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Infroduction

This paper is toncerned with the intefpreta%ion of
Doppler experiments in which the reactivity change dué to heating
of a sample in a fast critical assembly is measured. Experiments
of this kind were carried out at Argonne /1/, /2/ and Atomics
International /3/, and are being planned at the critical assembly
SNEAK at Karlsruhe /4/.

Probably the major difficulty in the theoretical
treatment of such an experiment is that the flux dips due to
the resonances are different in the sample and in the core
because they are at different temperatures. At and near the
boundary (very often the sample diameter is less than one mean
free path, so that all of the sample volume is near the boundary)
these fluxes overlap, and for the calculation of reaction rates
in both regions one has to take account of this overlap. Clearly,
this is a more complicated problem than the calculation of the
standard Doppler coefficient, where the core is assumed to have

uniform composition and temperature.

The first correct treatment of the problem just out-
lined is due to Storrer, Khairallah, and Ozeroff /5/. These
authors assume that the sample has the same composition as the
surrounding core, and they calculate the temperature dependent
reaction rates in the sample and in the core for this special

CcCase.

However, in all the experiments mentioned above, the
sample composition is entirely different from the one of the
core. It is the main purpose of this paper to develop a formalism,
valid in this more general case, which allows the calculation of
the reactivity change due to heating of the sample. The formulas
to be derived will be based on integral transport theory and
perturbation theory. In order to illustrate the problem, a special

case will be discussed first.



Preliminary Discussion of the Case of a Small

Sample which has the same Composition as the Core

The case 6f a sample which is small cbmpared to one
mean freé path, and which has the same composition as the core,
is suitable to provide some physical insight, though it is of no
practieal importance. It is also a useful example to study the
question whether a sample measutrement is of any use to obtain
the Doppler coefficient of a whole reactor. The following
discussion is similar to the one given by Storrer et al. /5/,

though a different approach will be taken.

The notation will be

V,s = volume, surface of the sample

T = 4 V/s mean chord length of the sample

Pqq = probability that a neutron born in the sample
makes its first collision in the sample ( =1 1
for a small sample

T} = probability that a neutron impinging on the
sample will make a collision in the sample
( = l{m for a small sample)

S = source density

subscript refers to the sample-

1
2 refers to the core.

If (i,k) denotes the number of neutrons which are
produced in region i and absorbed in region k, one can easily

down the absorption rates
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In the last two equations, SS/MZ;E is the current of neutrons

into the sample.

The terms (1,1) and (1,2) depend on the sample
temperature only in the order I 2, which can be neglected for
small samples. Thus, the change in absorption rate when the
sample is heated is entirely due to neutrons which were produced
in the surrounding core, terms (2,1) and (2;2)s Term (2,2)
describes thefittert-effect-of the-sample: the number of neutrons
which traverse the sample and are absorbed in the core depends

on the sample temperature.
The net change in absorption rate upon heating of the

sample is
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The quantity of interest, however, is the change in absorption

rate that occurs if the whole reactor is heated, namely

_— Z%1 Za2
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These two quantities shall now be compared, assuming that the
‘ i P
temperature change is small; one can then put Z’I =22 + O 2

and retain only terms of first order hnéZl One obtains
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Thus, AA' =¢SA”, and we have the result: In an experiment where
only a small sample is heated, the changes in absorption rate are
due to neutrouns which have the resonance structure of the
environment ("cold" neutrons). If the whole reactor is heated,

the changes are due to neutrons which have the resonance structure
of the sample ('hot™ neutrons). It has been shown that the two

changes are equal for small temperature changes. Therefore, a-

sample measurement is, in principle, suitable to measure the
Doppler coefficient of a fast reactor, if the temperature changes

are kept small.

Derivation of a Perturbation Expression

for the Reactivity Change

In this section, an expression for the reactivity
change will be derived, which is rigorous except for the use
of perturbation theory. More specifically, the following
equations will be based on integral transport theory, which
means that isotropic scattering will be assumed. The narrow
resonance approximation, which is standard in most Doppler

calculations in fast spectra, will also be made.

The integral transport equation reads

Z;(E,r)ﬁ(E,r)‘= fS(E,r’) p (r'3r,B) 4av! (1)

”
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In this and the following equations,; the nétation is

. . &1
ZT(E,r) macroscopic cross section, cm

t,8,f,p,c refer to the cross seétion for total ‘
collisions, scattering, fission, potentisal
scattering, formation of the compound nucleus

S(E,r) source density of neutrons due to scattering
and fission, per unit volume, energy and
time, n/cm’=ev-sec

SXi rate of reactions of type x in the energy
group 1
j=i . . . .
s = _ . rate of (elastic or inelastic ) scattering

events in group J, with moderation of the
neutrons "into group 1 - -

Fj fission rate in the energy group jJ

v total reactor volume

<') average over an energy group

= 1 . . .

Z;ﬂfz%1 + T equivalent potential cross section of the

sample

The function
zt(E’r) e'L(r'arsE)
T /r‘-r/2

1]

p(r'sr,E) (2)

in eq. (1) is the probability that a neutron born at r' will
make its next collision in the unit volume at r; L is the

optical path'" between r and r'.

We now multiply equation (1) by the cross section

ratio Z;/z%, and integrate over the energy group i.

This gives

{ { (G )
S . (r) =1) (E,2)8(E,r)AE = }Jav's,(r' X =—(E,r)p(r'r,E)). (3)
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In deriving equation (3) we have made the narrow resonance
approximation. As a consequence of it, the source density S(E,r)

is a slowly varying function of energy, and can be taken out of

the averaging process over energy.



By definition, the group integrated sourde density
which occurs in eq. (3) is the sum of the moderation and fission

source
"
- . J 1 4 rl
5) = L S g jZ\, F(x). ()

Obviously, we can express the reaction rates on the right side

of eq. (4) through eq. (3), and thus we obtain

| Si(?),z j;i /[dV Sj(r)\ Eit (E,r) p (r'=2r,E) 3
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These are the multigroup transport eguations in a form in which
the source density Si is the variable; this form has‘the advantage
that it is obvious which quantities have to be averaged over the
resonances in space dependent problems. The meaning of the

variable S, is made obvious by eq. (L),

The notation can now be simplified somewhat by
introducing the following group averaged probability distributions

P_i (r',r) = Ek 2 (E,r) p (r'=r, E%} (6)

-

Then we can write the equations (5)

Si(r)=

il

Zj av's (e VP (x'e) (2)

_ av's, (x )PJ Ppt,r)
ﬁ\{ )/ Jd ¥

We can now proceed to find the perturbation equations based on

(7) and on the following equations which are adjoint to (7)
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We assume that there are small perturbations(SPS in the P_
(o) ‘
{ — . 1 3 g
Pxi(r r) = P‘xi (r',r) +(5Pxi(r , 1)

and that the ‘effect of these JP is compensated in first order
by a changeéb'ln V. Then we obtain, by standard manipulations,
the following expression for the first order reactivity effect

of the perturbation

v

o (9)
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Within the frame of first order perturbation theory, this

equation gives the reactivity effect of any small enough
perturbation in a reactor which can be described by the multigroup
transport equations. We shall apply it to the interpretation of

Doppler effect measurements of the type mentioned above.

Application to the Case where the Sample

has the same Composition as the Core

We consider first the case where a small central
portion of the core is heated, or in other words the case
treated by Storrer et al. /5/, where the sample has the same
composition as the core. The unperturbed reactor is homogeneous

and at uniform temperature.



Let us assume a reactor large enough so that both
the S and 87 can be considered as constant over the region of
perturbation, which is obvioﬁsly the saﬁple volume and the region
around it, within two or three mean free paths, fhen the double
integrals in (9), which have to be extended over the region of

pertufﬁation, can be split up into four integrals in the following

JdV' [dV P (r',r) =

v

(E)jdvrj de(r‘-sr E)> < (E) jd\f'j dvp(r'sr »
2t Liq

(E)/ dV'/ dvp(r'>r, E) < (E)J dV‘/[ avp(r'sr,E).(10)
NLez Zt2

V

way

Obviously, the integral j{dV' /j‘dv represents the contribution
Va

of neutrons,; which are moderated to energy E in region a and make

the next collision in region b, to the rate of reactions .of type x.

Thus, we have the four terms which were already discussed in the

first section.

In order to evaluate the integrals, we introduce the
probability
=7 av? fdv p (r'3r) (11)
1
1

Vq

that the first collision of a neutron born in the sample will be

in the sample.

Then one can easily evaluate the two integrals

de'jdV p (r'=xr) =
V1 V1



/{dv']dv p (risr) = \’/’1('.41»‘-‘1?1»):

V1 V2

The other two integrals in (10) can be evaluated if

the reciprocity theoren

VZ v L

£1 F132 = Vodyo Posyg (12)

is used.

One obtains by simple manipulations

j jde(r'%r) V,li_-—(’IP)
t2

and further

jdv /dV p (rizr) = v, Z“('t-P = jdV‘jde(r '>r)
t2

V -V —V

The last term on the right side represents the leakage out of the
region of perturbation, which is in good approximation independent
of the sample temperature, and so 1s the first term, VZ' As we are
interested only in the temperature dependence of Px’ we omit these
two terms, and collect all the other terms. We call the resulting

temperature dependent integral Px’ and obtain

~ - I Ixq th
7o, - (1-p) (222 LEL (g Y > (13)
x Zm Teo  Ziq Tio

Thus,we have found an explicit expression for the
integrals in eg. (9) in our special problem. All that remains is
Falond ot
to insert the quantitiesaPX7 which are changes in the PX defineg

by eg. (13), into the general eq. (9). Thus we obtain
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where use has been made of the fact that
Z' B T o -5 B 5
t] aj L T L

in energy groups where the Doppler effect is important. D is the
denominator of equation (9).

Expression (14) is the reactivity change associated
with the heating of the sample.

The three terms on the right side of eq. (14) are the
effects of changes in the fission rates, absorption rates, and
moderation rates, respectively, in both the sample and the

surrounding core. It can be shown that the third term is small

and can be neglected in all cases of interest.

Discussion of these Fquations

1. The perturbation expression (9), which is "exact" in
the sense that it was derived with only a few minor approximations
mentioned in the introduction, can be further evaluated in the
case where the unperturbed reactor is homogeneous, and large
enough, so that in the center, where the perturbation occurs, the
asymptotic solution of the transport equation is valid. This is
exactly the case considered in the paper by Storrer et al. /5/.
Our equation (13) contains essentially the same results as those
obtained in /5/, and for a detailed discussion and numerical
evaluation in special cases we refer to /5/. Equation (14)
represents the link between the reaction rates and the reactivity
change, which is different from the standard perturbation
expression in that it contains the source densities and not the

fluxes.
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2. The source densities S, whidh have to be calculated
for the unperturbed reactor, are related to stahdard quantities
by eq. (4). From a consideration of neutrod balante, it follows
that the source density is the sum of the tot&l collision density
and the leakage rate. In the unperturbed resacétor, thls dan be
loosely ‘designated by‘Z?¢+DB @. In all homogeneous tores of
interest the term DB2 is much smaller than”Z% and may be
neglected. In the same approximation, s' is egual to the ofdiﬁary
adjoint flux, and we may approximate the terms in eq. (14) in the
following way

s'$P Szé+d~ (1k4a)

r\‘f’s\&

where @ means the group flux. However, though this is a good
approximation for homcgeneous cores,it might not be good in cases
where the sample is different from the core, and strongly
absorbing, so that some group fluxes show a strong curvature in

the vicinity of the sample.

3., Storrer et al. /5/ broke up the right side of eq. (13)

into two terms, namely

2%1
(15a)
Zt1>

and

21 b >
(1-P )( =) (1- (15b)
< th " Tiq th

and showed that in representative cases, heating of the sample
causes a change of second order in the temperature difference in
(15b), whereas the change in (15a) is of first order. Therefore,
one can consider the term (15b) as a small correction, and from
insertion into (14) one can see that the sample measurement gives

just the Doppler coefficient of the core, except for the correction



(15b) and a statisticdl weight facter. In this sense, one can say
that the Doryler coefficient of the core can be determined
directly by a sampls measurement, pfovide& that the sample has the
same composition as the core. If the sample is different in

o~

composition

[

romthe core, no such interpretation is possible,
because one measures the Doppler coefficient appropriate to the

equivalent potential cross section of the sample.

Evaluation of the Perturbation Expression

in the Two-Region AppTOYlmct“OH

In the more general case where the sample is different
in composition from the core, the evaluation of the reactivity
change is much more complicated. In fact, the calculation of the
"unperturbed" source densities, with the sample at room temperature,
is then already a difficult problem of transport theory. Thus, in
this case of practical importance, the theoretical treatment

becomes rather involved.

The simplest approach is to assume that the source
densities S8 and S8 are flat in the sample, and in the core
region arround the sample. Then a two-region approximation can
be used to evaluate eq. (9). Let us further assume that the
sample contains only one fuel isotope. Then, the same analysis

which leads to eq. (13) gives

pae g1 - Zyq
av: dVS+PS_V 1P)(-- = 8T)(8, - —— s>
[ f g L \ZV 1 22 52 o VUV T
(16)

In this more general case, the gecond term in the brackets is no
longer a correction of second order in thz temperature difference,
and, therefore, it appears somewhat artificial to isolate the

term 2%1/2;1' Therefore, the eguation shall be re~-written in a

different form.



- 13 =

If, for simplicity, Wigner's rational approximation
I3,
P oL - -t

1 e
11-12,61

is introduced at this péint, one obtains

jdvija\fs?fp S =V 5/ 8, +

\1/1+Z 1 1
pa
+ 1 (sz sg S, ?ﬁl 51 S, -5‘3—-25’51 sg 32)) (16a)
i(1/i+2;1) t2 t2 Zio

One can easily recognize the four terms (i,k) in the form (16a)

of the equation.

Furthermore, it is obvious from eq. (16a) that the

resonance neutrons do not really ''see' the potential cross

sectionzp,‘ of the sample, if Zp is different from sz. Rather,

they see the equivalent cross section Ziq
course, the cross section 2‘2, which appear in the denomlnators

of eq. (16a). Therefore, the term Z- AZ of eq. (16) has no

cf the sample and, of

physical meaning.,

We now split the term (2,1) (absorption in the sample
of neutrons produced in the core) into two terms, say (2,1)a

and (2,1)b, namely

548 Xy 3 Iy
(2,1) = -2 §{—= ) - <Zti 5(1/1+‘Z_m)> (17)

In eq. (16a), the two terms (1,1) and (2,1)a have the form of
resonance integrals, and can be calculated by the usual methods

of Doppler coefficient calculations.

The remaining 3% terms, however, are more complicated.
They disappear if there is no resonance absorption in the core;

let us call them core absorption terms.
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They can enly be evaluated analyticaily at high
neutron energies, where the o called ”High Energy Approximation®
used in Doppler coefficient calculations is valid. Indeed, one

obtains in this approximatioc#, for example, for thée term (1,2)

) (18)

Similar expressions are obtained for the other terms. The
notation in (18) is the usual one in Doppler coefficient
calculations. The Doppler widths ' and A" refer to the core
temperature and sample temperature, respectively. It is
interesting to compare eq. (18) with the "High Energy

Approximaticn' of the term (1,1) namely

(= - 1) (18a)

5.<’l/l+z i {2.;?<"@;,|+5;1> AT 4"

In eq. (18), the cross sections of both regions appear in the
denominator. If they are equal, (18) is, for small temperature
changes, just one half of (18a), because only one of the two
regions is heated. It should be mentioned that all the 3 terms
(1,2), (2,1)b, and (2,2) give positive contributions to the
change in readtion rates in this approximation, and they are of

the same size as the other two terms.

In the spectra typical for fast breeders, most of the
Doppler effect is at low energies where the so called "isolated
resonance approximation” is valid. In this energy region, the
core absorption terms can only be evaluated numerically.
Calculations show that they can he of either sign, but are small

compared to the terms (1,1 and (2,1)a.
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It has been shown in this section that the analysis of
a sample experiment, in addition to requiring a 16t of numerical
work, involves additional uncertainties, which do not appear in
the usual Doppler coefficient calculation. The major uncertainty
is in the calculation of the group fluxes in the cold sample. It
is, therefore, desirable to design experiments such that the

perturbation of the group fluxes by the cold sample is small.

The method appropriate to the analysis of sample
experiments is based on ratios of reaction rates, rather than on
effective group cross sections, as can be seen from (16a). It is,
therefo;e,ﬂan extension of the ''reaction réte method™ used by
Froelich and Ott /6/, and By Hummel and Hwéng /7/, to space
dependent problems. The overlap correction between resonances of
different isotopes, which is small in the method of effective
cross sectiéns, may be gquite large in the method of reaction rates.
Therefore, the analysis is simplified if the sample contains

only one fuel isotope.

Numerical Results

The numerical work at Karlsruhe to evaluate the above
expressions is still in progress. The results to be presented here
are for samples of U(238)02, of the type used in the experiments
on ZPR-3 /1/ and ZPR-6 /2/. The multigroup diffusion calculations
were done with a 26 group cross section set by Abagyan et al. /8/,
which includes selfshielding. The statistical method was used

for the Doppler ecalculations.

A code was written to evaluate the core absorption

VT

n
=
3

1g the asymptotic expression

for the ¥-function.

The temperature dependence of both terms (1,2) and
(2,1)b is described by the function



oo
Z > Z(‘ r.. / Q}g") 7{'
(’Za § (== )>=~%§fdx i) (19)
t2 2p1+_201 {8 P B+ B,ﬁ”fl

which i1s plotted in Fig. 1 for different values of 6;2, the
potential cross section per atcm in the surrounding Eore, The
sample is U(258)02, 1 inch in diameter, the energy E=1.47 kev
(group 14 of the cross section sst).

-
)

2
negative tangent, but are siroungly curved, and then change sign.

Fer the usual values of the curves start with a
The term (2,2) leads to a different function, but shows the same
qualitative bzhaviour. Fig. 2 shows all the Ffive terms for
6;2=30.8 b, which c¢orresponds to the core composition of ZPR-6.
The core absorption terms ars smell in the temperaturé range of

interest.

In order to understand the behaviour of the function
(19), let us look, for example, at the term (1,2). Then the second
factor, qu/(%+§%1) in equation (19), is the temperature dependent
spectrum of neutrons which leave the sample without a collision.
This factor increases with temperature in the wings, and
decreases in the center of a resorance, leaving a net increase
of the integral. The neutrons with this spectrum are subjected
to the absorption probability 2;2/5%2 in the core, which is
largest in the center of the resonance and may, therefore,
change the above balance into a net decrease. Thus, the sign of
the term is very sensitive to the paremeters, and the net balance
is small. Only at high temperatures and/or large potential cross
sections, the ret effect in (19) is always negative, giving a

positive contribution to the term (1,2).

Table " shows the calculated reactivity change for an
experiment on ZPR-6, Assembly 47 /2/. The sample is natural
uranium oxide, 1 inch in diameter, and expansion constrained
(peasurenment No. 7 of /2/). The calculated values are for

a sample heated to EOOOK and &00°K. The unperturbed group fluxes
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were used, no correction was made for the Debye temperature. The
calculated values are 10% and 13% smaller than the measured values.
As fast reactor spectra are not well known, this may be considered
a fair agreement. It is important to note that without the core
absorption terms the agreement‘would be much worse. These terms
contribute about 20% in the relatively hard spectrum of Assembly 47,
where almost 50% of the Doppler coefficient comes from energies

above 10 kev.

There is, however, a strong disagreement with a
measurement where U-238 was replaced by molybdenum in the
envirqnmegﬁwoﬁrthersample. The ;esq}t should be smaller, because
the core absorption terms are missing. However, the experiment
gave a larger result. Possible explanations are that the group
fluxes change, or that the calculated spectrum is too hard. More

wark is required to:understand these effects.

The author wishes to thank Mr. G. Bruhn for

writing the computer code.
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Table 1: Results for the ZPR-6 Experiment,
1}inchesaﬁple
~10%8k/xg U-238

. 293%K-500%k _ 293°K-800°K

above 10 kev below 10 kev above 10 kev below 10 kev
(1,1 0.23 0,44 0.38 0.84
(1,2) 0.08 0.0 0.16 0.05
(2,M)a 0:.32 0.59 0.53 1.14
(2,1 . 020 0.02 0439 0.13
(2,2) 0.10 0.00 0.18 0.03
Total
calculated 1.99 3.83
Experimental 2.22 10,09 4.38 20.09
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Fig. 1 The Function <S>< f X /32
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Fig. 2 Contribution of the Different Termsto dk
Sample: U(238)02, 1 inch, E = 1.47 kev
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