about 2 MeV up t o  A = 10 and 2 1 MeV up t o  

A = 80. This procedure of estimating the masses of un- 
known nuclei i s  of par t icu lar  i n t e r e s t  when the  mass of 
the  higher-order m i r r o r  nucleus i s  not known, i .e .  f o r  
a l l  unknown neutron-rich and the unknown very proton-rich 
nuclei.  Tables f o r  the  estimated masses a d  decay charac- 
t e r i s t i c s  of unknown proton-rich and neutron-rich nuclei  
are  i n  preparation 29 

+) See also comment D f o r  A = 65 of r e f .  28. 



Up t o  A = 8 one obtains the following values with an 
estimated accuracy of about 2 MeV: 

40 F 2 2 . 5 M e V  f o r A = 4  

A3/2 1/2 P 20.0 MeV f o r  A = 3 

"3/2 1/2 p 17.8 MeV f o r  A = 5 

A3/2 1/2 15.9 MeV f o r  A = 7 

*o W38.2MeV f o r A  = 4 

4 20 & 33.9 MeV f o r A  = 6 

A 2 0  m 30.0 MeV P o r A  = 8. 

From these energies i t  follows t h a t  the  tr i-neutron and 

tetra-neutron are  expected t o  be highly unstable with re- 
gard t o  d is integrat ion i n t o  s ingle  neutrons by about 

12,3 MeV and l O , 7  MeV, respectively. No conclusive s t a t e -  
4- 5 ments can be made concerning H , H , and ~ e ~ .  Of these 

8 the  nucleus He experimentallg appears t o  be the  only one 
which i s  s t ab le  with regard t o  the emission of neutrons 

6 and undergoes a ß - d e ~ a ~ ~ ~ )  instead.  She nuc le i  B and He 7 
(see r e f .  1 )  a re  expected t o  be unstable with regard t o  

the spontaneous emission of a neutron by about 9.6 MeV and 
5.2 MeV, respectively. 

6. The Inversion of Isobaric Spin S ta tes  

zq. (9)describes within the  accuracy shown i n  f i g .  7 the  

inversion of the  bwest T = 0 and T = 1 s t a t e s  i n  the odd 
42 self-conjugate nuclei.  The ground s t a t e s  of ~ 1 ~ ~ ,  Sc , 

v ~ ~ ,  and possibly Mn5' and CO% a re  known experimentally 

21,32-34)to have isobar ic  spin T = 1. The calculated ener- 

gy difference n 1 ~ ~ ~ + ~ ,  on the other hand, i s  indeed close 
t o  Zero o r  s l i g h t l y  negative f o r  A = 34 ... 58. For l a rge r  

A the quanti ty ~ \ l a ~ ~ + ~  becomes more negative and conse- 
62 66 quently the ground s t a t e s  of the TZ = 0 nuclei  (Ga ), As , 

70 etc.  are most l i k e l y  t o  have T = 1. They then B r  9 

have spin and p a r i t y  O+ and undergo a super-allowed pure 

Fermi 8-decay with f t =  3100 sec. Isomerism i s  l i k e l y  i n  

-t;hese nuclei  34,351 



. s negative. Prom eq. (9) Inversion occurs whenever T+1 

one can eas i ly  derive the  conditions f o r  such an inversion 
i n  terms of t i e  parameters a(A) and J ( A ) .  One obtains 

/\ L 0 
a(A1 

f o r  "1' RqT 
a ( A * )  

&q4" L 0 f o r  A2 Z 2 W 

The f i r s t  inequal i ty  has been discussed before. Using the  
parameters a(A) and 6 ( ~ )  from re f s .  8 and 36 one e s t i -  
mates 108 $ A ~  2 1 2 4 ,  A2 2 192 and A j z  290. 

The obove considerations show t h a t  the  r e l a t i o n  T = I T Z (  
holds f o r  the  ground s t a t e s  of most nuclei .  There a re  
only a few exceptions when T = ( T z /  + 1. 

The re l a t ion  T = ( ~~l holds 

( i )  f o r  a l l  odd-A nuclei  
( i i )  f o r  a l l  even nuclei  

( i i i )  f o r  most odd nuclei  except f o r  the  nuclei  with 

Tz = + I ;  A = 4n; 108 6 A 2124 (uncertain) and ~ 2 1 9 2  

The exceptions from the ru le  T = 1 Tz 1 are  o f  p rac t i ca l  
i n t e r e s t  only f o r  TZ = 0. 



7. Discussion of the Empirical Parameters 

The parameters a(A) and b (A) a re  shown in f i g .  6. The 

symmetry parameter a(A) exhibits  s h e l l  s t ruc tu re  with 

maxirna a t  A = 16, 28, 40 and 56. 'i?his i s  reasonable. The 
configurations of the  s t a t e s  under consideration are  very 
simple because they are  analogue t o  the  ground s t a t e s  of 

the  neighbouring isobars  with TZ = - + T. I n  a  simplif ied 

picture  the e n e r g i e ~ d ~ / ~  o r  L\20, f o r  instance,  can 

be in te rpre ted  as the energies needed t o  r a i s e  one o r  two 
nucleons i n t o  higher o rb i t s  without changing the number of 

antisymmetrically coupled pairs .  This energy i s  indeed ex- 

pected t o  be higher near closed she l l s .  I n  the Same pic- 
tu re  one can also,  a t  l e a s t  qua l i ta t ive ly ,  understand re- 

l a t ions  l i k e  A20- " '*2//2 1/2 o r  other similar re la t ions  

between the various ß T T t .  

Por small A the parameter a(A) becomes small m d  a(A) - 0  

remains f i n i t e  f o r  f o r  A -0. A s  a  consequence, 

small A and s o  do the  exci ta t ion energies of the analogue 

s t a t e s .  For l a rge r  A up t o  A = 80 the parameter a(A) can 

be compared with the parameters given f o r  the symmetry 
2 term proportional t o  ( N  - z ) ~  = 4 Tz of known semi-empi- 

r i c a l  mass formulae 4-9) . There i s  qual i ta t ive  agreement 

i n  the range of overlapping A. nie parameter a(A) of this 

paper exhibits  s h e l l  s t ruc ture  though, while the -known 
parameters do not. 

nie pairing energies (A) shown i n  f i g .  6 were extracted 
from the energy differences nl0, n21 e t c . ,  i . e .  from 

nTTt f o r  even A and odd T - T ' .  niere are  two branches, 

one f o r  nuclei with A = 4n and the other f o r  nuclei  with 
A = 4n + 2. The separation energy between these branches 
i s  equal t o  4 & ( A I .  From e q . ( 9 ) i t  becomes c l e a r  t h a t  there  

ex is t  addit ional  r e l a t ions  which allow the extract ion of 

values f o r  S(A). The simplest re la t ions  are  



These re la t ions  a re  of special  i n t e r e s t  because recent ly  

experimental values f o r  the  exciUation energies of the  
2 )  lowest T = 2 s t a t e s  i n  TZ = 0 nuclei  have become available , 

Nemirovsky and Adamchuk 36) calculated the  pair ing energies 
& and of two neutrons and two protons f o r  nuclei  f r o m  n P 
A = 10 t o  A = 252. They used the second differences of the 
known binding energies EZ of adjacent nuclei  (isotopes 

and isotones,  not i sobars j  and applied corrections due t o  
the  curvature o f  the mass surface. For the  corrections they 
considered the surface energy, the  Coulomb energy and the  
symmetry energy. Below A = 40 the pair ing energy d ( ~ )  of 
our paper i s  appreciably smaller than iven i n  the de ta i led  
analysis by Nemirovsky and Adamchuk J~'. mis discrepancy 
i s  a t  l e a s t  i n  pa r t  due t o  the  symmetry energy, which was 
taken by the authors t o  be proportional t o  T* and thus re- 
s u l t s  i n  a not qui te  adequate descr ipt ion of the actual  
curvature of the mass surface. 

8. Discussion of the  T-dependence 

~ ~ . ( 9 ) a n d  i t s  T-dependence i n  pa r t i cu la r  can be compared 
with correspondin expressions which were obtained theo- 
r e t i c a l l y  18,89267. I n  t h i s  paper the spmet ry  energy i s  
given with a T-dependence of the  form T(T+I ) . The empiri- 

2 c a l  Bethe-Weizsäcker mass formula 4, uses only a IP -de- 
pendence. Contradicting dependences of the f o r m  T(T+4), 
T(T+ appr. 2.5) and T(T+l) were derived theore t ica l ly .  

Franzini and Radicati have shown t h a t  the  supermultiplet 

model 18) gives a good in te rpre ta t ion  of the ground s t a t e  
energy f o r  a large number of nuclei.  The supermultiplet 
model leads t o  a proport ional i ty  between (A) and a(A). 
This f a c t  has the advantage t h a t  t h e n  then can be given 
i n  a completely one-parametric form 175T'From the anaiysis 
given i n  the present paper, however, it follows t h a t  there e x i s t  

small but  systematic deviations between the  experimental 
data  and the description i n  terms of the  supermultiplet 



model. 

( i )  The T-dependence o f  the  symmetry energy does 

not seem t o  be of the form T(T+4) but of the  

form ~ ( T i l ) .  

( i i )  The pair ing energy 6 (8) does not seem t o  be 

proportional t o  the quanti ty a ( ~ $ ;  Instead 
6- (A) 4 a(A)/A f o r  A c  34, &(A) & a(A)/A f o r  

3 4 6 ~ 5 5 8 ,  and [(A) > a(A)/A f o r  A > 5 8 .  

( i i i )  The r e l a t i o n  b 1 0 ~ ~ + ~  = 0 does not hold, i .e .  
the  lowest T = 1 and T = 0 s t a t e s  i n  the  odd 

self-conjugate nuclei  a re  not degenerate. 

I n  the supermultiplet model Wigner and Majorana forces on- 

l y  a re  used. The above deviations show t h a t  B a r t l e t t  and 

Heisenberg forces cannot be neglected, i. e. t h e  supermul- 

t i p l e t  model represents an approximation only. 

Ayres e t  a lO8)  theore t ica l ly  derived f o r  the  quanti ty b(A) 

i n  E - a A (T* + b(A) T ) the  expression 
sym - A 

b(A) = 2 - a ( 1 + small terms). 

(b(A) = ai/2 aa i n  t h e i r  notation).  Here a = 1 3 ~ / 3 1 ~  i s  

the  r a t i o  of the  singulet-even t o  tr iplet-even forces.  
The small terms are  s l i g h t l y  A-dependent and, i n  addition, 

contain the quant i t ies  B = 3 3 V / 3 1 ~  and y = " V / ~ ~ V  w ~ c h  
are  the r a t i o s  of the  triplet-odd and singulet-odd forces 
t o  the tr iplet-even forces. With an a = 0.754 as given by 
Ayres e t  a l O 8 )  the quanti ty b(A) varied f o r  = 20 t o  

A = 267 f rom 2.4 t o  2.9. It i s  only f o r  an unreasonable 

r a t i o  a of about -1 t ha t  the quanti ty b ( A )  becomes + 1. 

De Sha l i t  and Talmi 26) have given a theore t ica l  expression 

f o r  the binding energies of n nucleons i n  a given j-shell 

based on ef fec t ive  %wo-nucleon interact ions .  The T-depen- 
dence derived empirically i n  the present paper i s  i n  

agreement with the above expression. Therefore it becomes 



possible t o  equate the quantit ies ~(A) /A and S(A) with the 
respective coefficients. mese coefficients a.re functions 
of j and the effective two-nucleon interactions which ac- 
cording t o  f ig .  6 appear not t o  be completely constant within 

given shel ls .  It has been shown before from the experimental 
data tha t  J(A) = a(A)/A over a range of atomic weights A. 

This f ac t  leads t o  an additional re la t ion  between the ef- 
+> fect ive interactions . 

Brief mention sha l l  be made of the f ac t  tha t  the level  
s t ructure of the isobaric analogue s t a t e s  (analogue t o  

the ground s t a t e s  of the nuclei with TZ = - + T) as shown 
i n  f ig .  8 and described by eq.(9)bears close s imi lar i ty  
t o  rotat ional  bands. T stands fo r  J and a(A)/A. stands f o r  
the rotat ional  energy. For e-ven A the pairing energy J(A) 
must be added o r  subtracted i n  a way which i s  similar t o  
the decoupling term i n  K = 1/2 rotat ional  bands. Thus, 

one may a t  l e a s t  c a l l  the level  structure of the isobaric 
analogue s ta tes  "isobaric spin rotat ional  bandst' which 
seem t o  exist  i n  a l l  atomic nuclei. 

After the completion o f  t h i s  work Zeldes, Sronau and Lev 37) 
published a shel l  - model semi - empirical nuclear mass 
formula which reproduces the experimental masses of  not 
t o o  l i g h t  nuclei very w e l l .  

I n  the notation of De Shal i t  and Talmi 26) t h i s  re la t ion  
can be written as 
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Pig. 1 Relationship between the nasses ( f i l l e d  

c i r c l e s )  of nuclei  with A = 4n(n in teger )  
1 and TZ = 2 (N - Z ) .  'I'he left-hand s ide  i s  

without any corrections,  the  r i e t - h a n d  

s ide  i s  corrected with regard t o  the n-p 
mass dif f  erence and the d i f f e ren t  Coulomb 
energies. m e  guanti ty 6is the pair ing 

energy. Isobaric analogue s t a t e s  a re  shown 

as Open c i r c l e s .  The energy differences 

~ T T I  between these s t a t e s  a re  indicated. 

E g s  . 2  and 3 Energy d i f f  erence 4 TTt  between the  ener- 

ge t i ca l ly  lowest s t a t e s  of isobar ic  spin T 

and !Pt as  a  function of A. Fig. 2  i s  f o r  
odd-A nuclei ,  f i g .  3 f o r  even-A nuclei .  Ex- 

perimental values are  shown as f i l l e d  c i r -  

c les .  Values calculated from the  known mas- 
Ses of isobars are  shown as Open c i r c l e s .  
E r r o r s  are  indicated when exceeding 0.4 IJIeV. 

The curves are calculated from eq. (9) with 

the help of the semi-empirical symmetry 
parameter a(A) and pairing energy &(A) of 

f ig .  6. 

Fig. 4 

Fig. 5 

Plot  of the quant i t ies  20, L\ 3,, , and A42 
( f i l l e d  c i r c l e s )  as well as 2d3,2 

2  3/23 arid 2  5/2 (open c i r c l e s )  
as functions of A. The points are  arranged 
i n  three groups which proves eq. (6) f o r  
T = 0,  T = 1 and T = 2. The A-dependence of 

+ d 1 0 ~ ~ + ~ ) ( 0 ~ e n  t r i ang ies )  i s  of a 

s imi lar  s t ruc ture  as compared with the other 

quant i t ies .  

Plot  of the experimental r a t i o s  RIO, R2,,, 

RzO, and R ( f o r  def in i t ion  See eq. (7))  as 

functions of A. The constants a ,  b,  C ,  and 
d  given on the right-hand side r e f e r  t o  the 

constants calculated with b(A) = 0  (Bethe- 



Weizsäcker formula), b(A) = 1, b(A) = 2.5 and 

b(A) = 4 (supermultiplet model). The experi- 

mental points come c loses t  t o  the  respective 
constants b calculated with b(A) = I. 

Fig. 6 Symmetry parameters a(A) and pair ing energies 
8 (A) calculated from the  experimental energy 
differentes T T ,  . Vaiues f o r  a(A) derived from 

even-A and odd-A nuclei  are  shown as  %i rc le s  and 

t r iangles ,  respectively,  Values f o r  d (A) n a re  

shown as Squares. Values f o r  a(A) and (A) de- 
A=4n and n$;4n+2, i n  pa r t i cu la r ,  r ived from l O  

a re  shown as  f i l l e d  c i r c l e s  and Squares. Averag- 

ed curves a re  shown as f u l l  l ines .  

Fig. 7 Distribution function f o r  the d i f f  erence bet- 

ween experimental and calculated d TT1o m e  

d i s t r ibu t ion  i s  compatible with a Gaussian 
function with a standard deviation of about 

0.5 MeV. 

Fig. 8 Energetic posi t ion of the isobar ic  analogue 

s t a t e s  f o r  odd-A and even-A nuclei.  The ener- 

gy scale  i s  i n  un i t s  of a(A)/A. The pair ing 

energy d(A) i n  the  f igure  was a r b i t r a r i l y  
chosen equal to  0.9 a(A)/A. The l e v e l  s t m c -  

t u r e  resembles ro ta t iona l  bands. 
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