

KERNFORSCHUNGSZENTRUM

KARLSRUHE

Dezember 1966

KFK 526

Institut für Kernverfahrenstechnik

Die Ausbreitung der Kernspinpolarisation in ruhendem

und strömendem He³

G. Escher, P. Turowski

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

KARLSRUHE

.

~

.

Sonderdruck aus

"Zeitschrift für angewandte Physik", 21. Band, 6. Heft, 1966, S. 500-503

Springer-Verlag, Berlin · Heidelberg · New York

Die Ausbreitung der Kernspinpolarisation in ruhendem und strömendem He³

G. ESCHER und P. TUROWSKI

Institut für Kernverfahrenstechnik der Technischen Hochschule und des Kernforschungszentrums Karlsruhe Eingegangen am 29. März 1966 The polarization of the He³ nuclear spin generated by optical pumping is propagated from the polarization cell to attached spaces largely free of loss, if the polarization cell and the attached spaces are kept under the influence of a uniform magnetic field of sufficient homogeneity. The degree of polarization will be reduced the more strongly the larger the *relative* inhomogeneities of the magnetic field in the space area covered by He³. Employing the field of the earth for generating and carrying the polarization results in only relatively low degrees of polarization. This may be due to the fact that the weak inhomogeneities of the magnetic field present in the laboratory in this case present relatively high *relative* inhomogeneities.

Die durch optisches Pumpen erzeugte Polarisation des He³-Kernspins breitet sich von der Polarisationszelle auf angeschlossene Räume weitgehend verlustlos aus, falls die Polarisationszelle und die angeschlossenen Räume unter der Wirkung eines einheitlichen genügend homogenen Magnetfeldes stehen. Der Polarisationsgrad wird umso stärker herabgesetzt, je größer die *relativen* Magnetfeldinhomogenitäten in dem vom He³ überstrichenen Raumbereich sind. Bei Verwendung des Erdfeldes zum Erzeugen und Führen der Polarisation erreicht man nur verhältnismäßig kleine Polarisationsgrade. Dies dürfte darauf beruhen, daß die im Labor vorhandenen schwachen Magnetfeldinhomogenitäten in diesem Fall verhältnismäßig große *relative* Inhomogenitäten darstellen.

Einleitung

Von Schearer, Walters und Colegrove [1] wurde ein optisches Verfahren zur Ausrichtung des He³-Kernspins beschrieben, mit dem sich Polarisationsgrade in der Größenordnung von 40% erreichen lassen. Es beruht auf der Tatsache, daß He³-Atome im metastabilen Triplett-Grundzustand, deren Spinsystem durch optisches Pumpen teilweise polarisiert wurde, ihren Polarisationszustand auf den Kernspin von He³-Atomen im Singulett-Grundzustand übertragen. Für gaskinetische Untersuchungen am polarisierten He³ interessierte die Frage, in welchem Maße sich der Polarisationszustand des He³-Kernspins von der Polarisationszelle in angeschlossene Räume überführen läßt. In der vorliegenden Arbeit werden entsprechende Untersuchungen sowohl mit ruhendem als auch mit strömendem He³-Gas durchgeführt.

Versuche mit ruhendem Gas

Die Versuche mit ruhendem Gas wurden mit der in Abb. 1a dargestellten Anordnung durchgeführt: In einem mit Helmholtzspulen erzeugten Magnetfeld ist ein

Abb. 1. Schematische Darstellung der Polarisations- und Nachweisanordnung bei den Versuchen mit ruhendem Gas

mit He³ gefülltes Hantel-förmiges Pyrexglas-Gefäß untergebracht. Das Verbindungsrohr zwischen den Teilzellen A und B kann mit einer Glaskugel abgesperrt werden. Das mit einer He⁴-Lampe erzeugte zirkular polarisierte Pumplicht¹ durchsetzt nur die Zelle A, in der zur Erzeugung der metastabilen Zustände eine schwache Hochfrequenzentladung mit einer Frequenz von 40,6 MHz brennt. Das Licht wird anschließend auf eine Photodiode (*Valvo* OAP 12) fokussiert, die mit dem y-Eingang eines Oszillographen verbunden ist.

Zum Nachweis der Polarisation wird ein kräftiges Hochfrequenzfeld, das über eine Spule in die Absorptionszelle eingestrahlt wird, mit Hilfe eines in der

Abb. 2a und b. Zeitverlauf der Lichtabsorptionsänderung AA. a) Bei geschlossenem Kugelverschluß und kurzzeitiger Einwirkung eines starken Kernresonanzfeldes. b) Bei offenem Kugelverschluß und Einwirken eines starken Kernresonanzfeldes für die Dauer von 2,3 sec. Magnetelde 65 G, 1 Torr He³. Lichtintensität 5,6 V. Lichtabsorption A = 380 mV

¹ Für den Pumpprozeß am He³ benutzt man gewöhnlich eine He⁴-Lampe. Denn durch die Linienverschiebung auf Grund des Isotopieeffektes ergibt sich zufällig, daß das He³ nur auf der Linie, die dem Übergang $2^{3}S_{1} - 2^{3}P_{0}$ entspricht, Licht aus der He⁴-Lampe absorbiert.

Frequenz variablen Oszillators durch die Kernresonanzstelle gefahren. Abb. 2a zeigt den zeitlichen Verlauf der an der Photodiode gemessenen Lichtabsorption in der Absorptionskugel bei geschlossenem Kugelverschluß. Die Absorption steigt in der Resonanzstelle sprunghaft an und kehrt anschließend verhältnismäßig langsam auf den Ausgangswert zurück. Die maximale Lichtabsorptionsänderung erwies sich bei den verwendeten Hochfrequenzfeldstärken als weitgehend unabhängig von der Geschwindigkeit, mit der die Resonanzstelle durchfahren wurde. Daraus folgt, daß die Polarisation beim Resonanzdurchgang praktisch vollständig zerstört wurde. Die maximale relative Lichtabsorptionsänderung $\Delta A/A$ ist daher ein Maß für den Polarisationsgrad P. Zur Umrechnung wird die in [1] angegebene Beziehung

$$\frac{\Delta A}{A} = f \frac{P (11 - 2P - P^2)}{6 + 2P^2} \tag{1}$$

benutzt². Der Faktor f wurde eingeführt, um die Tatsache zu berücksichtigen, daß das Pumplicht nicht vollständig zirkularpolarisiert ist. In unserem Falle war f = 0.85. Die verhältnismäßig langsame Wiederabnahme der Lichtabsorption zeigt den Wiederaufbau der Polarisation an. Die Zeit, nach der die Lichtabsorptionsänderung bis auf den Bruchteil 1/e rückgängig gemacht worden ist, wird als Pumpzeit T_p bezeichnet. Der aus Abb. 2a ablesbaren maximalen Lichtabsorptionsänderung $\varDelta A$ von 38 mV entspricht bei einer Lichtabsorption A von 380 mV nach Gl. (1) ein Polarisationsgrad von 6.4%. Die Pumpzeit T_p beträgt 2,2 sec³.

Bei offenem Kugelverschluß ergab sich innerhalb der Fehlergrenze derselbe Polarisationsgrad.

Um bei offener Verbindung eindeutige Verhältnisse für die Bestimmung der Pumpzeit zu erhalten, mußte man die Resonanzfrequenz so lange einwirken lassen, bis der Polarisationsgrad in beiden Zellen vollständig zerstört war. Dann ergab sich eine Pumpzeit von 5 sec, also etwa das Doppelte des bei geschlossener Verbindung gemessenen Wertes (Abb. 2b). Aus den Versuchen folgt, daß sich der Polarisationszustand des He³-Kernspins bei offenem Kugelverschluß nahezu unvermindert von der Polarisationszelle A in die Zelle B ausbreitet.

Daß die Homogenität des Magnetfeldes eine wesentliche Voraussetzung für eine ungestörte Ausbreitung des Polarisationszustandes ist, geht aus der Tatsache hervor, daß der Polarisationsgrad in der Absorptionskugel auf ein Drittel herunterging, wenn an der Außenwand der zweiten Kugel, bei geöffnetem Kugelverschluß, eine Eisenprobe angebracht wurde (Pos. 1 in Abb. 1a). Die gleiche Eisenprobe beeinflußte die Polarisation nicht, wenn sie sich in gleicher Entfernung auf der entgegengesetzten Seite der Doppelzelle befand (Pos. 2 in Abb. 1 a).

Bei einer Doppelzelle mit größerem Kugelabstand (Abb. 1b) lag die Kugel *B* außerhalb des Helmholtzfeldes. In diesem Fall wurde in der Absorptionskugel bei 7% Absorption nur ein Polarisationsgrad von 2,4% erreicht, der durch eine in der Nähe der zweiten Kugel angebrachte Eisenprobe nicht zu beeinflussen war. Man kann daraus folgern, daß die Polarisation beim Übergang zwischen den beiden Kugeln durch den magnetischen Feldgradienten am Rande des Helmholtzfeldes praktisch völlig zerstört wurde.

Für die Planung von Versuchen, bei denen polarisiertes He³ über größere Strecken transportiert werden soll, ist es wichtig zu wissen, ob für die Depolarisation die absolute oder die relative Magnetfeldinhomogenität maßgeblich ist⁴. Es wurde daher der Einfluß einer konstanten Magnetfeldinhomogenität auf den Polarisationsgrad in Abhängigkeit vom absoluten Magnetfeld untersucht.

Die Inhomogenität erzeugte eine kleine Spule, die an der Oberfläche der mit der Kugel abgesperrten Absorptionszelle angebracht war. Durch den Spulenstrom wurde die Stärke der Inhomogenität so eingestellt, daß bei einem Helmholtzfeld von 45 G eine deutliche Verminderung der relativen Lichtabsorptionsänderung durch die Inhomogenität zu beobachten war. Dann wurde die Stärke des Helmholtzfeldes systematisch vermindert. Nach Abb. 3, Kurve a, nimmt die relative Lichtabsorptionsänderung monoton mit abnehmender Feldstärke ab. Im Bereich von 45 - 9 G sinkt sie von 3,3% auf 0,36%. Daraus folgt, daß die Depolarisation des He³ in erster Näherung von der relativen Feldinhomogenität abhängt.

Abb. ŝa und b. Der Einfluß von Magnetfeldinhomogenitäten auf die relative Lichtabsorptionsänderung $\Delta A/A$ in Abhängigkeit vom Magnetfeld. Die Lichtintensität betrug 10 V. Die Lichtabsorption A = 500 mV. a) Mit künstlicher Magnetfeldinhomogenität. b) Ohne künstliche Magnetfeldinhomogenität

Abb. 3, Kurve b, zeigt die relative Lichtabsorptionsänderung in Abhängigkeit von der Stärke des Helmholtzfeldes *ohne* künstliche Feldinhomogenität⁵. Mit abnehmender Feldstärke nimmt auch in diesem

² R. C. GREENHOW [2] gibt eine Formel an, die einen um den Faktor 0,75 kleineren Polarisationsgrad liefert.

³ Die Versuche wurden mit einer verhältnismäßig großen Lichtabsorption durchgeführt, um ein möglichst großes Signal/Rausch-Verhältnis zu erhalten. Da der Polarisationsgrad mit abnehmender Entladungsstärke, d. h. abnehmender Absorption zunimmt, war der Polarisationsgrad in den Versuchen nicht maximal. In einer Zelle mit 2,3 Torr He³ wurde bei 1,7% Absorption beispielsweise ein Polarisationsgrad von 19% gefunden. Polarisationsversuche mit einer Anregungsfrequenz der HF-Entladung von 25 kHz ergaben eine Druckabhängigkeit des Polarisationsgrades mit einem Maximum von 17% bei 5 Torr. Bei 20 Torr wurden 7,7% und bei 60 Torr noch 3% gefunden.

⁴ COLEGROVE, SCHEARER und WALTEES [1] versuchten zunächst die von ihnen beobachtete Verkürzung der Relaxationszeit des Kernspinsystems im inhomogenen Magnetfeld durch eine Theorie zu erklären, die eine Abhängigkeit der Depolarisation von der *absoluten* Magnetfeldinhomogenität erwarten ließ. In den erst kürzlich erschienenen Arbeiten von R. L. GAMBLIN u. F. R. CARVER [3] und L. D. SCHEARER und G. K. WALTERS [4] wurde auf Grund einer modifizierten Theorie ein Zusammenhang der Relaxationszeit mit dem *relativen* Magnetfeldgradienten hergeleitet, der experimentell bestätigt werden konnte.

⁵ Die Richtung des Helmholtzfeldes stimmte bei diesen Versuchen mit der Richtung des Erdfeldes überein, wodurch die Feldstärke von 0,4 G bis 45 G ohne Richtungsänderung des Magnetfeldes variiert werden konnte.

Fall die relative Lichtabsorptionsänderung ab. Sie sinkt im Bereich von 45-3 G aber nur von 4,7% bis auf 3,9%. Im Bereich zwischen 3 und 0,4 G erfolgt dann ein verhältnismäßig steiler Abfall auf 1,7%. Da im Labor schwache Magnetfeldinhomogenitäten vorhanden sind, kann angenommen werden, daß die Abnahme der relativen Lichtabsorptionsänderungen und damit des Polarisationsgrades mit abnehmender Feldstärke auch in diesem Fall im wesentlichen auf einer Zunahme der relativen Feldinhomogenität beruht.

Versuche im strömenden Gas

Abb. 4 zeigt die schematische Darstellung des Kreislaufsystems. Eine Quecksilberdiffusionspumpe Usaugt das Gas über die Kühlfalle F_4 an und pumpt es über die Kühlfalle F_1 in die mit ungefähr 50 cm³ Aktivkohle gefüllte Falle KF_1 . F_1 und F_4 verhindern ein Eindringen des Quecksilberdampfes der Diffusionspumpe in das übrige Kreislaufsystem. Sämtliche Fallen werden mit flüssigem Stickstoff gekühlt. Von der Kohlefalle KF_1 gelangt das Gas über die Falle F_2 in den aus zwei hintereinandergeschalteten Kugeln bestehenden Arbeitsbereich. Eine der beiden Kugeln

Abb. 4. Schematische Darstellung des Kreislaufsystems mit den Einfüllvorrichtungen für He³ und He⁴

wird zum Polarisieren benutzt. Die Polarisation wird entweder unmittelbar in dieser Kugel oder in der zweiten Kugel nachgewiesen. Die Polarisationskugel wird als Primärzelle, die zweite als Sekundärzelle bezeichnet. Bevor das Gas nach Passieren der Falle F_3 über die Falle F_4 wieder die Umlaufpumpe U erreicht, strömt es durch die Kapillare K (Durchmesser 2 mm, Länge 20 cm), die über die Leitung L kurzgeschlossen werden kann. Am Differentialmanometer DM kann der Druckabfall $\varDelta p$ längs der Kapillare gemessen werden. Aus den geometrischen Daten der Kapillare und dem Druckabfall $\varDelta p$ läßt sich der Durchsatz errechnen. Die in flüssigen Stickstoff eintauchenden Fallen F_2 und F_3 sollen insbesondere Quecksilber-dämpfe aus dem Differentialmanometer DM und mögliche Dämpfe aus dem Hahnfett von der Gasentladung fernhalten.

Bekanntlich führen Verunreinigungen im Helium-Gas zu einer Verkürzung der Lebensdauer der metastabilen Zustände, die sich in negativer Weise auf den Polarisationsgrad auswirkt. Es wurde daher zunächst untersucht, ob man im Kreislaufsystem eine Gasentladung mit genügender Reinheit brennen lassen kann. Bei diesen Versuchen wurde He⁴ benutzt, um einen eventuellen Einfluß von Feldinhomogenitäten auszuscheiden, die sich im wesentlichen über das Kernspinsystem auswirken. Da im He⁴ die Einstellzeit der Elektronenspinpolarisation in der Größenordnung von 10^{-4} sec liegt, weil das puffernde Kernspinsystem fehlt, kann man periodisch, z. B. mit Netzfrequenz, durch die Resonanzstelle fahren. Dadurch ergibt sich der Vorteil, daß der Einfluß von Verunreinigungen auf den Polarisationseffekt kontinuierlich beobachtet werden kann. Wegen der kurzen Relaxationszeit des H⁴-Spin-Systems mußten die Polarisation und der Nachweis bei diesen Versuchen in derselben Zelle durchgeführt werden.

Um die Wirksamkeit der Aktivkohlefalle KF_1 zu untersuchen, wurde der He⁴-Gasfüllung des Kreislaufes die gleiche Molmenge Stickstoff zugegeben und dann bei strömendem Gas die Kohlefalle KF_1 eingekühlt. Das Ergebnis zeigt die Abb. 5. Aus dem Fehlen der Lichtabsorptionsänderung zur Zeit t = 0geht hervor, daß der Stickstoffzusatz die Polarisation praktisch vollständig zerstört. Nach einer Anlaufzeit

Abb. 5. Zeitlicher Verlauf der Lichtabsorptionsänderung ΔA im He⁴ des Kreislaufsystems bei einer Gastüllung aus 50% He⁴ und 50% Stickstoff nach Einkühlen der Kohlefalle KF₁ zur Zeit t = 0. He⁴-Druck 0,8 Torr. Lichtäntensität 5,9 V, max. Lichtabsorption 2,3 V

von etwa 10 min wird eine Lichtabsorptionsänderung ΔA von 12 mV beobachtet, die mit dem bei reinem He⁴ unter gleichen Versuchsbedingungen erzielten Wert innerhalb der Fehlergrenze übereinstimmt. Ließ man die Fallen F_2 und F_3 auftauen, so verminderte sich das Absorptionssignal nach etwa 1,5 min auf die Hälfte; innerhalb von 20 min war aber die ursprüngliche Größe des Signals wieder erreicht. Die in den Fallen F_2 und F_3 aufgetauten Verunreinigungen waren demnach von den Fallen F_1 , F_4 und KF_1 wieder absorbiert worden. Die im Kreislaufsystem mit eingekühlten Fallen am He⁴ gemessene relative Lichtabsorptionsänderung stimmte mit dem in abgeschmolzenen Zellen erzielten Wert innerhalb der Fehlergrenze überein.

Bei den Überführungsversuchen mit He³ strömte das Gas von der Primärzelle, in der es polarisiert wurde, in die etwa 30 cm entfernte Sekundärzelle ein, in der die He³-Polarisation nach demselben Verfahren wie in der Primärzelle nachgewiesen wurde⁶. Eine Polarisationswirkung der Nachweisanordnung konnte durch Herabsetzen der Lichtintensität der Helium-Lampe weitgehend vermieden werden. Der Polarisationsgrad

⁶ Polarisationsmessungen mit einer Kernresonanzbrücke hätten bei der Verwendung üblicher elektronischer Hilfsmittel ein Nachweisfeld von mindestens 100 G erfordert. Beim Übergang von dem schwachen Polarisations- bzw. Führungsfeld (Erdfeld) auf 100 G würde die Polarisation mit Sicherheit zerstört werden.

21. Bd., Heft 6, 1966 ESCHER und TUROWSKI: Ausbreitung der Kernspinpolarisation in ruhendem und strömendem He³ 503

des in der Nachweiszelle durch die elektrische Entladung erzeugten metastabilen Elektronenzustandes war damit dem Polarisationsgrad des Kernspins der eingeströmten He³-Atome proportional. In der Sekundärzelle war beim Einstrahlen der Kern- bzw. der Elektronenresonanzfrequenz jedoch nur eine sehr kleine Lichtabsorptionsänderung zu erwarten, da der Polarisationsgrad in der Primärzelle im Erdfeld nur 1,6% betrug und die Intensität des Pumplichtes in der Sekundärzelle herabgesetzt werden mußte (s. oben).

Da außerdem der Rauschpegel bei den Messungen im Kreislauf verhältnismäßig groß war⁷, konnte die Lichtabsorptionsänderung nicht wie bei den bisher beschriebenen Versuchen durch eine Gleichspannungsmessung an der Photodiode bestimmt werden.

Um das Signal/Rausch-Verhältnis zu verbessern, wurde das bekannte Lock-in-Verfahren angewendet. Ein Unterbrecher schaltete 400mal pro Sekunde das Elektronenresonanzfeld an und ab⁸. Das an der Photodiode auf Grund der periodischen Zerstörung der Polarisation auftretende 400 Hz-Signal wurde schmalbandig verstärkt und anschließend von dem Lock-in-Gleichrichter phasenempfindlich gleichgerichtet. Der 400 Hz-Generator, der den Unterbrecher steuerte, lieferte gleichzeitig das Referenzsignal für den Lock-in-Gleichrichter. Mit einem Phasenschieber konnten Phasenverschiebungen zwischen Signal und Referenzsignal korrigiert werden, um das Maximum des Signals zu erhalten. Das schmalbandig gemessene Signal zeigt die relativ kleine Zunahme des Polarisationsgrades im metastabilen System an, die sich während der Öffnungszeit des Unterbrechers (etwa 1/800 sec) durch Polarisationsaustausch mit dem Kernspinsystem ergibt. Das Signal ist damit ein qualitatives Maß für den Polarisationsgrad des Kernspins.

⁸ Die Möglichkeit, die Kernresonanzfrequenz zur Zerstörung der Polarisation zu benutzen, schied in diesem Fall aus, da die Unterbrecherfrequenz zu dicht bei der Kernresonanzfrequenz im Erdfeld (etwa 1,2 kHz) lag. Wenn in der Primärzelle polarisiert wurde, konnte bereits bei ruhendem Gas in der Sekundärzelle ein Polarisationssignal gemessen werden. Das Signal in der Sekundärzelle verschwand, wenn das optische Pumpen in der Primärzelle unterblieb.

Tabelle. Polarisationssignal in der Sekundärzelle bei ruhendem und bei der von der Sekundär- zur Primärzelle strömendem Gas

Versuch Nr.	Druck Torr	Durchsatz D cm ³ n cm ³		Polarisationssignal in willk. Einheiten	
		sec	sec	bei ruh. Gas	bei str. Gas
1	0,4	4,6	$2,4 \cdot 10^{-3}$	12-13	12—13
2	0,9	10,0	$12 \cdot 10^{-3}$	10	4
3	1,4	16,0	$29 \cdot 10^{-3}$	4	

Das Polarisationssignal in der Sekundärzelle änderte sich beim Einschalten der Gasströmung nicht, wenn die linke Kugel (Abb. 4) als Primärzelle benutzt wurde, d. h. wenn das Gas von der Primär- in die Sekundärzelle strömte. Wurde die Funktion der Kugeln vertauscht, so ergaben sich die in der Tabelle zusammengestellten Ergebnisse. Demnach ist bei einem Druck von 0,4 Torr (Durchsatz D = 4,6 cm³/sec entsprechend 2,4 × 10⁻³ n cm³/sec) noch kein Einfluß der Strömung auf die Ausbreitung der Polarisation festzustellen, Bei 1,4 Torr (D = 16 cm³/sec entspricht 29×10^{-3} n cm³/sec) hingegen findet man im *ruhenden* Gas *Polarisation* in der Sekundärzelle, während im *strömenden* Gas außerhalb der Nullpunktsschwankungen *kein Polarisationssignal* mehr zu messen ist.

Wir danken Herrn Prof. Dr. E. W. BECKER für die stete Förderung dieser Arbeit. Die Arbeit wurde durch eine Sachbeihilfe der Deutschen Forschungsgemeinschaft unterstützt.

Literatur: [1] COLEGROVE, F. D., L. D. SCHEARER, and G. K. WALTERS: Phys. Rev. 132, 2561 (1963). — [2] GREEN-HOW, R. C.: Phys. Rev. 136, A 660 (1964). — [3] GAMBLIN, R. L., and F. R. CARVER: Phys. Rev. 138, A 964 (1965). — [4] SCHEARER, L. D., and G. K. WALTERS: Phys. Rev. 139, A 1398 (1965).

> Dr. GERD ESCHER und Dr. PETER TUROWSKI Institut für Kernverfahrenstechnik der Technischen Hochschule und des Kernforschungszentrums, 75 Karlsruhe

⁷ Die Vergrößerung der Rauschamplitude beruhte offenbar auf mechanischen Schwingungen, die Abbildungs- und damit Lichtintensitätsschwankungen auf der Photodiode zur Folge hatten.

Druck: Brühlsche Universitätsdruckerei Gießen