KFK-433

KERNFORSCHUNGSZENTRUM

KARLSRUHE

Juli 1966

مين بي مير B - يوني ميني بيون. مو

KFK 433

2 1. JULI 1988

Institut für Radiochemie

Festkörperchemische Untersuchungen über die Systeme $SEO_{1,5}$ - $ZrO_2(HfO_2)$,

AmO1.5-ZrO2(HfO2, ThO2)-O2 und TiO2-NpO2(PuO2)

Hubert Radzewitz

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

Juli 1966

KFK 433

Institut für Radiochemie

FESTKÖRPERCHEMISCHE UNTERSUCHUNGEN ÜBER DIE SYSTEME SEO_{1,5}-ZrO₂(HfO₂), AmO_{1,5}-ZrO₂(HfO₂,ThO₂)-O₂ und TiO₂-NpO₂(PuO₂)

von

Hubert Radzewitz

Gesellschaft für Kernforschung m.b.H., Karlsruhe

INHALTSVERZEICHNIS

1.	EINLE	EITUNG		1
2.	ERGEE	BNISSE UND DISKUSSION		5
	2.1.	Die Systeme SEO _{1,5} -ZrO ₂ (HfO ₂)		5
		2.1.1. Homogenitätsbereich der Pyroch	lorphase (28)	11
		2.1.2. Temperaturabhängigkeit der Pyr (38)	ochlorphase	
	2.2.	Binäre Systeme des Zirkons mit Oxiden Elemente	d re iwertiger	15
		2.2.1. Bisher untersuchte Fluoritphas Oxydsystemen des ZrO ₂ mit drei kationen	en in binären wertigen Fremd-	15
		2.2.2. Das System NdO		16
		2.2.3. Das System Eu01.5-Zr02		18
		2.2.4. Das System Ho01.5-Zr02		20
		2.2.5. Das System Amolis-Zro		21
	2.3.	Binäre Systeme des Hafniums mit Oxider Elemente	dreiwertiger	23
		2.3.1. Bisher untersuchte Oxidsysteme mit dreiwertigen Elementen	e des Hafniums	23
		2.3.2. Das System NdO		24
		2.3.3. Das System Eu01.5-Hf02		26
		2.3.4. Das System Ho01.5-Hf02		27
		2.3.5. Das System AmO		29
	2.4.	Binäre Systeme des ThO ₂ mit Oxiden dre mente	iwertiger Ele-	30
		2.4.1. Das System La0 _{1.5} -ThO ₂ (2,42)		30
		2.4.2. Das System $NdO_{1.5}$ -ThO ₂ (2)		32
		2.4.3. Das System AmO		33
	2.5.	Binäre Oxidsysteme des Americiums mit wertiger Elemente	Oxiden vier-	35
		2.5.1. Das System AmO ₂ -ZrO ₂		35
		2.5.2. Das System AmOHfO2		36
		2.5.3. Das System AmO ₂ -ThO ₂		37
	2.6.	Binäre Systeme des Titans mit Oxiden v Elemente	ierwertiger	38
		2.6.1. Das System TiO ₂ -ThO ₂		38

Seite

Seite

2.6.2.	Das System TiO ₂ -NpO ₂ (PuO ₂)	38
--------	---	----

3.	ARBEI	TS- UND UNTERSUCHUNGSMETHODEN	40
	3.1.	Allgemeine Versuchsdurchführungen	40
		3.1.1. Darstellung von Eu ₂ Zr ₂ 0 ₇	40
	3.2.	Röntgenographische Untersuchungsmethoden	41
	3.3.	Analytische Methoden	42
		3.3.1. Bestimmung des Americiums	42
		3.3.2. Analyse der inaktiven Proben	44
	3.4.	Aufarbeitung von Americiumrückständen	44
	3.5.	Ausgangsmaterialien	45
4.	RÖNTGENOGRA PHISCHE TABELLEN		46
5.	ZUSAMMENFASSUNG		
6.	LITERATURVERZEICHNIS		

1. EINLEITUNG

Als Voraussetzung für die Mischkristallbildung zweier Substanzen galt lange Zeit ihre Isomorphie bzw. Isotypie. Zahlreiche, in jüngerer Zeit beobachtete Fälle heterotyper Mischkristallbildung haben uns jedoch gelehrt, diese Voraussetzung nicht mehr als unabdingbar anzusehen. So konnte von verschiedener Seite gezeigt werden, daß insbesondere polar gebaute Verbindungen vom Typ des Fluorits, CaF₂, strukturell verwandte Substanzen homogen in das Wirtsgitter einzubauen vermögen, deren chemische Zusammensetzung nicht dem Formeltypus AB₂, sondern AB, A₂B₃, ganz allgemein A_x^B entspricht (1-3).

Fluoritstruktur findet man im Falle der Dioxide bei den Elementen mit einem Radienverhältnis $r(Me^{IV})/r(0^{2-}) > 0,732$, z.B. CeO_2 , PrO_2 , TbO_2 , ThO_2 , PaO_2 , UO_2 , NpO_2 , PuO_2 , AmO_2 und CmO_2 . Bei Normaltemperatur weisen ZrO_2 und HfO_2 eine stark deformierte Fluoritstruktur auf, die bei Temperaturerhöhung in eine tetragonal deformierte, fluoritähnliche Struktur übergeht (4).

Alle diese Oxide können als Grundsubstanzen für die Bildung von Mischkristallen mit Fluoritstruktur angesehen werden. Bei den reinen Dioxiden ist der Mechanismus der Bildung der homogenen Fluoritphase eine einfache Substitution. In allen anderen Fällen wirkt sich die Abweichung von der Zusammensetzung der Partner bei der Mischkristallbildung in einem Gitterfehlbau der gebildeten Mischphase aus. Es hat sich hinsichtlich der Art dieses Fehlbaus gezeigt, daß bei den bisher untersuchten polaren Verbindungen vom Typ des Fluorits stets das Kationenpunktgitter unverändert und regelmäßig besetzt erscheint, während das Anionenteilgitter je nach dem gegebenen Fall entweder lückenhaft besetzt oder um zusätzliche Punktlagen erweitert ist. Zahlreiche Arbeiten über den Aufbau von Mischoxiden, die Sauerstoffleerstellen aufweisen, mit den Dioxiden als Grundsubstanzen und den SE_2O_3 -Oxiden als Fremdoxide sind in den vergangenen Jahren erschienen. Eine besondere Aufmerksamkeit wurde der Stabilisierung des kubischen ZrO, zuteil, bedingt durch die ausgezeichneten keramischen und chemischen Eigenschaften, die das stabilisierte ZrO₂ besitzt.

Als Ruff und Ebert 1929 (5) die Bedingungen untersuchten, unter denen kubisches ZrO_2 zu stabilisieren ist, nahmen sie noch an, daß der Radius des Fremdoxides vergleichbar sein müßte mit dem Radius des Zr⁴⁺-Kations und daß das Fremdoxid selbst kubische Struktur besitzen müßte. Dietzel und Tober (6) stellten 1953 neue Hypothesen für die Stabilisierung des kubischen ZrO_2 auf. Nach den Regeln von Dietzel und Tober soll die Bildung fester Lösungen vom Fluorittyp zwischen ZrO_2 und anderen Oxiden nur möglich sein, wenn der Ionenradius des Fremdkations vergleichbar ist mit dem Ionenradius des Zr^{4+} -Kations und wenn die Metallsauerstoffbindung im Fremdoxid ionogener ist als die Zr-O -Bindung im Zirkondioxid. Das Fremdkation muß also elektropositiver sein als das Zirkonkation, d.h. seine Elektronegativität in der Anordnung von Gordy und Thomas (7) muß unterhalb 1,5 liegen.

Wohl erfassen die Regeln von Ruff und Ebert als auch die Regeln von Dietzel und Tober wesentliche Merkmale der Bildung fester Lösungen vom Typ des Fluorits, um jedoch alle Erscheinungen der Fluoritphasenbildung zu berücksichtigen, bedürfen sie der Erweiterung und Ergänzung. J. Stöcker (8) zog in seinen Arbeiten befriedigendere Schlüsse, um das Phänomen der Stabilisierung von kubischem ZrO_2 zu interpretieren. Er glaubt, daß es einen fundamentalen Unterschied zwischen der Struktur und den Eigenschaften der festen Lösungen von Zr02-A0, Zr02-A203 einerseits und den festen Lösungen Zr0,-A0, andererseits gibt. Tatsächlich ist die Bildungsweise dieser Mischphasen verschieden. Es ist ein einfacher Substitutionsmechanismus für die festen Lösungen Zr02-A02, während für die festen Lösungen Zr02-A0 und Zr02-A203 die Substitution von der Bildung von Gitterleerstellen begleitet ist. Es ist zu bemerken, daß in der Reihe der Dioxide nach wachsendem Kationenradius geordnet, das Zirkondioxid eine Sonderstellung einnimmt. Es steht an der Grenze zwischen den Oxiden vom Typ des Rutils und den Oxiden vom Typ des Fluorits. Das Zirkondioxid scheint weder die Struktur des Rutils, weil das Zr⁴⁺ zu groß ist, noch die Struktur des Fluorits, weil das Zr⁴⁺-Kation zu klein ist, anzunehmen. Die stabile Form des Zirkondioxids besitzt eine Struktur vom Typ eines stark deformierten Fluoritgitters (9).

Im Gitter des kubischen ZrO_2 mit a = 5.11 Å ist der Radius des Sauerstoffions a = 1.27 Å. Dieser Wert liegt klar unterhalb des theoretischen Wertes (1.37 Å) und ist verantwortlich für die starke Deformation des Sauerstoffions. Dagegen ist bei den auf das Zirkondioxid folgenden Dioxiden das Zellvolumen klar größer und somit der Wert des Sauerstoffionenradius näher dem theoretischen Wert. Man kann annehmen, daß die Existenz von Fehlstellen im

- 2 -

Anionengitter durch Zugabe von Oxiden AO und A₂O₃ den verfügbaren Raum für jedes der verbleibenden Anionen erhöht, und daher auf eine viel größere Stabilität der gebildeten Phasen hoffen.

Oxid	r(Kation) (Å)	Struktur	a _{kub} . (Å)	a/4
Si02	0,42	Quartz		
GeO2	0,53	Quartz + Rutil		
TiO	0,68	Rutil		
SnO	0,71	Rutil		
Zr02	0,79	deform. Fluorit	5,11	1,27
Pr02	0,92	Fluorit	5,36	1,34
CeO	0,94	Fluorit	5,41	1,35
ບວຼ	0,97	Fluorit	5,46	1,36
ThO ₂	1,02	Fluorit	5,58	1,39

Tabelle 1: Struktur einiger Dioxide

Die Substitution des Zr^{4+} durch kleinere Kationen, wie z.B. im Fall der Dioxide GeO₂, TiO₂, SnO₂, wie auch im Fall der A₂O₅- und AO₃-Oxide, verursacht ein Anwachsen der Deformation der kubischen Zelle. In diesen Fällen bleibt das Anionengitter wahrscheinlich erhalten, während das Kationengitter Fehlstellen aufweist. Neben der Radienabhängigkeit scheint die Elektronegativität des Kations des Fremdoxids eine wichtige Rolle für die Stabilität der gebildeten kubischen Phase zu spielen. Die stabilsten festen Lösungen werden von ZrO_2 mit den Oxiden der stark elektropositiven Metalle gebildet: Magnesium (Mg = 1,2), Calcium (Ca = 1) und Manganoxid (Mn = 1,4).

Stöcker hat seine Ergebnisse in nachfolgender Tabelle zusammengefaßt, in der die Fremdoxide als Funktion ihrer Elektronegativität des Kations gegen den Wert $\frac{r}{n}$ (r = Kationenradius, n = Wertigkeit) aufgetragen sind. In erster Näherung sind zwei Hauptgebiete in diesem Diagramm festzustellen:

1. das Gebiet der Oxide, die mit $2r_2$ tetragonale feste Lösungen bilden $\left(\frac{r}{n}\right)_{\text{Kation}} \left\langle \left(\frac{r}{n}\right)_{Zr}\right|^{4+}$,

2. das Gebiet der Oxide, die mit $2rO_2$ kubische feste Lösungen oder Verbindungen vom Typ des Pyrochlors bilden $\left(\frac{r}{n}\right)_{Kation} > \left(\frac{r}{n}\right)_{Zr}$ 4+.

Abbildung 1: Abhängigkeit der Elektronegativität vom Wert $\frac{r}{n}$.

Stöcker kommt aus seinen Experimenten zu folgenden Schlüssen über die Stabilisierung des kubischen ZrO₂:

Die Oxide der allgemeinen Formel $AO_n (n < 2) (0,4 \text{ } A < r_A < 1,1 \text{ } A)$ bilden mit ZrO_2 feste kubische Lösungen, die im Anionengitter Leerstellen aufweisen; die Gleichgewichtsdiagramme der festen Lösungen weisen einen eutektischen Punkt auf und die gebildeten festen Lösungen sind dann sehr stabil, wenn die Elektronegativität des Fremdkations klein ist.

Zweck dieser Arbeit war es, die Bereiche kubischer Struktur sowie das Auftreten von Verbindungsbildung in Abhängigkeit von der Molzusammensetzung in den Systemen $\operatorname{ZrO}_2(\operatorname{HfO}_2)-\operatorname{Am}_2O_3-O_2$ sowie in den Systemen $\operatorname{ThO}_2-\operatorname{Am}_2O_3-O_2$ zu bestimmen. Zur Unterstützung dieser Arbeit wurden verwandte binäre Oxidsysteme mit den SE_2O_3 -Oxiden nach- oder neu bearbeitet. Die großen Ähnlichkeiten in der Reaktionsweise und in den Ergebnissen bei der Bildung der kubischen Phasen mit den SE_2O_3 -Oxiden berechtigen, die fundamentalen Grundlagen der Bildung der Fluoritphasen auch auf die Systeme mit den Oxiden der Actinidenelemente zu übertragen.

2. ERGEBNISSE UND DISKUSSION

2.1. Die Systeme SEO

Zwei allgemeine Merkmale müssen für die Bildung fester Lösungen mit Fluoritstruktur von stabilisiertem ZrO₂(HfO₂) in Erwägung gezogen werden:

- die Fähigkeit eines Addenden, in das Kristallgitter einzutreten (Ionenradius, Kompressibilität),
- 2. die Fähigkeit eines Addenden, den ionischen Charakter der Kation-Anionbindung (Elektronegativität) zu vergrößern (10). Der ionische Charakter der Zirkon-Sauerstoffbindung wird durch Addenden mit größerem Ionenradius, elektropositiverem Kation, größerer innerer Elektronendichte und geringerer Kationenvalenz als 4⁺ vergrößert, was bedeutet, daß Anionenleerstellen gebildet werden, um das Ladungsgleichgewicht herzustellen.

Die Seltenen Erdoxide genügen den genannten Bedingungen. Es bestehen nur sehr geringe Unterschiede in der Elektronegativität, Kompressibilität und Wertigkeit, wie Tabelle 2 zeigt.

Tabelle 2:	: Vergleich der Elektronegativität (EN), des Kationenradius (K	R)
	und der Elektronenkonfiguration von $2r_2^0$ und den Seltenen Er	d-
	oxiden.	

Oxid	EN	KR (Å)	EK	∆ EN	+ ∆ KR
$ ZrO_2 La_2O_3 Ce_2O_3 Nd_2O_3 Dy_2O_3 Yb_2O_4 $	1,22 1,08 1,08 1,07 1,10 1,06	0,79 1,14 1,07 1,04 0,92 0.85	Kr $4d^2 5s^2$ Xe $5d^1 6s^2$ Xe $4f^1 6s^2$ Xe $4f^4 6s^2$ Xe $4f^{10}6s^2$ Xe $4f^{14}6s^2$ Xe $4f^{14}6s^2$	- 0,14 0,14 0,15 0,12 0,16	- 0,35 0,28 0,25 0,13 0,06

Der bestimmende Faktor bei der Zugabe von Seltenen Erdoxiden zu ZrO₂(HfO₂) wird die Kationengröße des Seltenen Erdoxids sein. Die Fähigkeit der Seltenen Erdoxide, stabile kubische feste Lösungen (Fluorit) zu bilden, steigt mit abnehmendem Ionenradius. Ytterbium besitzt wahrscheinlich die idealste Kombination von Ionenradius (Δ KR = 0,06) und Elektronegativität (Δ EN = 0,16), um stabile kubische feste Lösungen zu bilden. Der kleine Radienunterschied unterstützt die Substitution der Zr⁴⁺-Ionen gegen Yb³⁺-Ionen, während die wesentlich größere elektropositive Natur des Yb³⁺ den Ionenbindungscharakter verstärkt. Die Anionenleerstellen, die von den Yb³⁺ erzeugt werden, ermöglichen eine engere Raumpackung der Kationenplätze, da der Anion-Anion-Abstoßungsfaktor erniedrigt wird.

Die größeren Kationen (Nd, Ce, La) erzeugen größere Störungen des Fluoritgitters und erfordern mehr Anionenleerstellen und höhere Temperaturen, um kubisches ZrO_2 zu bilden. Diese Oxide bilden nichtstöchiometrische Verbindungen vom Typ des Pyrochlors A₂B₂O₇, wobei die größeren A-Plätze von den SE-Kationen und die kleineren B-Plätze von den Zr⁴⁺ besetzt werden.

Die Pyrochlorstruktur mit der Raumgruppe Fd3m (0_h^7) kann von der Fluoritstruktur abgeleitet werden. Anstatt der Formel $(A,B)_4 0_8$ kommt dem Pyrochlortyp die Formel $A_2B_20_7$ zu. Die Elementarzelle des Pyrochlorgitters ist doppelt so lang wie die des Fluoritgitters und enthält beide Kationen sowie die Sauerstoffleerstellen nicht in statistischer, sondern in geordneter Verteilung. Die Hälfte von den acht Teilwürfeln der Pyrochlorzelle entspricht der Elementarzelle der Fluoritstruktur mit je 4 Molekeln $B0_2$. In den vier anderen Würfeln befinden sich die dreiwertigen Kationen sowie je zwei Sauerstoffleerstellen. Außerdem sind in der Pyrochlorstruktur die Lageparameter der Sauerstoffionen verschoben (11).

In entsprechenden Versuchsreihen wurden die Gemische mit einem Molverhältnis 1:1 (SE:Zr) der Seltenen Erdoxide und $ZrO_2(HfO_2)$ sowie die Gemische von $YO_{1,5}$ und $LaO_{1,5}$ mit $ZrO_2(HfO_2)$ bei einer Glühtemperatur von 1500°C mehrere Tage getempert und die erhaltenen Proben einer röntgenographischen Analyse unterzogen. In den Tabellen 3 und 4 sind die Gitterkonstanten der kubischen Zelle und das Verhältnis $r_{SE}3+/r_{Zr}4+(Hf^{4+})$ zusammengefaßt. Trägt man in ein Koordinatensystem auf der Ordinate die Gitterkonstanten der kubischen Zelle (Fluoritgitterkonstante verdoppelt) und auf der Abszisse die Ionenradien (12,13) auf, so erhält man die Abbildungen 2 und 3, in denen die Gitterkonstanten auf annähernd geraden Linien erscheinen.

Tabelle 3: Die Systeme SE01,5-Zr02

SE ³⁺	Radius des Kations (Å)		r _{SE} 3+/0,79 _{Zr} 4+	Тур	Gitterkonstante (Å)	Literatur
(La ³⁺)	1,061+	1,14++	1,443	Pyrochlor	10,789 🖡 0,002	14-21
	1,034	1,07	1,354	Pyrochlor	10,750 + 0,002	18, 22, 23
	1,013	1,06	1,341	Pyrochlor	10,699 + 0,002	24,
Nd ³⁺	0,995	1,04	1,316	Pyrochlor	10,665 + 0,002	16-18, 20, 22, 25, 26
Sm³⁺	0,964	1,00	1,265	Pyrochlor	1 0, 570 + 0,002	18, 25, 27, 29
<u>Eu</u> 3+	0,950	0,98	1,240	Pyrochlor	10,545 - 0,002	
Gd ³⁺	0,938	0,97	1,227	Pyrochlor	10,520 - 0,002	18, 20, 22, 27, 29, 30
	0,923	0,93	1,177	Fluorittyp	10,485 - 0,002 ⁺⁺⁺	
	0,908	0,92	1,164	Fluorittyp	10,447 - 0,002	22, 29, 30
Ho ³⁺	0,894	0,91	1,151	Fluorittyp	10,422 - 0,002	
(¥ ³⁺)	0,887	0,92	1,164	Pyrochlor ?	10,411 + 0,002	16, 18, 22, 27, 30-34
Er ³⁺	0,881	0,89	1,126	Fluorittyp	10,385 - 0,002	
	0,869	0,87	1,101	Fluorittyp	10,371 + 0,002	
<u>Yb</u> 3+	0,858	0,86	1,088	Fluorittyp	10,330 + 0,002	22, 25, 29, 30
Lu ³⁺	0,848	0,85	1,075	Fluorittyp	10,310 + 0,002	

- 7 -

+ nach Templeton und Dauben, ++ Ahrens, +++ verdoppelt.

Tabelle 4: Die Systeme SE01,5-Hf02

SE ³⁺	Radius des Kations (Å)		r _{SE} 3+/0,78 _{Hf} 4+	Тур	Gitterkonstante (Å)	Literatur
(La ³⁺)	1,061+	1,14++	1,461	Pyrochlor	10,775 + 0,002	<u>35-37</u>
Ce ³⁺	1,034	1,07	1,371	Pyrochlor	10,730 + 0,002	
Pr ³⁺	1,013	1,06	1,358	Pyrochlor	10,686 7 0,002	
Nd ³⁺	0,995	1,04	1,333	Pyrochlor	10,648 + 0,002	35,37
Sm ³⁺	0,964	1,00	1,282	Pyrochlor	10,554 + 0,002	
Eu ³⁺	0,950	0,98	1,256	Pyrochlor	10,546 7 0,002	
Ga ³⁺	0,938	0,97	1,243	Pyrochlor	10,523 + 0,002	
ть ³⁺	0,923	0,93	1,192	Fluorittyp	10,448 - 0,002+++	
	0,908	0,92	1,179	Fluorittyp	10,415 + 0,002	
Ho ³⁺	0,894	0,91	1,166	Fluorittyp	10,394 7 0,002	
(Y ³⁺)	0,887	0,92	1,179	Fluorittyp	10,383 + 0,002	37
Er ³⁺	0,881	0,89	1,141	Fluorittyp	10,367 - 0,002	
Tm ³⁺	0,869	0,87	1,115	Fluorittyp	10,334 7 0,002	
 Уъ ³⁺	0,858	0,86	1,192	Fluorittyp	10,313 + 0,002	37
Lu ³⁺	0,848	0,85	1,089	Fluorittyp	10,288 7 0,002	

•

+ nach Templeton und Dauben, ++ Ahrens, +++ verdoppelt.

י 80 י

Abbildung 2: Abhängigkeit der Gitterkonstanten in den SE0_{1,5}-Zr0₂-Systemen vom Ionenradius.

Abbildung 3: Abhängigkeit der Gitterkonstanten in den SE0, -Hf02-Systemen vom Ionenradius.

- 9 -

Aus den Werten der Tabellen 3 und 4 und den Abbildungen 2 und 3 kann man folgende Schlüsse ziehen:

1. Die Gitterkonstanten der Verbindungen mit einem Molverhältnis 1:1 ändern sich regelmäßig mit dem Ionenradius und zwar in der Zirkonreihe von 10,789 Å für La₂Zr₂O₇ bis 10,520 Å für Gd₂Zr₂O₇ und in der Hafniumreihe von 10,775 Å für La₂Hf₂O₇ bis 10,523 Å für Gd₂Hf₂O₇.

Für die Verbindung $Y_2Zr_2O_7$ wird von Fu-K¹ang Fan, A.K. Kuznetsov und E.K. Keler (34) Pyrochlorstruktur angenommen.

Die Gitterkonstanten für die 1:1 Fluoritphasen ändern sich in der Zirkonreihe von 10,485 Å für $\text{Tb0}_{1,5} \cdot \text{Zr0}_2$ bis 10,310 Å für $\text{Lu0}_{1,5} \cdot \text{Zr0}_2$ und in der Hafniumreihe von 10,448 Å für $\text{Tb0}_{1,5} \cdot \text{Hf0}_2$ bis 10,288 Å für $\text{Lu0}_{1,5} \cdot \text{Zr0}_2$.

- In der Reihe der Gitterkonstanten der Hafniumverbindungen tritt nach dem Gadolinium ein Sprung innerhalb der Gitterwerte auf, so daß hier auf das Vorliegen einer Gd-Ecke geschlossen werden kann.
- 3. Das Verhältnis r_{SE}^{3+/r}_{2r}⁴⁺(Hf⁴⁺) erweist sich als eine kritische Größe für die Existenz der Pyrochlorverbindung (38) bzw. für das Auftreten der Fluoritphasen. Für den Wert >1,2 kann auf das Vorliegen einer Pyrochlorverbindung geschlossen werden, für den Wert < 1,2 tritt die Fluoritphase in Erscheinung. Diese Tatsache wurde auch in den ent-sprechenden Seltenen Erdoxidsystemen mit TiO₂ (44,45) und RuO₂, IrO₂ und SnO₂ aufgezeigt (46,47,48).

In der Abbildung 4 sind zur Sichtbarmachung der unterschiedlichen Struktur von Pyrochlor- (La₂Hf₂O₇) und Fluorittyp (YbO_{1,5}·HfO₂) die Strichdiagramme beider Typen wiedergegeben.

Abbildung 4: Strichdiagramme von La2Hf207 und Y01,5 ·Hf02.

2.1.1. Homogenitätsbereich der Pyrochlorphase (28)

Pyrochlorstruktur findet man in den Systemen

$$ZrO_{2} (HfO_{2}) - LaO_{1,5}$$

$$ZrO_{2} (HfO_{2}) - CeO_{1,5}$$

$$ZrO_{2} (HfO_{2}) - PrO_{1,5}$$

$$ZrO_{2} (HfO_{2}) - NdO_{1,5}$$

$$ZrO_{2} (HfO_{2}) - SmO_{1,5}$$

$$ZrO_{2} (HfO_{2}) - EuO_{1,5}$$

$$ZrO_{2} (HfO_{2}) - GdO_{1,5}$$

Der Faktor R \geq 1,2, der als Stabilitätsbedingung für die Existenz der Pyrochlorverbindung angesehen werden kann, ist in den obengenannten Systemen erfüllt. Der Radius von Gd³⁺ mit 0,97 Å erweist sich als Grenzradius für die Stabilität der Pyrochlorverbindung. Für Tb³⁺ mit $r_{\rm Tb}^{3+} = 0,93$ ist der Stabilitätsfaktor bereits < 1,2. Die nichtstöchiometrischen Verbindungen vom Typ des Pyrochlors $A_2B_2O_7$ besitzen eine vom Seltenen Erdoxid abhängige Phasenbreite, sowohl auf der Seltenen Erdoxid-reichen als auch auf der Seltenen Erdoxid-armen Seite. Die Pyrochlorp.asen haben die allgemeine Formel

$$A_{2\pm x}^{3+}$$
 $B_{2\pm x}^{4+}$ $O_{7\pm x}^{2-}$ \Box $\pm \frac{x}{2}$

: bedeutet eine Anionenleerstelle.

Man bemerkt, daß der Homogenitätsbereich der Pyrochlorphase im System ZrO₂-LaO_{1,5} (14-21) relativ schwach ausgedehnt ist. Im Gegensatz hierzu ist der Bereich im System ZrO₂-NdO_{1,5} sehr ausgedehnt und nimmt in den auf das Nd folgenden Systemen mit dem Ionenradius des SE³⁺-Elementes ab.

M. Perez, Y. Jorba, M. Fayard und R. Collongues (28) schlagen zwei Hauptfaktoren für die Interpretation des Homogenitätsbereiches der Pyrochlorphase vor:

- die Möglichkeit der Substitution in der stöchiometrischen Verbindung von 3-wertigen durch 4-wertige Ionen oder umgekehrt,
- 2. die Stabilitätsbedingung der Pyrochlorphase.

Die Pyrochlorphase ist stabil, wenn R >1,2 ist. Der Ersatz eines bestimmten Teils der SE³⁺-Ionen durch Zr⁴⁺(Hf⁴⁺) zieht eine Änderung des wahren R-Wertes für die nichtstöchlometrische Verbindung $(A_{2-x}B_2)_{7+\frac{x}{2}}^{0}$ nach sich. Das wahre R ergibt sich zu

$$R = \frac{r(SE_{2-x} \cdot Zr_x)}{r_{Zr}}$$

wobei $r(SE_{2-x} \cdot Zr_x)$ den verringerten Radius bedeutet, wenn die größeren SE^{3+} -Ionen durch die kleineren Zr^{4+} -Ionen ersetzt werden.

Es ist $r(SE_{2-x} \cdot Zr_x) = \frac{1}{2} [(2-x)r_{SE} + x \cdot r_{Zr}]$

In analoger Weise ergibt sich für die Pyrochlorphase auf der Seltenen Erdoxid-reichen Seite

$$R = \frac{r_{SE}}{r(Zr_{2-x} \cdot SE_x)}$$

Für einen bestimmten Grenzwert x₂ bei dem der Bruch R den Wert 1,2 an-

nimmt, hört die Pyrochlorphase auf, stabil zu sein. Für die zirkonreiche Phase errechnet sich x₂ zu

$$x_2 = 2 \frac{r_{SE} - R_2 \cdot r_{Zr}}{r_{SE} - r_{Zr}}$$

und für die zirkonarme Phase zu

$$x_2 = 2 \frac{\mathbf{r}_{SE} - \mathbf{R}_2 \cdot \mathbf{r}_{Zr}}{\mathbf{R}_2(\mathbf{r}_{SE} - \mathbf{r}_{Zr})}$$

System	x _a (SE-arm)	SEO Mol%			
	2` '	berechnet	gemessen		
La0	1,14	21,5	40,0		
NdO 1.5	0,72	32	30,5		
SmO _{1.5}	0,47	38	37 - 38		
EuO	0,34	41,5	-		
Ga0 _{1,5}	0,22	44,5	45 - 46		

Tabelle 5: Grenzwerte für x₂ (zirkonreich)

Tabelle 6: Grenzwerte für x₂ (zirkonarm)

System	x _c (SE-reich)	SEO Mol%			
	2.	berechnet	gemessen		
La0	0,9	80	57		
Nao	0,6	65	65		
SmO _{1.5}	0,39	60	60		
EuO	0,28	57			
Gd0 _{1,5}	0,20	55	54,5		

Für die Systeme mit Nd, Sm und Gd sind die berechneten und die gemessenen x_2 -Werte in guter Übereinstimmung. Für sie gilt die erweiterte Stabilitätsbewingung. Für das La-System scheint die erschwerte Substitution der kleinen Zr⁴⁺-Ionen durch die großen La³⁺-Ionen die Grenzen des Homogenitätsbereiches der Pyrochlorphase zu bestimmen.

2.1.2. Temperaturabhängigkeit der Pyrochlorphase (38)

Die Pyrochlorphase des $La_2Zr_2O_7$ ist bei allen Temperaturen stabil. Dagegen erleiden z.B. die Verbindungen $Gd_2Zr_2O_7$ und $Sm_2Zr_2O_7$ bei Temperaturerhöhung eine Änderung ihrer Struktur. Der geordnete Zustand der Pyrochlorphase geht in den ungeordneten Zustand der Fluoritphase über. Für die Verbindung $Gd_2Zr_2O_7$ ist die Grenztemperatur ihrer Existenzfähigkeit zu 1550°C bestimmt (18). Für die nichtstöchiometrischen Verbindungen liegt die Umwandlungstemperatur niedriger. R. Collongues, F. Queyroux, M. Perez Y Jorba und J.-C. Gilles haben ihre Ergebnisse in Abbildung 5 zusammengefaßt. Dies deutet darauf hin, daß mit fallendem Ionenradius die Grenztemperatur des Übergangs vom geordneten zum ungeordneten Zustand fällt und daß über weite Temperaturbereiche der Existenzbereich der Pyrochlorphase fast unverändert bleibt.

<u>Abbildung 5:</u> Homogenitätsbereich der Pyrochlorphase P in den Systemen Zr0₂-Gd0_{1,5} und Zr0₂-Sm0_{1,5} (38)

2.2.1. Bisher untersuchte Fluoritphasen in binären Oxidsystemen des ZrO₂ mit dreiwertigen Fremdkationen

Umfangreiche Untersuchungen über die Oxidsysteme des Zirkons mit dreiwertigen Elementen wurden in vergangener Zeit durchgeführt. Die aufgeführten Tabellen und Abbildungen, die aus den bekannten Literaturdaten zusammengestellt wurden, fassen die Ergebnisse zusammen.

Tabelle 7: Bereich der homogenen kubischen Phase (39)

Fremdkation	_ү 3+	La ³⁺	Nd ³⁺	Sm ³⁺	Gd ³⁺	Dy ³⁺	_{Но} 3+	_{Yb} 3+
Temperatur (^o C)	1375	1760	1370	1200	1200	1200	1300	1200
Bereich der homogenen Phase mit Sauerstoff- leerstellen Mol% SEO 1,5	13-68	44-58	26 - 57	18 - 66	16-68	15-70	14-72	13-100

<u>Abbildung 6:</u> Verlauf der Gitterkonstanten von Fluoritphasen in binären Oxidsystemen des ZrO₂ mit dreiwertigen Fremdkationen (siehe Tabelle 7).

Abbildung 7: Gleichgewichtsdiagramme (29)

2.2.2. Das System NdO_{1,5}-ZrO₂

Nach Ausweis der Debeye-Scherrer-Aufnahmen und dem Gang der Gitterkonstanten kann für das System ZrO₂-NdO_{1,5} gefolgert werden:

Die Bildung der homogenen kubischen Phase vom Fluorittyp setzt bei 27 Mol%NdO_{1,5} ein und geht bei 30 Mol% NdO_{1,5} in die feste Lösung Nd₂Zr₂O₇ vom Typ des Pyrochlors über. Die homogene Pyrochlorphase endet bei 57 Mol% NdO_{1,5} Für Nd₂Zr₂O₇ konnte Roth (16) als erster die Pyrochlorstruktur anzeigen. Die homogene kubische Phase ist sowohl auf der zirkonreichen wie auf der zirkonarmen Seite von Mischungslücken begrenzt. Der Bereich fester tetragonaler Lösung von ZrO₂ und kubischer fester Lösung vom Typ des Fluorits erstreckt sich von 5-27 Mol% NdO_{1,5}. Der Zweiphasenbereich fester Lösung vom Typ des Pyrochlors und fester hexagonaler Lösung von Nd₂ konnte auf 57 5 Mol% NdO_{1.5} eingegrenzt werden.

Tabelle 8:	Versuchszusammenstellung	im	System	Nd01	,5 ^{-Zr0} 2	(1300°C	:)
------------	--------------------------	----	--------	------	----------------------	---------	----

Mol% NdOl,5	Gitterkonstanten (Å) bezogen auf den Reflex mit (hkl)=(622)	Im Röntgendiagramm vorhandene Strukturen
2,5 7,5 12,5 25,0 33,3 38,0 45,0 50,0 55,0 65,0 70,0 80,0 90,0 95,0	$10,420 \pm 0,002^{+}$ $10,404 \pm 0,002$ $10,405 \pm 0,002$ $10,457 \pm 0,002$ $10,496 \pm 0,002$ $10,569 \pm 0,002$ $10,656 \pm 0,002$ $10,658 \pm 0,002$ $10,674 \pm 0,002$ $10,674 \pm 0,002$ $10,674 \pm 0,002$ $-$	$ZrO_{2 mono.}$ $ZrO_{2 mono.}$ + Fluorittyp $ZrO_{2 mono.}$ + Fluorittyp $ZrO_{2 mono.}$ + Fluorittyp Pyrochlor Pyrochlor Pyrochlor Pyrochlor Pyrochlor Pyrochlor + Nd ₂ O ₃ hexag. Pyrochlor + Nd ₂ O ₃ hexag. Nd ₂ O ₃ hexag.
T00,0	11,000 (40)	

+ Fluoritgitterkonstante verdoppelt.

Die Debye-Scherrer-Aufnahmen aller Präparate wurden von Proben gemacht, die auf Zimmertemperatur abgeschreckt waren. Beim Abkühlen wandelt sich das tetragonale ZrO₂ in das monokline um, wobei die kubische Phase erhalten bleibt. In entsprechenden Hochtemperaturaufnahmen konnte die tetragonale Struktur qualitativ bestätigt werden.

Abbildung 8: Verlauf der Gitterkonstanten im System NdO

2.2.3. Das System Eu01.5-Zr02

Die homogene kubische Phase des ZrO_2 mit Europiumoxid beginnt bei 18-19 Mol% EuO_{1,5} und endet bei 71 Mol% EuO_{1,5}. Bei 50 Mol% EuO_{1,5} konnte nach Ausweis der Röntgendiagramme für Eu₂Zr₂O₇ die Pyrochlorstruktur nachgewiesen werden. Der Homogenitätsbereich der Pyrochlorstruktur beträgt 41-57 Mol% EuO_{1,5} und geht beiderseits dieser Grenzen in die Fluoritstruktur über. An die homogenen Phasen mit Fluoritstruktur grenzen die zweiphasigen Gebiete von fester tetragonaler Lösung des ZrO_2 und kubischer fester Lösung von Fluorittyp auf der zirkonreichen Seite sowie von kubischer fester Lösung des Fluorittyps mit dem B-Typ des Europiumoxids auf der zirkonarmen Seite.

Gitterkonstante (Å)	Im Röntgendiagramm vorhandene Strukturen
$10,327 \pm 0,002^{+}$ $10,322 \pm 0,002$ $10,327 \pm 0,002$ $10,341 \pm 0,002$ $10,383 \pm 0,002$ $10,442 \pm 0,002$ $10,475 \pm 0,002$ $10,545 \pm 0,002$ $10,567 \pm 0,002$ $10,667 \pm 0,002$ $10,665 \pm 0,002$ $10,665 \pm 0,002$ $10,669 \pm 0,002$ $10,669 \pm 0,002$	$ZrO_{2 mono.} + Fluorittyp$ $ZrO_{2 mono.} + Fluorittyp$ $ZrO_{2 mono.} + Fluorittyp$ $ZrO_{2 mono.} + Fluorittyp$ $Fluorittyp$ $Fluorittyp$ $Fluorittyp$ $Pyrochlor$ $Pyrochlor$ $Pyrochlor$ $Pyrochlor$ $Pyrochlor$ $Fluorittyp$ $Fluorittyp + B-Typ$ $Fluorittyp + B-Typ$ $Fluorittyp + B-Typ$
-	
	Gitterkonstante (Å) $10,327 \pm 0,002^{+}$ $10,322 \pm 0,002$ $10,327 \pm 0,002$ $10,327 \pm 0,002$ $10,341 \pm 0,002$ $10,341 \pm 0,002$ $10,442 \pm 0,002$ $10,442 \pm 0,002$ $10,545 \pm 0,002$ $10,567 \pm 0,002$ $10,667 \pm 0,002$ $10,665 \pm 0,002$ $10,669 \pm 0,002$ $10,669 \pm 0,002$ $10,669 \pm 0,002$ $10,669 \pm 0,002$

<u>Tabelle 9:</u> Versuchszusammenstellung im System Eu0_{1,5}-Zr0₂ (1300^oC)

+ Fluoritgitterkonstante verdoppelt

In den kubischen festen Lösungen von Holmiumoxid und ZrO_2 tritt die Pyrochlorstruktur nicht auf. Der Übergang der Fluoritstruktur zum C-Typ des Seltenen Erdoxids ist durch einen Bereich von hexagonaler Struktur unterbrochen. Die Bildung der homogenen Phase vom Typ des Fluorits setzt ein bei 8 Mol% HoO_{1,5} und endet bei 72 Mol% HoO_{1,5}. Der homogene Bereich der C-Typ-Phase erstreckt sich von 85-100 Mol% HoO_{1,5}. Quantitative Untersuchungen über das Gebiet der hexagonalen Phase wurden nicht durchgeführt.

Tabelle 10:	Versuchszusammenstellung	im	System	HoOl	,5 ^{-Zr0} 2	(1300°C)
-------------	--------------------------	----	--------	------	----------------------	----------

Mol% ^{HoO} l,5	Gitterkonstante (Å)	Im Röntgendiagramm vorhandene Strukturen
10,6	10,276 <u>+</u> 0,002 ⁺	Fluorittyp + ZrO _{2 mono} .
13,0	10,275 <u>+</u> 0,002	Fluorittyp + ZrO _{2 mono} .
20,2	10,303 <u>+</u> 0,002	Fluorittyp
33,4	10,352 <u>+</u> 0,002	Fluorittyp
40,2	10,371 <u>+</u> 0,002	Fluorittyp
47,6	10,412 <u>+</u> 0,002	Fluorittyp
50 ,0	10,422 <u>+</u> 0,002	Fluorittyp
52 , 3	10,424 <u>+</u> 0,002	Fluorittyp
65 , 6	10,476 <u>+</u> 0,002	Fluorittyp
70 , 1	10,478 <u>+</u> 0,002	Fluorittyp
76,0	-	hexagonale Struktur
79,0	-	hexagonale Struktur
82,0	-	hexagonale Struktur
88,9	10,564 <u>+</u> 0,002	С-Тур
100,0	10,606 (40)	

+ Fluoritgitterkonstante verdoppelt.

Abbildung 10: Verlauf der Gitterkonstanten im System Ho015-Zr02

2.2.5. Das System Am0, 5-Zr0,

Die Auswertung der Debye-Scherrer-Aufnahmen wurde wegen der teilweise geringen Linienintensität und des starken Untergrundes – bedingt durch die Eigenaktivität des ²⁴¹Am – erheblich erschwert. Über 75 Mol% AmO_{1,5} waren die Diagramme für eine röntgenographische Analyse unbrauchbar. Über das Auftreten der ohnehin schwachen Überstrukturlinien war im starken Untergrund keine Klarheit zu gewinnen.

Will man über das Auftreten von festen Lösungen vom Typ des Fluorits und vom Typ des Pyrochlors im System AmO_{1,5}-ZrO₂ Aussagen machen, so ist es zweckmäßig, sich die Ergebnisse in den Systemen des ZrO_2 mit Neodymoxid und Europiumoxid vor Augen zu halten. Ein Vergleich der Ionenradien von Am³⁺ (0,99 Å) mit Nd³⁺ (0,995 Å) und Eu³⁺ (0,95 Å) zeigt, daß der Radius des Am³⁺ zwischen diesen beiden Radienwerten liegt. Da die Radiengröße einen entscheidenden Einfluß auf die Bildung der kubischen Phase hat, dürfte die Annahme der Existenz der isotypen Pyrochlorverbindung Am₂Zr₂O₇ berechtigt sein. Außerdem zeigt sich, daß das Ionenradienverhältnis r_{Am} $3+/r_{Zr}$ 4+ > 1,2 ist. Da hiermit die Bedingung, die als eine kritische Größe für die Existenz der Pyrochlorphase angesehen wird, erfüllt ist, erhält man eine weitere Stütze für die Annahme der Pyrochlorstruktur.

Tabelle 11: Versuchszusammenstellung im System Am0_{1.5}-Zr0₂ (1200⁰C)

Mo1% ^{AmO} 1,5	Gitterkonstante (Å)	Im Röntgendiagramm vorhandene Strukturen
9,9	10,391 <u>+</u> 0,005 ⁺	ZrO _{2 mono.} + Fluoritphase
20,0	10,404 <u>+</u> 0,005	ZrO _{2 mono.} + Fluoritphase
27,5	10,405 <u>+</u> 0,005	ZrO _{2 mono.} + Fluoritphase
33,0	10,418 <u>+</u> 0,005	Fluorittyp
39,1	10,441 + 0,005	Fluorittyp
42,9	$10,492 \pm 0,005$	Fluorittyp
50.0	$10,565 \pm 0.005$	kub. Phase (Pyrochlor)
53,4	$10,577 \pm 0,005$	kub. Phase (Pyrochlor)
60,3	$10,599 \pm 0,005$	kub. Phase + ?
67,6	$10,595 \pm 0,005$	kub. Phase + ?
68,8	$10,590 \pm 0,005$	kub. Phase + ?
75,3 82,0 100,0	- - 11,03 <u>+</u> 0,01 (41)	

+ Fluoritgitterkonstante verdoppelt

Der homogene Bereich der Fluoritphase, die kontinuierlich in die Pyrochlorphase übergeht, erstreckt sich von 33 bis 55 Mol% AmO_{1,5}. Auf der zirkonarmen Seite liegt der zweiphasige Bereich von tetragonaler fester Lösung und fester Lösung vom Fluorittyp. Auf den Homogenitätsbereich der Pyrochlorphase folgt der zweiphasige Bereich von fester Lösung vom Typ des Pyrochlors und hexagonaler fester Lösung von Am₂O₃.

Abbildung 11: Verlauf der Gitterkonstanten im System Am0, 5-Zr02

2.3. Binäre Systeme des Hafniums mit Oxiden dreiwertiger Elemente

2.3.1. Bisher untersuchte Oxidsysteme des Hafniums mit dreiwertigen Elementen

Über die binären Oxidsysteme des Hafniums mit den Seltenen Erden bzw. mit Lanthan und Yttrium war bisher wenig bekannt. Erst einige neuere Arbeiten russischer Autoren (35-37) haben etwas Licht in dieses Gebiet gebracht. Die Annahme, daß Hafnium als Homologes des Zirkons die grundsätzlich gleichen Reaktionen geben würde, erwies sich als richtig. Sie wurde begründet durch die sehr ähnlichen Ionenradien. Jedoch bedingen der geringere Radienunterschied sowie die größere innere Elektronendichte und der bei höheren Temperaturen (> 1500°C) liegende Umwandlungspunkt des HfO₂ (monoklin tetragonal), daß durchaus beachtenswerte Verschiebungen der Phasengrenzen in den einzelnen ternären Oxidsystemen auftreten.

L.N. Komissarova, Wang Ken-shih, V.I. Spitsyn und Yu.P. Simanov untersuchten das System Hafniumoxid - Lanthanoxid. Sie berichten, daß der homogene Bereich der Pyrochlorphase ein Gebiet von ungefähr 46-57 Mol% LaO_{1.5} bei 1300°C umfaßt. Eine feste Lösung vom Typ des Fluorits stellten sie nicht fest. In den zweiphasigen Bereichen liegen auf der hafniumreichen Seite feste Lösung von HfO_2 und $La_2Hf_2O_7$ und auf der hafniumarmen Seite feste Lösung von $La_2Hf_2O_7$ und La_2O_3 vor. Die Abbildung 12 zeigt das von den genannten russischen Autoren aufgestellte vollständige Phasendiagramm des Systems $HfO_2-La_2O_3$.

Abbildung 12: Phasendiagramm des Systems La₂0₃-Hf0₂ (36)

In den Systemen des HfO_2 mit anderen Seltenen Erdoxiden wird über die Existenz von $Nd_2Hf_2O_7$, sowie über feste Lösungen vom Typ des Fluorits in den geglühten Mischungen des HfO_2 mit Yttriumoxid und Ytterbiumoxid berichtet. Umfassende Arbeiten in den binären Oxidsystemen des HfO_2 mit dreiwertigen Elementen stehen also noch aus.

2.3.2. Das System NdO_{1,5}-HfO₂

Im System Hf0₂-Nd0_{1,5} konnte die Pyrochlorstruktur von Nd₂Hf₂0₇ bestätigt werden. Der Homogenitätsbereich der nichtstöchlometrischen Verbindung reicht von 40-55 Mol% Nd0_{1.5}.

Mol% NdO 1,5	Gitterkonstanten (Å)	Im Röntgendiagramm vorhandene Strukturen
2,5 7,7 10,0 17,0 25,0 33,3 38,0 45,0 50,0 55,0 65,0 70,0 80,0 91,0	$-$ $10,615 \pm 0,002^{+}$ $10,616 \pm 0,002$ $10,615 \pm 0,002$ $10,609 \pm 0,002$ $10,628 \pm 0,002$ $10,648 \pm 0,002$ $10,659 \pm 0,002$ $10,659 \pm 0,002$ $10,659 \pm 0,002$ $10,654 \pm 0,002$ $10,654 \pm 0,002$ $-$	Hf0 ² mono. Hf0 ² mono. Hf0 ² mono. Hf0 ² mono. Hf0 ² mono. + Fluorittyp Hf0 ² mono. + Fluorittyp Hf0 ² mono. + Fluorittyp Hf0 ² mono. + Fluorittyp Pyrochlor Pyrochlor Pyrochlor Pyrochlor Pyrochlor + Nd ₂ 0 ³ hexag. Pyrochlor + Nd ₂ 0 ³ hexag. Pyrochlor + Nd ₂ 0 ³ hexag. Pyrochlor + Nd ₂ 0 ³ hexag.
100,0	11,080 (40)	Nd 2 ⁰ 3 hexag.

Tabelle 12: Versuchszusammenstellung im System NdO_{1,5}-HfO₂ (1500°C)

+ Fluoritgitterkonstante verdoppelt.

<u>Abbildung 13:</u> Verlauf der Gitterkonstanten im System Nd01,5-Hf02

Auf der hafniumreichen Seite existiert ein ausgedehntes Gebiet tetragonaler fester Lösung von HfO₂, an das sich der zweiphasige Bereich mit tetragonaler fester Lösung von HfO₂ und kubischer fester Lösung vom Typ des Fluorits anschließt. Auf der hafniumarmen Seite liegt der Zweiphasenbereich der festen Lösungen vom Typ des Pyrochlors und der hexagonalen festen Lösung von Nd₂O₃.

2.3.3. Das System Eu0, 5-Hf0

Der Homogenitätsbereich der Pyrochlorstruktur, der sich von ungefähr 40-60 Mol% Eu0_{1,5} erstreckt, geht beiderseits lückenlos in die Struktur des Fluorits über. Der ganze Bereich der homogenen kubischen Phase umfaßt 52 Mol% Eu0_{1,5} (von 20-72 Mol% Eu0_{1,5}) und wird sowohl auf der hafniumreichen wie auf der hafniumarmen Seite von Zweiphasengebieten eingeschlossen, die ihrerseits in die homogenen festen Lösungen der Grenzoxide übergehen.

Tabelle 13:	Versuchszusammenstellung	im	System	Eu0 ₁	,5 ^{-Hf0} 2	(1500°C)
-------------	--------------------------	----	--------	------------------	----------------------	----------

Mol% ^{EuO} 1,5	Gitterkonstanten (Å)	Im Röntgendiagramm vorhandene Strukturen
8,0 19,9 30,0 40,0 50,0 60,0 74,3 79,8 82,8	$10,315 \pm 0,002^{+}$ $10,315 \pm 0,002$ $10,349 \pm 0,002$ $10,430 \pm 0,002$ $10,546 \pm 0,002$ $10,578 \pm 0,002$ $10,675 \pm 0,002$ $10,675 \pm 0,002$ $10,675 \pm 0,002$ $10,671 \pm 0,002$	Hf0 _{2 mono.} + Fluorittyp Hf0 _{2 mono.} + Fluorittyp Fluorittyp Pyrochlor Pyrochlor Pyrochlor Pyrochlor + B-Typ Pyrochlor + B-Typ Pyrochlor + B-Typ
90,2 100,0	10,672 <u>+</u> 0,002 10,860 (40)	Pyrochlor + B-Typ B-Typ

+ Fluoritgitterkonstante verdoppelt.

Abbildung 14: Verlauf der Gitterkonstanten im System Eu01.5-Hf02.

2.3.4. Das System Ho01,5-Hf02

Eine Pyrochlorstruktur wurde im System Ho0_{1,5}-Hf0₂ nicht festgestellt. Reine Fluoritstruktur liegt im Bereich der festen Lösung von Holmiumoxid in Hf0₂ zwischen 15-71 Mol% Ho0_{1,5} vor. Hieran schließt sich eine Mischungslücke. Es liegen nebeneinander feste Lösung vom Typ des Fluorits und feste Lösung vom C-Typ der Seltenen Erdoxide vor. Die homogene feste Lösung vom C-Typ umfaßt den Bereich von 71-100 Mol% Ho0_{1.5}.

Tabelle 14:	Versuchszusammenstellung	im	System	Ho0 ₁	.5 ^{-Hf0} 2	(1500°C)
-------------	--------------------------	----	--------	------------------	----------------------	----------

Mo1% HoO _{1,5}	Gitterkonstanten ($\stackrel{\circ}{A}$)	Im Röntgendiagramm vorhandene Strukturen
4,9	10,245 <u>+</u> 0,002 ⁺	HfO + Fluorittyp
9,3	10,253 <u>+</u> 0,002	HfO + Fluorittyp
15,2	10,250 <u>+</u> 0,002	Fluorittyp
19,8	10,257 <u>+</u> 0,002	Fluorittyp

Mo1% HoO _{1,5}	Gitterkonstanten (Å)	Im Röntgendiagramm vorhandene Strukturen
35,1	10,315 + 0,002	Fluorittyp
50,0	10,395 + 0,002	Fluorittyp
50,8	10,402 <u>+</u> 0,002	Fluorittyp
56,0	10,428 <u>+</u> 0,002	Fluorittyp
66,9	10,475 <u>+</u> 0,002	Fluorittyp
70,2	10,480 <u>+</u> 0,002	Fluorittyp
76.6	10,490 <u>+</u> 0,002	Fluorittyp
0,0	10,545 <u>+</u> 0,002	C-Typ
82.3	10,488 <u>+</u> 0,002	Fluorittyp
02,99	10,550 <u>+</u> 0,002	С-Тур
90,9	10,567 <u>+</u> 0,002	С-Тур
100,0	10,606 (40)	C-Typ
100,0	10,606 (40)	C-Typ

+ Fluoritgitterkonstante verdoppelt.

Abbildung 15: Verlauf der Gitterkonstanten im System Ho01,5-Hf02

2.3.5. Das System AmO_{1.5}-HfO₂

Die Sc wierigkeiten in der röntgenographischen Analyse, zu denen bereits im System $AmO_{1,5}$ -ZrO₂ Stellung genommen wurde, wiederholten sich im System Hafniumoxid – Americiumoxid. Zur schlechten Auswertbarkeit der Diagramme gesellte sich eine schlechte Reproduzierbarkeit der Gitterwerte oberhalb 50 Mol% AmO_{1,5}, eine Tatsache, die sogar im System HfO₂-AmO₂ trotz vieler Versuche keine Auswertung erlaubte.

Tabelle 15: Versuchszusammenstellung im System AmO_{1.5}-HfO₂ (1400°C)

Mol% AmO _{l,5}	Gitterkonstanten (Å)	Im Röntgendiagramm vorhandene Strukturen
9,3 20,2 26,3 35,0 43,8 50,0 54,3 55,3 60,9 68,5	$10,650 \pm 0,005^{+}$ $10,656 \pm 0,005$ $10,650 \pm 0,005$ $10,652 \pm 0,005$ $10,651 \pm 0,005$ $10,650 \pm 0,005$ $10,630 \pm 0,005$ $10,660 \pm 0,005$ $10,645 \pm 0,005$ $10,663 \pm 0,005$	Hf0 ₂ mono. + Fluoritphase Hf0 ₂ mono. + Fluoritphase Hf0 ₂ mono. + Fluoritphase Hf0 ₂ mono. + Fluoritphase Hf0 ₂ mono. + Fluoritphase Kub. Phase (Pyrochlor) kub. Phase (Pyrochlor) kub. Phase + ? kub. Phase + ?
75,7	10,648 <u>+</u> 0,005	kub. Phase + ?

+ Fluoritgitterkonstante verdoppelt.

Nach Ausweis der auswertbaren Röntgendiagramme kann gesagt werden, daß der homogene Bereich der kubischen Phase sich von ungefähr 45-55 Mol% AmO_{1,5} erstreckt. Aufgrund der Ergebnisse in den Systemen NdO_{1,5}-HfO₂ und EuO_{1,5}-HfO₂ kann aus Analogieschlüssen für die kubische Phase im obengenannten Bereich Pyrochlorstruktur angenommen werden und somit auch die Existenz einer Verbindung Am₂Hf₂O₇. Ein direkter Nachweis dieser Struktur durch eindeutige Identifizierung der Überstrukturlinien der Pyrochlorstruktur konnte nicht geführt werden. Die Röntgendiagramme bis 44 Mol% AmO_{1.5} zeigen sewohl die kubischen Linien einer Fluoritstruktur als auch die bei steigendem Gehalt an Am₂O₃ mit schwindender Intensität auftretenden Linien des monoklinen HfO₂. Lier liegt also ein Zweiphasenbereich vor.

Abbildung 16: Verlauf der Gitterkonstanten im System AmO1,5-HfO2

2.4. Binäre Systeme des ThO, mit Oxiden dreiwertiger Elemente

2.4.1. Das System La0, 5-Th0, (2,42)

Im Fluoritgitter des ThO_2 werden die Th^{4+} -Ionen durch die größeren La^{3+} -Ionen ersetzt. Der Ersatz der Thoriumionen durch die niederwertigen Lanthanionen führt zur Schaffung eines Gitters mit Sauerstoffleerstellen. Der Grenzwert der Löslichkeit von Lanthanoxid in Thoriumoxid wurde bei 1480°C zu 48 Mol% $\text{LaO}_{1,5}$ bestimmt. Bei weiterer Zugabe von Lanthanoxid bildet sich eine Mischungslücke aus. Es liegt dann eine kubische Lösung vom Typ des Fluorits neben fester Lösung von hexagonalem $\text{La}_{2,5}^{0,0}$ vor. Die Gitterparameter zeigen einen Anstieg von 5,599 Å für reines ThO₂ auf 5,656 Å für die maximale Löslichkeit von $\text{LaO}_{1,5}$ in ThO₂.

Mol% La0 1,5	Gitterkonstanten (Å)	Im Röntgendiagramm vorhandene Strukturen
0,0	11,198 <u>+</u> 0,002 ⁺	Fluorittyp
5,0	11,204 <u>+</u> 0,002	Fluorittyp
7,1	11,212 <u>+</u> 0,002	Fluorittyp
19,9	11,240 <u>+</u> 0,002	Fluorittyp
32 , 1	11,270 <u>+</u> 0,002	Fluorittyp
40,0	11,295 <u>+</u> 0,002	Fluorittyp
50 , 0	11,305 <u>+</u> 0,002	Fluorittyp
60,6	11,311 <u>+</u> 0,002	Fluorittyp + La 0 hexag
69 , 2	11,315 <u>+</u> 0,002	Fluorittyp + La 2 hexar.
80,0	11,310 <u>+</u> 0,002	Fluorittyp + La_{23}^{0} hexag.

Tabelle 16: Versuchszusammenstellung im System La0_{1,5}-ThO₂ (1480^oC)

+ Fluoritgitterkonstante verdoppelt.

2.4.2. Das System NdO_{1,5}-ThO₂ (2)

Im System $\text{ThO}_2-\text{NdO}_{1,5}$ konnte bis zu 50 Mol% NdO_{1,5} keine Änderung der Gitterparameter beobachtet werden. Der Ersatz der vierwertigen Th^{4+} -Ionen durch die gleichgroßen dreiwertigen Nd^{3+} -Ionen [r = 0.99 Å (13)]läßt zunächst auch keine Änderung der Gitterkonstanten erwarten, jedoch bei größerem Gehalt an $\text{NdO}_{1,5}$ dürfte sich die dichtere Packung der Kationen im vergleichbaren C-Typ des Nd_2O_3 bemerkbar machen, so daß mit zunehmendem Gehalt an $\text{NdO}_{1,5}$ eine Abnahme der Gitterkonstanten zu erwarten ist. Bis 50 Mol% $\text{NdO}_{1,5}$ liegt im System $\text{ThO}_2-\text{NdO}_{1,5}$ eine homogene feste Lösung vom Typ des Fluorits vor. Der Verlauf der Gitterkonstanten über 50 Mol% $\text{NdO}_{1,5}$, insbesondere bei 1500°C, läßt die Vermutung einer kubischen 1:1 Verbindung aufkommen, die weiteres $\text{NdO}_{1,5}$ löst unter Abnahme der Gitterkonstanten. Lösungen dieses kubischen Typs liegen bis ungefähr 68 Mol% vor. Im anschließenden Bereich zeigen die Röntgendiagramme sowohl die Linien der kubischen festen Lösung als auch die Linien des hexagonalen Nd_2O_3 .

Mol% NdO _{1,5}	Gitterkonstanten (Å)	Im Röntgendiagramm vorhandene Strukturen (1300 ⁰ C)
0,0	11,198 <u>+</u> 0,002 ⁺	Fluoritstruktur
3,7	11,185 <u>+</u> 0,002	Fluoritstruktur
15,7	11,188 <u>+</u> 0,002	Fluoritstruktur
22,8	11,184 <u>+</u> 0,002	Fluoritstruktur
33,6	11,184 <u>+</u> 0,002	Fluoritstruktur
51,1	11,184 <u>+</u> 0,002	Fluoritstruktur
54,4	11,175 <u>+</u> 0,002	kub. Phase
60,2	11,168 <u>+</u> 0,002	kub. Phase
61,8	11,161 <u>+</u> 0,002	kub. Phase
64,9	11,168 <u>+</u> 0,002	kub. Phase + Nd 0 hexag.
70,2	11,148 <u>+</u> 0,002	kub. Phase + Nd_{23} hexag.
75,8	11,148 <u>+</u> 0,002	kub. Phase + Nd_{23}^{0} hexag.

Tabelle 17: Versuchszusammenstellung im System NdO_{1,5}-ThO₂ (1300[°]C) (1500[°]C)

Mol% NdO _{1,5}	Gitterkonstanten (Å)	Im Röntgendiagramm vorhandene Struktur (1500 ⁰ C)
33,7	11,193 <u>+</u> 0,002	Fluorittyp
36,3	11,194 <u>+</u> 0,002	Fluorittyp
46,0	11,182 <u>+</u> 0,002	Fluorittyp
55 , 5	11,155 <u>+</u> 0,002	kubische Phase
66,6	11,102 <u>+</u> 0,002	kubische Phase
76 , 8	11,080 <u>+</u> 0,002	kub. Phase + Nd ₂ 0 _{3 hexag} .

⁺ Fluoritgitterkonstante verdoppelt.

Abbildung 18: Verlauf der Gitterkonstanten im System NdO1.5-ThO2

2.4.3. Das System Am01,5-Th02

Der homogene Bereich fester Lösung von AmO_{1,5} in Thoriumoxid erstreckt sich bis ungefähr 50 Mol% AmO_{1,5}. Die Substitution der vierwertigen Th⁴⁺-Ionen gegen die dreiwertigen Am³⁺-Ionen bewirkt ein Schrumpfen der Fluoritzelle. Der Gitterparameter für ThO₂ = 5,599 Å sinkt auf 5,567 Å für die gesättigte feste Lösung. Bei 50 Mol% AmO_{1.5} ist der Grenzwert der Löslichkeit erreicht. Weitere Zugabe von Am₂0₃ läßt in den Röntgendiagrammen die Linien des hexagonalen Am₂0₃ neben denjenigen der kubischen Phase erscheinen.

Tabelle 18:	Versuchszusammenstellung	im	System	AmO	5-ThO	(1300`	'C))
-------------	--------------------------	----	--------	-----	-------	--------	-----	---

Mol% ^{AmO} l,5	Gitterkonstanten (Å)	Im Röntgendiagramm vorhandene Strukturen
0,0	11,198 <u>+</u> 0,003 ⁺	Fluorittyp
10,1	11,178 <u>+</u> 0,003	Fluorittyp
21,9	11,169 <u>+</u> 0,003	Fluorittyp
33,9	11,167 <u>+</u> 0,003	Fluorittyp
45,0	11,148 <u>+</u> 0,003	Fluorittyp
50 , 0	11,128 <u>+</u> 0,003	Fluorittyp
55,0	11,125 <u>+</u> 0,003	Fluorittyp + Am ₂ O _{3 hexag.}
68,8	11,135 <u>+</u> 0,003	Fluorittyp + Am_2^{0} 3 hexag.

+ Fluoritgitterkonstante verdoppelt.

Abbildung 19: Verlauf der Gitterkonstanten im System Am0,5-Th02

2.5.1. Das System AmO_-ZrO_

Aus den Versuchsreihen zur Bestimmung der Löslichkeit von AmO₂ in ZrO₂ bei 1200[°]C und 1400[°]C kann gefolgert werden:

Zur Stabilisierung von kubischem ZrO_2 sind mindestens 17 Mol% AmO₂ notwendig. Oberhalb 17 Mol% AmO₂ liegt eine homogene feste Lösung vom Typ des Fluorits vor. Der Verlauf der Gitterparameter ändert sich linear mit dem Verhältnis Am:Zr und liegt im beobachteten Bereich auf der Verbindungslinie der Gitterkonstanten von ZrO_2 kub. und AmO_2 kub. (Vergard[‡]sche Gerade). Aus dem linearen Anstieg der Gitterparameter im System AmO_2 -ZrO₂ kann gefolgert werden, daß das Americium in vierwertiger Form als Am⁴⁺ vorliegt.

Tabelle 19: Versuchszusammenstellung im System Am0₂-Zr0₂ (1200^oC) (1400^oC)

Gitterkonstanten (Å)	Im Röntgendiagramm vorhandene Strukturen (1400 ⁰ C)
- 5,141 ± 0,003 5,151 ± 0,003 5,172 ± 0,003 5,181 ± 0,003 5,236 ± 0,003 5,245 ± 0,003 5,255 ± 0,003 5,255 ± 0,003	ZrO ₂ mono. + Fluorittyp ZrO ₂ mono. + Fluorittyp Fluorittyp Fluorittyp Fluorittyp Fluorittyp Fluorittyp Fluorittyp Fluorittyp Fluorittyp
$5,359 \pm 0,003$	Fluorittyp
	(1200 [°] C)
5,148 <u>+</u> 0,003 5,166 <u>+</u> 0,003 5,185 <u>+</u> 0,003 5,219 <u>+</u> 0,003	Fluorittyp Fluorittyp Fluorittyp Fluorittyp
	Gitterkonstanten (Å) - - 5,141 \pm 0,003 5,151 \pm 0,003 5,151 \pm 0,003 5,172 \pm 0,003 5,181 \pm 0,003 5,236 \pm 0,003 5,245 \pm 0,003 5,255 \pm 0,003 5,250 \pm 0,003 5,259 \pm 0,003 5,359 \pm 0,003 5,166 \pm 0,003 5,185 \pm 0,003 5,219 \pm 0,003

Mol% AmO ₂	Gitterkonstanten $(\stackrel{0}{A})$	Im Röntgendiagramm vorhandene Strukturen
69,4	5,278 <u>+</u> 0,003	Fluorittyp
77,2	5,289 <u>+</u> 0,003	Fluorittyp
85,3	5,312 <u>+</u> 0,003	Fluorittyp
94,2	5,338 <u>+</u> 0,003	Fluorittyp

Abbildung 20: Verlauf der Gitterkonstanten im System AmO2-ZrO2

2.5.2. Das System AmO2-HfO2

Umfangreiche Untersuchungen im System AmO_2-HfO_2 bei einer Glühtemperatur von 1400°C während > 24 h wurden unternommen. Die erhaltenen Gitterparameter der einzelnen Präparate erwiesen sich als sprunghaft und als nicht reproduzierbar. Ein analoger Verlauf der Gitterkonstanten wie im System AmO_2-ZrO_2 konnte nicht gefunden werden. Eine Erklärung für dieses abweichende Verhalten ist z.Z. nicht möglich.

Im Sys⁻ em des AmO₂-ThO₂ wurde erwartungsgemäß eine vollständige Mischbarkeit der Oxide festgestellt. Die Gitterparameter liegen auf der Vegard[†]schen Geraden.

Tabelle 20: Versuchszusammenstell	ung im Sys	stem AmO ₂ -ThO ₂	(1300°C)
-----------------------------------	------------	---	----------

Mol% AmO ₂	Gitterkonstanten (Å)	Im Röntgendiagramm vorhandene Strukturen
0,0	5,599 <u>+</u> 0,002	Fluorittyp
10,1	5,578 <u>+</u> 0,002	Fluorittyp
21,9	5,548 <u>+</u> 0,002	Fluorittyp
32,5	5,542 <u>+</u> 0,002	Fluorittyp
50 , 0	5,493 <u>+</u> 0,002	Fluorittyp
67,5	5,462 <u>+</u> 0,002	Fluorittyp
98,1	5,382 <u>+</u> 0,002	Fluorittyp
100,0	5,377 <u>+</u> 0,002	Fluorittyp

Abbildung 21: Verlauf der Gitterkonstanten im System Am02-Th02

2.6.1. Das System TiO2-ThO2

Im System ThO_2 -TiO₂ wird von M. Perez Y Jorba, H. Mondage und R. Collongues (43) die Existenz der Verbindung ThTi₂O₆ beschrieben. Diese Verbindung soll in zwei allotropen Formen auftreten.

- a) Form 1 ist stabil bis 1300°C und wurde orthorhombisch indiziert,
- b) Form 2 ist stabil über 1300°C und soll eine tetragonale Symmetrie besitzen.

Es konnte in eigenen Versuchen bei einer Glühtemperatur von 1050° C und 1400° C die Existenz zweier Formen von ThTiO₆ bestätigt werden.

Beim Versuch einer Indizierung der Hochtemperaturform mit tetragonaler Struktur blieben einige Linien unerklärt. Es muß deshalb angenommen werden, daß diese Form eine niedrigere Symmetrie besitzt. Diese Aussage wird gestützt durch eine private Mitteilung von H.J. Stöcker, der in den analogen System mit UO₂ und CeO₂ gleichfalls keine Bestätigung der tetragonalen Form fand. B-ThTi₂O₆ besitzt nach Stöcker monokline Struktur mit

> a b c ß 9,89 Å 3,83 Å 7,10 Å 119°30°.

2.6.2. Das System TiO2-NpO2 (PuO2)

Versuche bei verschiedener Temperatur (920°, 1100°C) führten in diesem System nur zu einer Modifikation. Aus dem Vergleich der Debye-Scherrer-Aufnahmen und der Indizierung dieser Linien ergibt sich, daß NpTi₂0₆ isotyp ist mit ß-ThTi₂0₆. Für das monokline NpTi₂0₆ wurden folgende Gitterparameter berechnet:

	a	b	С	ß
ThTi206	9,89 Å	3,83 Å	7,10 Å	119 ⁰ 30 1
UTi206	9,79 Å	3,77 Å	6,91 Å	118 ⁰ 50 *
CeTi20	9,80 Å	3,76 Å	6,86 Å	118°45*
NpTi206	9,59 Å	3,78 Å	6,94 Å	118 ⁰ 20 ²

Tabelle 21: Strukturdaten

Analoge Versuche zur Darstellung von PuTi₂0₆ bei Glühtemperaturen von 920°C und 1100°C und 200 h Temperzeit führten nicht zur Darstellung dieser Verbindung. Die Röntgendiagramme zeigten die Linien des kubischen Pu0₂.

3. ARBEITS- UND UNTERSUCHUNGSMETHODEN

3.1. ... llgemeine Versuchsdurchführung

Zur Darstellung der inaktiven Präparate wurden durchschnittlich 100-200 mg der Ausgangssubstanzen auf ± 0,01 mg genau eingewogen. Bezüglich der Reinheit der Ausgangsmaterialien wurde keine Korrektur vorgenommen. Die Oxide wurden aufgeschlossen, gefällt und vorgeglüht. Die fein verriebenen und gut durchmischten Oxide kamen in einen Pt-Tiegel und wurden in einen Ofen mit Silitstabrohr eingeschoben. Die Reaktionsdauer betrug für die Zirkonpräparate 100-200 h, für die Hafniumpräparate 70-150 h und für die Thoriumpräparate durchschnittlich 24 h. Die Proben verschiedenster Zusammensetzung wurden dadurch abgeschreckt, daß der Platintiegel schnell aus der heißen Reaktionszone in den kalten Teil des Rohres gezogen wurde. Die Temperaturmessung erfolgte mittels eines Pt-Pt/Rh-Thermoelements. Die Reaktionstemperatur lag im allgemeinen zwischen 1200°C und 1500°C. Die so erhaltenen Proben wurden anschließend röntgenographisch untersucht.

Die Darstellung der Am, Pu-und Np-Präparate erforderte besondere Vorkehrungen und Vorsichtsmaßnahmen. Wegen der hohen α -Aktivität des Am-241 (7,06·10⁹ α /min mg = 3,1 mC/mg) und zur Vermeidung der Kontamination des Arbeitsplatzes sowie der Inkorporation mußten alle Arbeiten in sogenannten Glove-Boxen ausgeführt werden. Für die Untersuchungen standen zwei Glove-Boxen aus V2A-Stahl zur Verfügung. Wegen der 59 KeV Gammastrahlung des Am-241 mußte die Glove-Box zusätzlich mit Bleiblechschutz versehen werden.

Aufgrund der geringen zur Verfügung stehenden Menge an AmO_2 sowie aus Strahlenschutzgründen konnte pro Versuch nur 3-15 mg AmO_2 eingesetzt werden. Die kleinen Mengen verursachen Schwierigkeiten, die im Grammaßstab nicht auftreten. So mußte zur Vermeidung der Reaktion mit dem Tiegelmaterial, etwa durch Eindiffundieren, beim Arbeiten in reduzierender Atmosphäre nach einem geeigneten Tiegelmaterial gesucht werden. Als bestes Tiegelmaterial erwies sich in H₂-Atmosphäre Iridium. Zur Aufnahme der Substanzen in oxidierender Atmosphäre dienten Schiffchen aus Platin.

3.1.1. Darstellung von Eu₂Zr₂O₇

Stellvertretend für die Darstellung aller inaktiven und aktiven Präparate

der verschiedensten Zusammensetzung soll die jenige von ${\rm Eu_2Zr_20_7}$ beschrieben werden.

114,0 mg Eu₂0₃ und 79,8 mg Zr0₂ (Eu:2r = 1:1,00) wurden eingewogen, mit $K_2S_20_7$ aufgeschlossen und anschließend die Hydroxide mit Ammoniak gefällt. Einfaches Mischen der Oxide ohne eine Mischhydroxidfällung und Sintern führt nicht zu vollständigem Umsatz, selbst bei extrem langer Reaktionszeit. Man kann annehmen, daß beim Austritt des Wassers, freie Valenzen übrigbleiben, die eine erhöhte Reaktionsfähigkeit der Mischhydroxide bewirken. Die vorgeglühten Mischoxide wurden in einem Pt-Tiegel in einen Ofen der Firma Heraeus mit Silitstabrohr eingeführt. Die Reaktionstemperatur betrug während des ganzen Versuchs 1500°C und wurde mit einem Pt-Pt/Rh-Thermoelement kontrolliert. Nach der Mitte der Reaktionszeit wurde das Präparat erneut gemischt und weitere 45 h der Sinterung ausgesetzt.

3.2. Röntgenographische Untersuchungsmethoden

Die röntgenographischen Untersuchungen waren eine Hauptstütze dieser Arbeit. Die Debye-Scherrer-Aufnahmen nach der asymmetrischen Methode von Straumanis (49) wurden mit Ni- gefilterter $\operatorname{Cu-K}_{\alpha}$ -Strahlung in einer Röntgenkamera von 114,6 mm Durchmesser erhalten. Die Bestimmung der Gitterkonstanten erfolgte nach den Extrapolationsmethoden von Nelson-Riley (50) und Taylor-Floyd (51). Zur qualitativen Bestimmung der Gitterstrukturen bei hohen Temperaturen (bis 1200°C) für Hochtemperaturaufnahmen wurde eine Unicam Hochtemperaturkamera mit einem Durchmesser von 190 mm verwendet. In einigen Fällen wurden zur genauen Idendifizierung von neuen Strukturen oder Überstrukturlinien neben den Debeye-Scherrer-Aufnahmen auch Goniometerdiagramme aufgenommen.

Die röntgenographische Untersuchung der Americiumpräparate war durch die Eigenstrahlung des Am-241 (59 KeV Gammastrahlung) erschwert. Betrug die Belichtungszeit der inaktiven Präparate durchschnittlich 2 h, so durfte sie bei den Americiumpräparaten (americiumreich) 1 h nicht übersteigen. Die durch die γ -Eigenstrahlung hervorgerufene Untergrundschwärze der Röntgenfilme beeinflußte die Auswertung der Diagramme beträchtlich, da z.B. die ohnehin schon schwachen Überstrukturlinien der Pyrochlorstruktur im Untergrund verschwinden.

3.3. Analytische Methoden

3.3.1. Bestimmung des Americiums

Zur quantitativen Bestimmung des Americiums wurde die γ -Strahlung des Am-241 verwendet. Eine bestimmte Menge AmO₂ wurde eingewogen, in wenig 8n-HCl gelöst und mit ln-HCl auf das Meßvolumen aufgefüllt. Mit l µl fassenden Mikrokapillaren wurden die benötigten Mengen der Lösung entnommen und im NaJ-Bohrlochkristall ausgemessen. Aus zwei Einwaagen wurde eine Eichkurve aufgestellt.

Einwaage	μl	mg ²⁴¹ Am x 10 ⁻⁵	Impulsrate I/min
3,51 mg	1	6,2	135000
241 AmO ₂ in	2	12,4	259000
25 ml Lsg.	3	18,6	387000
	4	24,8	508000
1,8 mg	l	6,35	144000
241 AmO ₂ in	2	12,70	271000
25 ml Lsg.	3	19,05	395000
	4	25,40	525000

Tabelle 22: Eichwerte zur Am-Bestimmung

Die Methode der quantitativen Am-Bestimmung durch Messung der γ -Strahlen im NaJ-Bohrlochkristall erreicht eine Genauigkeit von \pm 3-5 %.

Abbildung 22:	Eichkurve	zur	241 Am-Bestimmung
Abbildung 22:	Eichkurve	zur	Am

Mol% AmO				
ber.	gef.			
20,0	21,0			
53,4	54,2			
26,3	26,0			
7 5,7	75,9			
10,1	10,3			
60,5	61,2			
41,0	41,0			
85,3	85,9			
10,1	10,3			
	Mol% Am0 ber. 20,0 53,4 26,3 75,7 10,1 60,5 41,0 85,3 10,1			

Tabelle 23: Analysenergebniss

3.3.2. Analyse der inaktiven Proben

Svstem	Gew.% ZrO	2(Hf02)
	ber.	gef.
Ho01.5 ^{-Zr0} 2	42,3	41,3
NdO _{1.5} -ZrO ₂	96,8	94,3
NdO 2-ZrO	42,3	40,9
NdO1.5-ZrO2	37,3	37,0
NdO1.5-ZrO2	15,5	14,0
NdO _{1.5} -ZrO ₂	6,8	6,8
Ho01.5-Hf02	46,4	43,8
Na01,5-Hf02	23,7	21,2

Tabelle 24: Analysenergebnisse

Einige wenige Präparate wurden untersucht, da die Analyse nur zur Kontrolle der Einwaage diente. Die Analysen wurden von der analytischen Gruppe des Instituts für Radiochemie durchgeführt.

Die Gehalte an Zr0₂ und Hf0₂ konnten nach der spektralphotometrischen Methode bestimmt werden, wobei Xylenolorange als Indikator diente.

3.4. Aufarbeitung von Americiumrückständen

Americium lag vor in Form von hochgeglühten AmO_{1,5}-ZrO₂(HfO₂,ThO₂)-O₂ Mischoxidpräparaten.

Die Trennungsmethode bestand aus einem Aufschluß, einer Fluoridfällung und Extraktion mit Tri-n-octylamin. Im einzelnen ist der Arbeitsgang wie folgt zu beschreiben:

- Aufschluß von ca. 100 mg Mischoxid mit K₂S₂O₇ und lösender Schmelze in verdünnter HCL.
- Fällen der Hydroxide mit NH, konz. und behandeln der Hydroxide mit ^{HF}konz.

- 3. Abfiltrieren des AmF₃ von H₄ZrF₈ und lösen in gesättigter Borsäure, die mit HCl versetzt wird (0,5 ml HCl auf 2 ml Borsäure).
- 4. Erneutes Fällen des Americiums mit NH 3 konz. als Hydroxid und lösen in 12 n-HCl.
- Schütteln der salzsauren Lösung zurrestlichen Zirkon (Hafnium)-Extraktion mit einer 5-prozentigen Tri-n-octylaminlösung in Chloroform.
- 6. Trennen der wässrigen Phase von der organischen und fällen des darin enthaltenen Americiums mit NH_{3 konz}, und verglühen zum Dioxid.

Die vorreinigende Fällung des Am als AmF₃ kann auch übergangen werden, sofern die Zirkon (Hafnium)-Mengen im Verhältnis zur Americiummenge klein sind, sodaß eine vollständige Extraktion dieser Ionen gesichert ist. Im Falle der Th-Zr-Präparate schloß sich an den Aufschluß unter Vermeidung der Fluoridfällung sofort die Extraktion an.

3.5. Ausgangsmaterialien

An AmO₂ stand ein von der US-AEC, Oak Ridge mit folgender spektroskopischer Analyse gelieferte Oxid zur Verfügung. AmO₂-Gehalt: 97 %

Verunreinigungen: 2 % La; 0,25 % Cd, Co, Ni, Tn, Zr; 0,1 % Ca, Cr, Mo, Mn, Pd; 0,025 % Cu, Fe, Gd;

 ZrO_2 , HfO_2, ThO_2 wurden in der im Handel reinst erhältlichen Form verwendet (99,8 %).

 La_2O_3 , Y_2O_3 , CeO_2 , Pr_6O_4 , Nd_2O_3 , Sm_2O_3 , Gd_2O_3 , Tb_4O_7 , Dy_2O_3 , Ho_2O_3 , Er_2O_3 , Tm_2O_3 , Yb_2O_3 , Lu_2O_3 hatten eine Reinheit von 99,9 %, während Eu_2O_3 mit 99,8 % Reinheit vorlag.

4. RÖNTGENOGRAPHISCHE TABELLEN

Die folgenden Tabellen zeigen die Auswertungen der Debye-Scherrer-Aufnahmen, die mit Ni- gefilterte CuK_{α}-Strahlung erhalten wurden. Neben den Miller[‡]schen Indizes sind die gemessenen sin² Θ -Werte der einzelnen Röntgenreflexe aufgeführt. Aus den extrapolierten Gitterkonstanten wurden die berechneten sin² Θ -Werte ermittelt. Die angegebenen Intensitäten I wurden abgeschätzt, indem dem stärksten Reflex der jeweiligen Aufnahme die Intensität 5, dem schwächsten die Intensität 1 zugeordnet wurde.

	La ₂ H		Yb0 _{1,5} •Hf0 ₂ ⁺⁺			
hkl	sin ² 0 gef.	sin ² 0 ber.	I	sin ² gef.	sin ² 0 ber.	I
111,		0,01533			0,01673	
200 ⁺		0,02044			0,02231	
220		0,04088			0,04462	
311	0,05709	0,05621	1		0,06135	
222	0 ,0 6225	0,06132	5	0,06810	0,06693	5
400	0,08248	0,08176	4	0,09052	0,08924	4
331,	0,09771	0,09709	1		0,10598	
420'		0,10220			0,11156	
422		0,12264			0,13387	
511/333		0,13797			0,15060	_
440	0,16466	0,16352	5	0,17995	0,17849	5
531		0,17885			0,19523	
600/442		0,18396			0,20080	
620		0,20440			0,22912	
533	0.0000	0,21973	F	0.04609	0,23905	E
622 hhh	0,22607	0,22404	り	0,24690	0,24343 0,2677/	ン ス
444 711/551	0,24052	0,24520	2	0,20910	0,20774	
610+	0,20109	0.26572	1		0,29005	
6/12		0.28616			0.31236	
731/553	0 30265	0,30149	r		0.32910	
800	0 32845	0.32704	- 3	0.35835	0.35699	3
733	0,204)	0.34237			0,37372	
820/644+		0.34748			0,37930	
822/660		0.36792			0,40161	
751/555		0,38325			0,41835	
662	0.38957	0,38836	4	0,42506	0,42392	4
840	0,40991	0,40880	4	0,44756	0,44624	4
911/753		0,42413			0,46297	
842+		0,42924			0,46855	
664		0,44968			0,49086	
931		0,46501			0,50759	1.
844	0,49197	0,49056	4	0,53628	0,53548	4
933/771/755		0,50589			0,55222	
10,0,0/860		0,51100			0,55700	
10,2,0/862		0,53144			0,50011	
951/773		0,54677	h	0 60307	0,59004	н
10,2,2/666	0,55295	0,55100	4	0,00,221	0 64147	т
952 10 1 0 0 0 0 0 1 +		0,50705			0.64704	
10,4,0,004		0,59210			0,66936	
בנדנטב קילו ווו		0,62853			0,68609	
880	0 65533	0.65408	3	0.71463	0,71398	3
11.31/071/055	0,000	0,66941			0,73071	
10.4.4/882+		0.67452			0,73629	
10.6.0/866		0.69496			0,75860	
11.3.3/973		0,71029			0,77534	
10,6,2	0.71604	0,71540	4	0,78146	0,78092	4
12,0,0/884	0,73643	0,73584	4	0,80386	0,80323	4

Tabelle 4.1: Pulveraufnahme von La₂Hf₂O₇ und YbO_{1,5} ·HfO₂

+ Nicht erlaubt nach den Auslöschungsregeln für die Punktlagen der Pyrochlorstruktur

++ Indizierung zum Vergleich verdoppelt.

hkl	sin ² θgef.	sin ² 0 ber.	I	sin ² gef.	sin ² 0 ber.	I 	hkl	sin ² θ gef.	sin ² 0 ber.	I	$\sin^2 \theta_{gef.}$	sin ² 0 ber.	I
111	0 , 06633	0,06576	5	0,06404	0 , 06363	5	111	0,06370	0,06277	5	0 , 06354	0,06277	5
200	0,08813	0,08768	4	0,08523	0,08484	4	200	0,08460	0,08369	4	0,08451	0,08369	. 4
220	0,17594	0,17536	5	0,17066	0,16968	5	220	0,16856	0,16739	5	0,16804	0,16739	5
311	0,24248	0,24112	5	0,23356	0,23331	5	311	0,23146	0,23016	5	0,23080	0,23016	5
222	0,26387	0,26304	2	0,25472	0,25452	2	222	0,25231	0,25108	2	0,25210	0,25108	2
400	0,35120	0,25072	2	0,33991	0,33936	2	400	0,33690	0,33478	2	0,33722	0,33478)
221 200	0,41662	0,41640	4	0,40268	0,40299	4	<u>ارد</u>	0,59860	0,39755	4 5	0,39826	0, 39755	4
420	0,43907	0,42040	-4- Д	0,42001	0,42420 0,50004	4 11	420 1100	0,41902	0,41040	4 հ	0,42000	0,41040	- 4 Д
511 333	0,59198	0,59184	4	0,57304	0,57267	4	511 333	0,56559	0,56494	4	0,56505	0,56494	 4
440	0,70196	0,70144	3	0,67875	0,67872	3	440	0,66950	0,66956	3	0,66960	0,66956	3
531	0,76644	0,76720	4	0,74240	0,74235	Ĩ4	531	0,73150	0,73234	4	0,73210	0,73234	- Į
600 442	0,78900	0,78912	4	0,76370	0,76356	4	600 442	0,75357	0,75326	4	0,75332	0,75326	4
620	0,87675	0,87680	4	0,84850	0 , 84840	4	620	0 , 83560	0,83696	4	0,83715	0 , 83696	4

Tabelle 4.2: Pulveraufnahmen im System AmO_{1,5}-ZrO₂

Tabelle 4.5: Pulveraufnahmen im System AmO_2 - ZrO_2

AmO _{1,5} -ThO ₂ (10,1 Mol% AmO _{1,5}) (33,9 Mol% AmO _{1,5})							An	10 ₂ -Zr0 ₂ (24	,1 Mo1% Am(ט ₂)	(69,4 Mol%	6 AmO ₂)	
hkl	sin ² gef.	sin ² 0 ber.	I	sin ² 0 gef.	sin ² 0 ber.	I	hkl	$\sin^2 \Theta_{\text{gef.}}$	$\sin^2 \theta_{\text{ber.}}$	I	sin ² 0gef.	sin ² 0 ber.	I
111 200 220 311 222 400 331 420 422 511 333 440 531 600 442 620 533 622 444	0,05771 0,07690 0,15267 0,21321 0,22914 0,30463 0,36218 0,38073 0,45121 0,51396 0,60907 0,66608 0,68406 0,76050 0,81586 0,83586 0,91256	0,05697 0,07598 0,15192 0,20889 0,22788 0,30384 0,36081 0,37980 0,45576 0,51273 0,60768 0,66465 0,66465 0,66364 0,75960 0,81657 0,93556 0,91152	545533444 4 34 4 4443	0,05853 0,07720 0,15267 0,21321 0,22900 0,30463 0,36100 0,38073 0,45295 0,51396 0,60895 0,66553 0,66553 0,68438 0,76065 0,81803 0,83720	0,05708 0,07611 0,15222 0,20930 0,22833 0,30444 0,36153 0,38056 0,45667 0,51375 0,60889 0,66598 0,66598 0,68500 0,76112 0,81820 0,83723 0,91334	545533444 4 34 4 4443	111 200 220 311 222 400 331 420 422 511 333 440 531 600 442 620	0,06699 0,09143 0,17727 0,24398 0,26681 0,35381 0,42178 0,44253 0,52965 0,59712 0,70655 0,77378 0,79389 0,88325	0,06624 0,08832 0,17664 0,24288 0,26496 0,35328 0,41952 0,44160 0,52992 0,59616 0,70656 0,77280 0,79488 0,88320	545533444 4 34 4 4	0,06525 0,08548 0,17033 0,23356 0,25607 0,34052 0,40288 0,42523 0,50873 0,57131 0,67918 0,76348 0,84836	0,06363 0,08484 0,16968 0,23331 0,25452 0,33936 0,40299 0,42420 0,50904 0,57267 0,67872 0,76356 0,84840	545533444 4 34 4 4
Mol%	AmO _{1,5} : 10 33	,1 G: ,9	itte	erkonstante	(Å): 5,589 5,584		Mo1%	AmO ₂ : 24,1 69,4	G	itte	rkonstante	(Å): 5,184 5,288	

	ß-ThI	²¹ 2 ⁰ 6		NpTi	206	
hkl	sin ² gef.	sin ² 0 ber.	I	sin ² gef.	sin ² 0 ber.	I
001	0,0154	0,0154	2	0,0170	0,0159	1
201	0,0259	0,0257	4	0,0269	0,0273	4
200	0,0320	0,0320	1	0,0326	0,0332	1
110	0 , 0486	0,0486	5	0,0506	0,0498	5
202	0,0513	0,0504	5	0,0537	0,0532	5
111	0 , 0531	0,0532	1	0,0561	0,0550	1
002	0,0523	0,0623	2	0,0661	0,0640	2
302 201	0,0691	0,0695	2	0,0723	0,0726	2
111	0 0751	0.0752	2	0.0788	0.0765	2
112	0.0894	0.0889	2	0.0945	0.0915	2
311	0.0958	0.0954	2	0,0986	0.0995	2
<i>4</i> 01	0,1006	0.0999	1	0,1017	0,1045	l
203	0,1077	0,1063	1	0,1103	0,1108	1
312	0.1104	0,1101	2	0,1136	0,1140	2
211		0,1103	-	0,11 ,00	0,1130	-
310	0,1127	0,1128	2	0,1158	0,1162	2
400	0,1283	0,1283	1	0,1331	0,1332	l
112	0,1328	0,1329	1	0,1367	0,1358	1
202	0,1395	0,1384	2	0,1430	0,1410	2
003 117	0 1569	0,1402	7		0,1430	٦
	0,1500	0,1550	Ŧ	0,1597	0,1599	Ŧ
501	0,1608	0,1614	l	0,1641	0,1650	1
020	0.1624	0,1624	2	0.1655	0,1655	2
	a (Å)	b(Å)	c (Å)	ß		
ThTi_0_	9,89	3 , 83	7,10	119 ⁰ 30 '		
	0 = 0	 	6 01	1180201		
" ^{p11} 2 ⁶	ファンプ	2,10	0,94	TTO 50-		

Tabelle 4.6: Pulveraufnahmen von B-ThTi206 und NpTi206

5. ZUSAMMENFASSUNG

- a) Es wurden die Pyrochlorverbindungen und die Fluoritphasen von 1:1 Zusammensetzungen der Selten-Erd-Oxide mit Zirkon- und Hafniumoxid dargestellt sowie die Abhängigkeit des Homogenitätsbereiches der Pyrochlorphasen von der Zusammensetzung und der Reaktionstemperatur untersucht.
- b) Im System NdO_{1,5}-ZrO₂ (1300°C) reicht die homogene kubische Phase vom Typ des Fluorits und Pyrochlors von 27-57 Mol% NdO_{1,5}. Der Bereich der homogenen kubischen Phase vom Typ des Fluorits und Pyrochlors erstreckt sich im System EuO_{1,5}-ZrO₂ (1300°C) von 18-71 Mol% EuO_{1,5}. Im System HoO_{1,5}-ZrO₂ (1300°C) konnte über den ganzen Bereich von 8-72 Mol% HoO_{1,5} eine homogene Phase vom Fluorittyp festgestellt werden. Im System AmO_{1,5}-ZrO₂ wurde eine kubische Phase von 33-55 Mol% AmO_{1,5} beobachtet (1200°C).
- c) Die homogene kubische Phase vom Typ des Pyrochlors reicht im System NdO_{1,5}-HfO₂ (1500°C) von 40-55 Mol% NdO_{1,5}. Im System EuO_{1,5}-HfO₂ (1500°C) wurde von 20-72 Mol% EuO_{1,5} eine homogene kubische Phase festgestellt, bestehend aus dem Fluorit- und Pyrochlortyp. Dagegen konnte im System HoO_{1,5}-HfO₂ (1500°C) von 15-71 Mol% HoO_{1,5} nur die Fluoritphase beobachtet werden. Im System AmO_{1,5}-HfO₂ (1400°C) liegt der Bereich der homogenen kubischen Phase zwischen 45 und 55 Mol% AmO_{1,5}.
- d) Bei 1480°C nimmt ThO₂ maximal 48 Mol^{*}/₂ LaO_{1,5} auf. Die obere Löslichkeitsgrenze für NdO_{1,5} (1500°C) und AmO_{1,5} (1300°C) wurde zu jeweils 50 Mol^{*}/₃ ermittelt. In den genannten Systemen liegen Sauerstoffleerstellen vor.
- e) Im System AmO₂-ZrO₂ (1200°C und 1400°C) liegt oberhalb 17 Mol% AmO₂ eine lückenlose Mischbarkeit beider Oxide vor. Im System AmO₂-ThO₂ wurde festgestellt, daß sich AmO₂ und ThO₂ unter linearer Änderung der Gitterkonstanten lückenlos miteinander mischen.
- f) Im System ThO₂-TiO₂ wurde die Bildung von ThTi₂O₆ mit zwei allotropen Modifikationen (a) 1000°C; (b) 1400°C bestätigt. Die Hochtemperaturform β-ThTi₂O₆ konnte monoklin indiziert werden. Im analogen System NpO₂-TiO₂ wurde die isotype Verbindung NpTi₂O₆ dargestellt, die ebenfalls monokline Struktur besitzt. Eine entsprechende Plutoniumverbindung konnte nicht erhalten werden.

6. LITERATURVERZEICHNIS

l.	G. Brauer, H. Gradinger	Naturwissenschaften <u>38</u> , 559 (1951)
2.	G. Brauer, H. Gradinger	Z.anorg.allg.Chem. <u>276</u> , 209 (1954)
3.	G. Brauer, H. Gradinger	Z.anorg.allg.Chem. <u>277</u> , 89 (1954)
4.	W.L. Baun	Science <u>140</u> , 1330 (1963)
5.	0. Ruff, F. Ebert	Z.anorg.allg.Chem. <u>180</u> , 19 (1929)
6.	A. Dietzel, H. Tober	Ber.dt.keram.Ges. <u>30</u> , 71 (1953)
7.	Gordy, Thomas	(31) referiert in Ann.chim. (Paris) 5, 1459 (1960)
8.	J.H. Stöcker	Ann.chim. (Paris) <u>5</u> , 1459 (1960)
9.	J. Adam, M.D. Rogers	Acta cryst. <u>12</u> , 951 (1959)
10.	Fourth Rare Earth Research Conferen	nce April 22-25 1964 Phoenix, Arizona
11.	E. Aleshin, R. Roy	J.Am.Ceram.Soc. <u>45</u> , 18 (1962)
12.	L.H. Ahrens	Geochim.Cosmochim.Acta (London) <u>2</u> , 155 (1952)
13.	D.H. Templeton, C.H. Dauben	J.Am.Chem.Soc. <u>76</u> , 5237 (1954)
14.	F. Trombe, M. Foëx	C.R. <u>233</u> , 254 (1951)
15.	A. Rabenau	Z.anorg.allg.Chem. <u>288</u> , 221 (1956)
16.	R.S. Roth	Res.nat.Bur.Standards <u>56</u> , 17 (1956)
17.	F.H. Brown jr., P. Duwez	J.Am.Ceram.Soc. <u>38</u> , 95 (1955)
18.	M. Perez Y Jorba, R. Collongues, J. Lefèvre	C.R. <u>249</u> , 1237 (1959)
19.	M. Perez Y Jorba, R. Collongues	Bull.Soc.chim. France 1959, 1967
20.	J. Lefèvre, M. Perez Y Jorba, R. Collongues	Bull.Soc.chim. France <u>1959</u> , 1969
21.	Fan Fu-Kan, A.K. Kusnezov, E.K. Keler	Izvest.Acad.Nauk. SSSR 7, 1151 (1964)
22.	R. Collongues, M. Perez Y Jorba, J. Lefèvre	Bull.Soc.chim. France 1961, 70
23.	A.K. Kusnezov, E.K. Keler, Fan Fu-Kan	Zur, priklad.chim. <u>38</u> , 233 (1965)
24.	Fan Fu-Kan, A.K. Kusnezov, E.K. Keler	Izvest.Acad.Nauk. SSSR 4, 585 (1965)
25.	J. Lefèvre, R. Collongues, M. Perez Y Jorba	C.R. <u>249</u> , 2329 (1959)
26.	J.A. Davtyan, V.B. Glushkova, E.K. Keler	Izvest.Akad.Nauk. SSSR Neorgan. Materialy <u>1</u> , 743 (1965)
27.	P. Duwez, F.H. Brown jr., F. Odell	J.Elektrochem.Soc. <u>98</u> , 356 (1951)
28.	M. Perez Y Jorba, M. Fayard, R. Collongues	Bull.Soc.chim. France <u>1962</u> , 155

29.	R. Collongues, J. Lefèvre, M. Perez Y Jorba, F. Queyroux	Bull.Soc.chim. France 1962, 149
30.	M. Perez Y Jorba, F. Queyroux, R. Collongues	C.R. <u>253</u> . 670 (1961)
31.	F. Hund	Z.Elektrochem. <u>55</u> , 363 (1951)
32.	C. Wagner	Naturwissenschaften <u>31</u> , 265 (1943)
33.	C. Schusterius, N.N. Padurow	Ber.dt.keram.Ges. <u>30</u> , 235 (1953)
34.	Fan Fu-Kan, A.K. Kusnezov, E.K. Keler	Izvest.Acad.Nauk. SSSR <u>4</u> , 601 (1963)
35.	L.N. Komissarova, Wang Kên-shih, V.I. Spitsyn, Yu.P. Simanov	Dokl.Acad.Nauk. SSSR <u>150</u> , 816 (1963)
36.	L.N. Komissarova, Wang Kên-shih, V.I. Spitsyn, Y.P. Simanov	Russ.J.Inorg.Chem. <u>9</u> , 383 (1964)
37.	L.N. Komissarova, Wang Kên-shih, V.I. Spitsyn	Izvest.Acad.Nauk.Ser.chim. SSSR <u>1</u> , 3 (1965)
38.	R. Collongues, F. Queyroux, M. Perez Y Jorba, JC. Gilles	Bull.Soc.chim. France <u>1965</u> , 1141
39.	H.H. Möbius	Z.Chem. <u>4</u> , 81 (1964)
40.	R.S. Roth, S.J. Schneider	J.Res.Nat.Bur. of Standards <u>64A</u> , 309 (1960)
41.	D.H. Templeton, C.H. Dauben	Report UCRL-2101, Febr. 3, (1953)
42.	F. Hund, D. Dürrwächter	Z.anorg.allg.Chem. <u>265</u> , 67 (1951)
43.	M. Perez Y Jorba, H. Mondage, R. Collongues	Bull.Soc.Chim. France Ser. V <u>28</u> , 79 (1961)
44.	R.C. Vickery, Ardys Klann	J.Chem.Phys. <u>27</u> , 1220 (1957)
45.	L.H. Brixner	Inorg.Chem. 3, 1065 (1964)
46.	MC. Montmory, F. Bertaut	C.R. <u>252</u> , 4171 (1961)
47.	F. Bertaut, F. Forrat, MC. Montmory	C.R. <u>249</u> , 829 (1959)
48.	C.G. Whinfrey, D.W. Eckart, A. Tauber	J.Am.Chem.Soc. <u>82</u> , 2695 (1960)
49.	M. Straumanis, A. Ievins	"Die Präzisionsbestimmung von Gitter- konstanten nach der asymmetrischen Methode" Springer Berlin (1940)
5 0.	J.B. Nelson, D.P. Riley	Proc.Phys.Soc. <u>57</u> , 160 (1945)
51.	A. Taylor, R.W. Floyd	Acta Cryst. <u>3</u> , 285 (1950)