

Februar 1967

KFK 541

Zyklotron-Laboratorium

Messungen am Zerfall des 200 Bi und 202 Bi

A. Hanser, K. Freitag

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

VADICBILUE

KERNFORSCHUNGSZENTRUM KARLSRUHE

Februar 1967

KFK 541

Zyklotron-Laboratorium

Messungen am Zerfall des 200 Bi und 202 Bi

A. Hanser und K. Freitag

Abstract:

From the decay of 200 Bi and 202 Bi γ -spectra, conversion electron spectra, γ - γ -coincidences, γ -e-coincidences and conversion coefficients were measured using mass separated samples. Four excited levels of 200 Pb were found. Probable spin-parity assignments are given. The level scheme of 202 Pb known from investigations on 202m Pb was confirmed. Lower limits for the very high decay energies of both nuclei are given and the relatively small overall positon emission rates were measured.

Inhaltsverzeichnis

Abstract

1.	Einleitung	1	
2.	Herstellung der Präparate	1	
	2.1. Bestrahlung	1	
	2.2. Massentrennung	1	
3.	Meßtechnik	2	
	3.1. Detektoren	2	
	3.2. Elektronenspektren	2	
	3.3. Koinzidenzmessungen	2	
	3.4. Messung der Konversionsdaten	3	
4.	Meßergebnisse	4	
	4.1. Messungen am ²⁰⁰ Bi	4	
	4.2. Messungen am ²⁰² Bi	5	
5.	Diskussion	6	
	5.1. Zerfall des $^{200}\mathrm{Bi}$	6	
	5.2. Zerfall des $^{202}\mathrm{Bi}$	8	
Literatur			
Tabellen			
Abbildungen			

1. Einleitung

In den letzten Jahren wurde es von verschiedenen Autoren unternommen, angeregte Kernzustände bei g-g-Kernen mit einer abgeschlossenen Nukleonen-Schale zu berechnen 1-3). Unter anderem liegen Berechnungen vor für die Folge der neutronenarmen, geraden Blei-Isotope 2,3). Wir möchten hierzu mit der vorliegenden Arbeit das experimentelle Vergleichsmaterial erweitern. Das Niveauschema von 206Pb ist eingehend untersucht 4); in etwas geringerem Umfang 5,6) sind es auch die von 204Pb und 202Pb, während von 200Pb nur sehr wenig 7) bekannt war. Wir haben daher den zum 200Pb führenden Zerfall des 200Bi untersucht, dazu aber auch noch den Zerfall des 202Bi, da die bisherigen Kenntnisse über die Anregungszustände des 202Pb praktisch nur aus Messungen am Zerfall des 3,6 h - 202mPb-Isomers stammen.

Beide Nuklide sind darüber hinaus auch deswegen von Interesse, weil nach der Systematik der Zerfallsenergien 8 eine hohe Zerfallsenergie (ca. 6 MeV) zu erwarten ist, bei beiden jedoch bei vorangegangenen radiochemischen Untersuchungen 9,10 keine Positronenemission, sondern nur Zerfall durch Elektroneneinfang gefunden wurde.

In Abb. 1a) und 1b) ist zusammengestellt, was aufgrund bisher erschienener Arbeiten über den Zerfall der genannten Wismutisotope und die Niveauschemata der Tochterkerne bekannt ist.

2. Herstellung der Präparate

2.1. Bestrahlung

Die Wismutisotope wurden im Karlsruher Isochron-Zyklotron durch Beschuß von Blei mit 50 MeV-Deuteronen hergestellt. Im Fall des 200 Bi benutzten wir zur Erhöhung der Ausbeute angereichertes Ausgangsmaterial mit 25 % 204 Pb-Gehalt. Das Blei wurde als 5 - 10 mg dicke Schicht auf eine Silberfolie elektrolytisch aufgetragen; das Silber sorgte während der Bestrahlung (5 μ A; 15-40 Min.) für gute Wärmeableitung.

2.2. Massentrennung

Die bei der Zyklotronbestrahlung entstandenen Reaktionsprodukte wurden im Karlsruher elektromagnetischen Massenseparator 11,12) getrennt. Die

Trennzeiten waren 40 bis 50 Minuten. Die Isotope mit den interessierenden Massenzahlen wurden auf 20 μ dicken Aluminiumfolien aufgefangen. Die Massenreinheit wurde nach jeder Trennung kontrolliert durch Vergleich des von den seitlichen Eintrittsblenden der Kollektortaschen ausgesandten γ-Spektrums mit dem Spektrum der Präparatfolie. Die Verunreinigung der Präparate durch Nachbarmassen läßt sich dabei unter Berücksichtigung der bekannten Form der Massenlinien des Separators ¹²⁾ abschätzen. Sie war bei den ²⁰²Bi-Präparaten kleiner als 0,1 ½ bzw. kleiner 0,4 ½ bei den ²⁰⁰Bi-Präparaten. Außer Wismut enthielten die Präparate auch noch die isobaren Blei- und Thalliumisotope; diese unterschieden sich jedoch durch ihre längere Halbwertszeit deutlich von den Bi-Isotopen, deren Strahlung unmittelbar nach der Präparatherstellung dominierte.

3. Meßtechnik

3.1. Detektoren

Als Detektoren benutzten wir einen 7,6 cm x 7,6 cm und zwei 10,2 cm x 10,2 cm NaJ(T1)-Kristalle. Konversionselektronen wurden mit Hilfe eines Siliziums- Oberflächensperrschicht-Zählers gemessen. Der Si-Zähler hatte eine Feldzonendicke von ca. 2 mm und eine empfindliche Fläche von 0,8 cm²; er war mit flüssiger Luft gekühlt. Für eine γ -Messung am 202 Bi stand uns ein lithium-gedrifteter Germaniumdetektor zur Verfügung. Die Halbleiterdetektoren waren in unserem Laboratorium von der Gruppe 0. Meyer 13) hergestellt worden.

3.2. Elektronenspektren

Zur Aufnahme der Elektronenspektren wurden die Siliziumdetektorimpulse mit einem Röhrenverstärker nach Langmann und Meyer ¹⁵⁾ verstärkt und in einem Vielkanalanalysator in 1024 Kanälen registriert. Mit den Massenseparator-Präparaten erreichten wir Linienbreiten von 4,0 bis 4,5 keV bei 500 keV Elektronenenergie. Die Energieskala wurde mit Linien von ²⁰³Pb, ²⁰⁷Bi und ¹³⁷Cs eingeeicht.

3.3. Koinzidenzmessungen

Mit Hilfe eines zweidimensionalen Vielkanalanalysators wurden sowohl $\gamma-\gamma$ -Koinzidenzen als auch Koinzidenzen zwischen $\gamma-Q$ uanten und Konversions-elektronen gemessen. Bei den Elektron- γ -Koinzidenzmessungen wurde die

γ-Strahlung des Präparats mit dem 7,6 cm x 7,6 cm - Kristall durch ein 1 mm starkes Aluminiumfenster der Siliziumdetektor-Meßkammer hindurch gemessen.

3.4. Messung der Konversionsdaten

Die Siliziumdetektor-Meßanordnung erlaubte auch die Bestimmung von K/L-Konversionsverhältnissen und unter Verwendung des 7,6 cm x 7,6 cm - NaJ-Kristalls die Messung von K-Konversionskoeffizienten, da die Präparate immer an einen genau definierten Ort in der Meßkammer 8 mm vor dem Detektor gebracht wurden.

Zur Bestimmung der Konversionskoeffizienten wurden γ -Quanten und Elektronen in zwei Vielkanalanalysatoren gleichzeitig gleiche totzeit-korrigierte Zeiten lang gemessen. Die Konversionskoeffizienten errechnen sich dann auf folgende Weise:

$$\alpha = \frac{I_e}{I_{\gamma}} \cdot \frac{P_{\gamma}}{P_e} ,$$

dabei ist

I die Elektronen-Peakintensität

l_ν die γ-Peakintensität

P die Peaknachweiswahrscheinlichkeit f.d. Si-Zähler

 \mathbf{P}_{γ} die Peaknachweiswahrscheinlichkeit f.d. NaJ-Zähler.

Das Verhältnis der Peaknachweiswahrscheinlichkeiten P_{γ}/P_{e} wurde mit Hilfe obiger Gleichung für verschiedene Energien an γ -Übergängen, deren Konversionskoeffizienten gut bekannt sind, gemessen.

Unter Verwendung der Werte für P_{γ} von Green und Finn $^{14)}$ ließ sich daraus eine Peaknachweiswahrscheinlichkeitskurve für die Siliziumdetektor-Meßan-ordnung berechnen (Abb. 2). Anhand dieser Kurve wurden die gemessenen K/L-Konversionsverhältnisse bezüglich der Energieabhängigkeit der Peaknachweiswahrscheinlichkeit korrigiert.

4. Meßergebnisse

4.1. Messungen am 200Bi

Abb. 3 und 4 zeigen das y-Spektrum des ²⁰⁰Bi in verschiedenen Energiemaßstäben. Die Abbildungen stellen Differenzspektren dar von je einer Messung
unmittelbar nach der Massentrennung und einer Messung drei Stunden (ca. 5
Halbwertszeiten des ²⁰⁰Bi) später. Daß solche Differenzspektren des Masse
200 - Präparats sich nur wenig von einem reinen ²⁰⁰Bi-Spektrum unterscheiden, kann man an den entsprechenden Konversionselektronenspektren (Abb. 5a,
b, c) gut erkennen; Das drei Stunden nach der Massentrennung aufgenommene
Spektrum enthält im wesentlichen nur noch die Linien des ²⁰⁰Pb (21,6 h)
und des ²⁰⁰Tl (26 h); gegenüber der ersten Messung haben die ²⁰⁰Pb - Linien
kaum an Intensität verloren, die Linien des ²⁰⁰Tl (durch Zerfall des ²⁰⁰Pb)
ein wenig zugenommen. Aus dem Abfall der zum Zerfall des ²⁰⁰Bi gehörenden
Elektronenlinien errechnet man eine Halbwertszeit von 37,3 ± 1,0 Min. Allen
weiteren Auswertungen wurden die beschriebenen Differenzspektren zugrundegelegt.

Das γ-Spektrum zeigt vier starke Übergänge und oberhalb 1 MeV ein im wesentlichen exponentiell abfallendes Kontinuum. Außer den vier starken Übergängen
sind im Elektronenspektrum noch einige weitere Übergänge von verhältnismäßig geringer Intensität zu erkennen, einer von ihnen (548,3 keV) ist auch
im γ-Spektrum sichtbar. Die K- und L-Elektronenlinie des 420,8 keV-Übergangs sind deutlich breiter als die entsprechenden Nachbarlinien sowohl
mit höherer als auch mit niedriger Energie. Offensichtlich sind sie mit
Linien anderer Übergänge gemischt. Tabelle 1 faßt die Ergebnisse dieser
Messungen zusammen. Die Konversionsdaten des 420,8 keV - Übergangs sind in
eckigen Klammern angegeben. Sie werden in Abschnitt 5.1. diskutiert.

γ-γ-Koinzidenzmessungen zeigen, daß die vier starken Übergänge eine Kaskade bilden. Die vier nur im Elektronenspektrum erkennbaren, schwächeren Übergänge sind mit den vier starken in Koinzidenz. Wie weit sie auch miteinander koinzidieren, ließ sich mit den vorhandenen Hilfsmitteln und bei der verhältnismäßig kurzen Halbwertszeit des ²⁰⁰Bi nicht feststellen.

Zur Klärung des oben erwähnten Kontinuums im Spektrum des NaJ-Detektors wurden einige weitere Messungen unternommen. Bei Benutzung eines 10,2 cm x 10.2 cm Kristalls macht dieses Kontinuum oberhalb der 1027 keV-Linie - in Impulshäufigkeiten gerechnet - etwa 8 % des Gesamtspektrums aus. Offensichtlich setzt es sich mit einem noch größeren Anteil (ca. 40 %) unterhalb 1 MeV unter den dort sichtbaren Linien und Compton-Kontinuen fort. Messungen mit einem 3 cm dicken Polyäthylen-Absorber zeigen, daß es sich um γ-Oanten und nicht etwa um Elektronen (Positronen) handelt. Das Kontinuum fällt mit der gleichen Halbwertszeit wie die Linien des 200 Bi-Spektrums ab. Koinzidenzmessungen zeigen das Kontinuum in Koinzidenz sowohl mit den vier starken v-Linien des 200 Bi als auch - wenn auch schwächer - mit sich selbst. Das Kontinuum stammt also offensichtlich vom Zerfall des 200 Bi. Sein hochenergetischer Endpunkt sollte zumindest eine untere Grenze für die gesamte Zerfallsenergie angeben. Im normalen y-Spektrum reicht das Kontinuum mindestens bis 4 MeV (s. Abb. 4). Wegen des etwa exponentiellen Abfalls ist ein Endpunkt jedoch nicht zu erkennen. Bei einer weiteren Messung wurde das ²⁰⁰Bi-Präparat zwischen zwei direkt aneinandergesetzte 10,2 cm x 10,2 cm - NaJ-Kristalle gebracht; die Ausgänge der beiden Photomultiplier wurden addiert. Abb. 6 zeigt das so aufgenommene y-Summenspektrum. Die Form dieses Spektrums läßt besser auf einen oberen Endpunkt schließen. Er dürfte bei knapp 6 MeV liegen.

Bei dieser recht hohen Gesamtzerfallsenergie sollte man einen größeren Anteil an Zerfällen mit β + -Emission erwarten. Das γ -Einzelspektrum läßt aber nur die Annahme einer schwachen 511 keV γ -Strahlung zu. Zur genauen Bestimmung der Vernichtungsstrahlung wurden 180° - γ - γ -Koinzidenzen gemessen. Das Präparat war dabei von einer Polyäthylenkugel umgeben, die Positronen bis zu 5 MeV abstoppen würden. Die Auswertung ergab einen Anteil an Zerfällen mit β + -Emission von ca. 0,6 % bezogen auf die Häufigkeit des 1027 keV-Übergangs.

4.2. Messungen am ²⁰²Bi

Am Zerfall des ²⁰²Bi wurden die gleichen Messungen wie am ²⁰⁰Bi durchgeführt. Das γ-Spektrum konnte darüber hinaus auch mit einem Ge(Li)-Detektor aufgenommen werden. Das Masse-202-Präparat des Massentrenners enthält ebenfalls neben dem Bi-lsotop noch die isobaren Isotope des Pb und Tl. Sie waren gegenüber dem ²⁰²Bi strahlungsmäßig jedoch so schwach, daß das 12 d-²⁰²Tl erst nach fast völligem Abklingen des ²⁰²Bi, der ²⁰²-Pb-Grundzustand auch

dann noch nicht in Erscheinung trat. Lediglich das 3,6-Stunden-Isomer des 202 Pb, das bei der Bestrahlung ebenfalls etwas gebildet wird, ist in den Spektren an Linien, die direkt vom metastabilen Zustand in ein tiefer liegendes Niveau führen, als geringe Beimischung zu erkennen. Die genannten Linien fallen im Rahmen der Meßgenauigkeit mit der Halbwertszeit des 202 Pb ab, das bedeutet, daß der metastabile Zustand des 202 Pb nicht in nachweisbarem Maße beim Zerfall des 202 Bi bevölkert wird.

In Tabelle 2 sind die gefundenen Übergänge mit allen zusätzlichen Informationen enthalten. Im Bereich höherer Energien weist das 202 Bi ein ähnliches γ -Kontinuum auf wie das 200 Bi. Es zeigt allerdings etwas mehr Struktur. (Abb. 7) Das in 4π -Geometrie aufgenommene Summenspektrum endet bei diesem Nuklid bei ca. 5 MeV. 180° - γ - γ -Koinzidenzmessungen zur Bestimmung der Intensität der 511 keV-Vernichtungsstrahlung ergaben einen Anteil an Zerfällen mit β ⁺-Emission von ca. 0,5 % (bezogen auf die Häufigkeit des 961 keV-Übergangs).

5. Diskussion

5.1. Zerfall des 200 Bi

In Tabelle 3 sind die gemessenen Konversionsdaten der vier starken Übergänge des ²⁰⁰Pb den zu vergleichenden theoretischen Werten von Sliv und Band ¹⁹⁾ gegenübergestellt. Die Übergänge mit 1027,1 keV, 462,9 keV und 245,8 keV Übergangsenergien sind eindeutig E 2-Übergänge.

Unsicher ist jedoch die Natur des 420,8 keV-Übergangs, dessen K- und L- Elektronen-Linie wie in Abschn. 4.1. erwähnt deutlich etwas breiter sind als die übrigen Linien. Man könnte vermuten, daß es sich um zwei Übergänge mit fast der gleichen Energie handelt. Die Konversionsdaten ließen sich deuten als Überlagerung eines E 1-Überganges mit einem E 2-Übergang von etwa der 0,6-fachen Intensität. Da die 421 keV-Linie jedoch nicht "mit sich selbst in Koinzidenz" ist, was aus den mit NaJ-Kristallen aufgenommenen γ-γ-Koinzidenzspektren wegen des relativ nahe benachbarten 463 keV-Überganges allerdings nicht ganz eindeutig entnommen werden kann, müßten die beiden 421 keV-Übergänge parallel verlaufen. Wahrscheinlicher ist jedoch, daß

die K-Elektronen-Linie des 421 keV-Übergangs sich mit der L-Linie eines 349 keV-Übergangs überlappt und die 421 keV-L-Linie mit der K-Linie eines 493 keV-Übergangs. Die Linien bei 261 keV und 344 keV im Elektronenspektrum (s. Abb. 5c) sind dann als K-bzw. M + N + - Linie des 349 keV-Übergangs zu deuten. Die L- und M + N + - Linie eines 493 ± 2 keV-Übergangs sind ebenfalls schwach erkennbar*). Aus der Intensität der K-bzw. M + N - Linie des 349 keV-Übergangs läßt sich abschätzen, um welchen Betrag die L-Linie dieses Übergangs die K-Linie des 421 keV Übergangs fälschlich vergrößert. Berücksichtigt man dies, so kommt man auf einen K-Konversionskoeffizienten für den 421 keV-Übergang von 0,015 ± 0,003 an Stelle des in Tab. 3 in Klammern angegebenen Wertes. Damit läßt sich der 421 keV-Übergang als reiner E 1-Übergang deuten.

Wie in Abschnitt 4.1. erwähnt, bilden die vier starken Übergänge eine Kaskade. Ordnet man sie nach den gemessenen Intensitätswerten übereinander (vgl. Tab. 1), so erhält man das Niveauschema von Abb. 8.

Ausgehend von der Spin-Paritätszuordnung 0 + für den Grundzustand des doppeltgeraden 200 Pb-Kerns, kommt man unter Beachtung der gefundenen Multipolaritäten der Übergänge und des Fehlens von Crossover-Linien zu den in Abb. 8 angegebenen wahrscheinlichsten Spin-Paritätswerten für die angeregten Zustände. Die beiden untersten Niveaus wurden bereits von Jung und Andersson in dieser Weise angegeben. In der vorliegenden Arbeit konnten durch zusätzliche Messung der K-Konversionskoeffizienten deren Aussagen erhärtet werden.

In Abb. 9 sind die von anderen Autoren experimentell gefundenen angeregten Niveaus von ²⁰⁸Pb, ²⁰⁴Pb, ²⁰⁴Pb, ²⁰²Pb und ²⁰⁰Pb - ergänzt durch die eigenen Ergebnisse - einschließlich Spin-Paritätsangaben nebeneinander gesetzt. Vermutlich einander entsprechende Niveaus der verschiedenen Kerne sind durch Linien verbunden. Diese Systematik der Niveauschemata bestätigt die beim ²⁰⁰Pb angenommene Reihenfolge der Übergänge.

^{*)} Das nach Ferigstellung dieses Berichts mit Hilfe eines Germanium-Detektors bei einer Auflösung von 2,7 keV aufgenommene γ -Spektrum zeigt keine Verbreiterung der 421 keV-Linie. Es enthält schwache Linien bei 348,9 \pm 0,8 und 494,6 \pm 0,8 keV.

Es bleibt die Frage, wie das γ-Kontinuum zu verstehen ist, auf das die Linien der starken Übergänge aufgesetzt sind. Das v-Summenspektrum zeigt zunächst, daß die gesamte Zerfallsenergie vom 200 Bi zum Grundzustand des Pb mindestens 6 MeV beträgt in Übereinstimmung mit dem Wert von 6,5 MeV. den Mattauch u.a. 8) aus der Systematik der Zerfallsenergien hierfür ableiten. Messungen von Axensten u.a. ²⁰⁾ ergaben für den Spin des Grundzustandes des 200 Bi den Wert 7. Ein Zerfall des 200 Bi in das bei 2,16 MeV liegende Niveau des 200 Pb sollte der wahrscheinlichste von den Zerfällen in eines der in Abb. 8 angegebenen Niveaus des 200 Pb sein. Er sollte nicht mehr als einfach verboten sein und einen ß+-Anteil von mindestens 20 % aufweisen 21). Der experimentell gefundene gesamte B+-Anteil ist jedoch sehr klein (0.6 %). Andererseits ist die Intensität des γ-"Kontinuums" drei bis viermal so groß wie die Intensität des untersten Ubergangs (1027 keV). All das führt zur Vermutung, daß das ²⁰⁰Bi hauptsächlich zunächst durch Elektroneneinfang in hoch angeregte Zustände des 200 Pb übergeht und von dort in einer oder mehreren Stufen in eines der in Abb. 8 angegebenen Niveaus. Da das 200 Pb bei hoher Anregungsenergie sicher eine dichte Niveaufolge aufweist, ist es gut möglich, daß es für die geschilderte Zerfallsart so viele parallel verlaufende Möglichkeiten gibt, daß das NaJ-Spektrum mit seiner beschränkten Auflösung und seinen kontinuierlichen Compton-Anteilen im Endergebnis ein Kontinuum aufweist. Die schwächeren im Elektronenspektrum als Linien erkennbaren Übergänge, die wie das Kontinuum mit den vier starken Übergängen in Koinzidenz sind, würden dann zu dieser Vielzahl von (hauptsächlich höher-energetischen) Übergängen gehören.

5.2. Zerfall des 202Bi

Die am Zerfall des ²⁰²Bi vorgenommenen Messungen bestätigen das aus Untersuchungen am ^{202m}Pb bekannte Niveauschema des ²⁰²Pb (s. Abschn. 1). Auch die aus den vorliegenden Messungen gewonnenen Konversionsdaten stimmen mit den Ergebnissen, die andere Autoren ^{22,23,6)} aus Messungen am ^{202m}Pb gewonnen hatten, überein.Leider war es nicht möglich, den neugefundenen Linien neue Niveaus zuzuordnen. Im übrigen dürfte der Zerfall des ²⁰²Bi in ähnlicher Weise verlaufen wie der Zerfall des ²⁰⁰Bi. Die Vielzahl von neuen

Linien und die Tatsache, daß auch oberhalb 1 MeV das γ -Kontinuum etwas Struktur aufweist, bekräftigen die oben angegebene Deutung des Kontinuums. Die aus dem Doppelkristall-Summenspektrum gefolgerte Zerfallsenergie von mindestens 5 MeV ist beim 202 Bi ebenfalls in Übereinstimmung mit dem Wert von 5,5 MeV, der sich aus der Mattauch'schen Systematik $^{8)}$ ergibt.

Wir danken Herrn 0. Meyer für die Halbleiterdetektoren und Herrn B. Feurer für seine ausgezeichnete technische Mitarbeit. Die Untersuchungen sollen mit verbesserten Mitteln fortgesetzt werden.

Literatur

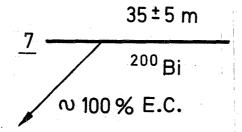
- L.S. Kisslinger und K.A. Sorensen, Mat. Fys. Medd. Dan. Vid. Selsk 32, No. 9 (1960)
- 2. R. Arvieu und M. Veneroni, Phys. Lett. <u>5</u> (1963) 142
- 3. A. Plastino, R. Arvieu und S.A. Moszkowski, Phys. Rev. 145 (1966) 837
- 4. C.J. Herrlander, Ark. Fys. <u>20</u> (1961) 71
- 5. R. Stockendal et al., Ark. Fys. <u>14</u> (1959) 65, <u>17</u> (1960) 579
- J.A. McDonell, R. Stockendal, C.J. Herrlander und I. Bergström, Nuclear Physics 3 (1957) 513;
 B. Johansson, T. Alvage und W. Zuk, Ark. Fys. 14 (1959) 439
- B. Jung und G. Andersson, nicht veröffentlicht, zitiert in I. Bergström, Ark. Fys. 12 (1957) 415
- 8. J.H.E. Mattauch und W. Thiele, Nucl. Phys. 67 (1965) 1
- 9. H.M. Neumann und 1. Perlman, Phys. Rev. <u>78</u> (1950) 191
- D.G. Karraker und D.H. Templeton,
 Phys. Rev. 81 (1951) 510
- 11. H. Fabricius, K. Freitag, S. Göring, A. Hanser und H.J. Langmann KFK 511 (1966)

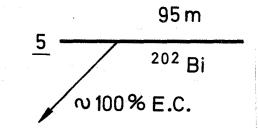
- 12. H. Fabricius, K. Freitag und S. Göring, Nucl. Instr. 38 (1965) 64
- 13. 0. Meyer Nucl. Instr. <u>39</u> (1966) 119
- 14. R.M. Green und R.J. Finn Nucl. Instr. 34 (1965) 72
- 15. H.J. Langmann und 0. Meyer, Nucl. Instr. 30 (1964) 135
- 16. J.H. Hamilton et al., Phys. Lett. <u>19</u> (1966) 682
- 17. W.L. Croft, B.G. Petterson und J.H. Hamilton, Nucl. Phys. 48 (1963) 267
- 18. A.H. Wapstra, G.J. Nijgh und R. van Lieshout, Nuclear Spectroscopy Tables (North-Holland Publ. Co. Amsterdam, 1959) p. 132
- 19. L.A. Sliv und I.M. Band, in Alpha-Beta-und Gamma-Ray Spectroscopy, K. Siegbahn (North-Holland Publ. Co. Amsterdam, 1965) p. 1639
- 20. S. Axensten, C.M. Johansson und I. Lindgren, Ark. Fys. 15 (1959) 463
- 21. A.H. Wapstra, vgl. ref. 18), p. 65
- 22. D. Maeder et al.,
 Physica <u>20</u> (1954) 521;
 Phys. Rev. 93 (1954) 1433
- 23. K.E. Bergkvist et al., Phil. Mag. <u>46</u> (1955) 65

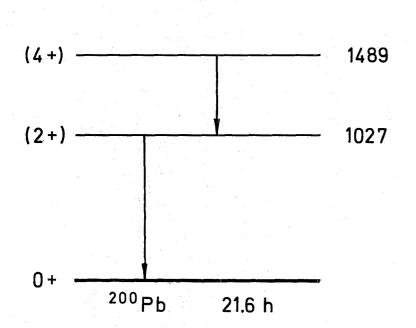
Tabelle 1
Ubergänge im 200Pb

111 ± 3 ?

Ubergangs- energie (keV)	Gamma - Intensität (rel.)	Gesamtintensität des Übergangs (rel.)	K-Konversions- Koeffizient (x 10 ⁻³)	K/L-Konversions- verhältnis
1027,1 + 0,8	1,00	1,00	$6,0 \pm 0,7$	5,1 ± 0,4
462,9 [±] 0,8	0,90	0 , 93	28 ± 3	2,6 ± 0,2
420,8 + 1,0	0,83	0,84	[20 ± 2]	[4,5]
245,8 + 0,8	0,42	0,51	118 ± 15	1,29 ± 0,10
				12
548,3 ± 1,5		schwach		
348,6 + 1,0		11		
303,9 ⁺ 1,0		1 () 1 () 1 ()		
201,2 [±] 1,5		11		
493 ± 2 ?		n		


Beim Zerfall des ²⁰²Bi beobachtete Übergänge des ²⁰²Pb


Ubergangs- energie (keV)	Häufigkeit d. Überg. rel.	K-Konversions- Koeffizient (x 10 ⁻³)	K/L-Konversions- verhältnis	in Koinzidenz mit (keV)	nicht in Koinzidenz mit	
961,4 ± 0,5	1,00	6,1 + 0,8	4,7 ± 0,4	658; 422; 240		
$657,5 \pm 0,5$	0,57	5 ± 1	$6,2 \pm 0,69$	961; 422	240	
$422,3 \pm 0.8$	0,76	33 ± 5	$3,0 \pm 0,3$	961; 658; 240		
$240,2 \pm 0.8$				961; 422	658	
1570 ± 25				961; 422	658	1
1390 ± 25				961; 422	658	13
$1243,3 \pm 1,0$				961; 658; 422		1
$928,6 \pm 0,5$		17 ± 6	$4,5 \pm 1,0$			
$578,9 \pm 0,5$				961; 658; 422		
$569,3 \pm 0,5$			$4,3 \pm 1,0$	961; 658; 422		
$437,9 \pm 0.8$						
$346,9 \pm 0.8$				961; 658; 422		
$320,3 \pm 0,8$				961; 658; 422		
$248,9 \pm 1,0$		9		961; 658; 422		
$195,4 \pm 1,0$						
$170,5 \pm 2,0$				961; 658; 422		
$152,0 \pm 1,0$		į		961; 658; 422		


Tabelle 3

Vergleich der Konversionsdaten der Übergänge des 200 Pb mit theoretischen Werten

than	Meßwerte		Theor	Werte 19)	erte 19)	
Ubergangs- energie (keV)	α _k • 10 ²	K/L	Multi- polarität	α _k •10 ²	K/L	
1027,1	0.60 ± 0.07	5,1 ± 0,4	E1	0,20	6,0	
1021,1	0,00 0,01	0,1	E2	0,48	4,9	
			E3	1,06	3,5	
			M1	1,28	5,6	
			M2	3,0	5,2	
			МЗ	5,7	4,4	
460 0	2,8 ± 0,3	2,6 ± 0,2	E1	0,94	6 0	
462,9	2,8 - 0,3	2,0 - 0,2	E2	2,5	6,0	
			E3	6,1	2,8	
			M1	11,0	1,28 5,6	
			M2	31	4,6	
			M3	73	3,2	
400 0	$[2,0 \pm 0,2]$	4,5	E1	1,15	6 ()	
420,8	[2,0 - 0,2]	[4,0]	E2	3,06	6,0	
	korrigiert:	,	E3	7,6	2,5 1,05	
	$1,5 \pm 0,3$		M1	14	5,6	
	1,0 0,0		M2	42	4,4	
, · ·			М3	101	3,0	
245,8	11,8 [±] 1,5	1,29 ± 0,10	E1	3,8	5,6	
w 2 0 9 0	11,0	1,20 0,10	E2	10,3	1,20	
			E3	27	0,29	
	,		M1	58	5,6	
			M2	220	3,65	
			М3	640	1,85	

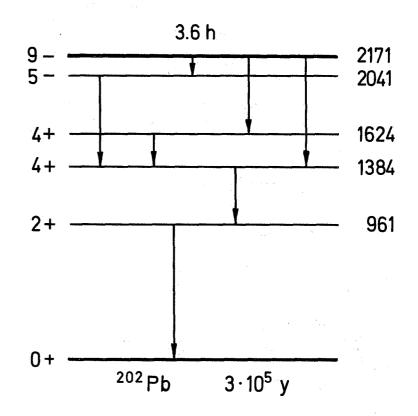


Abb.1 Ergebnisse früherer Untersuchungen an den interessierenden Kernen

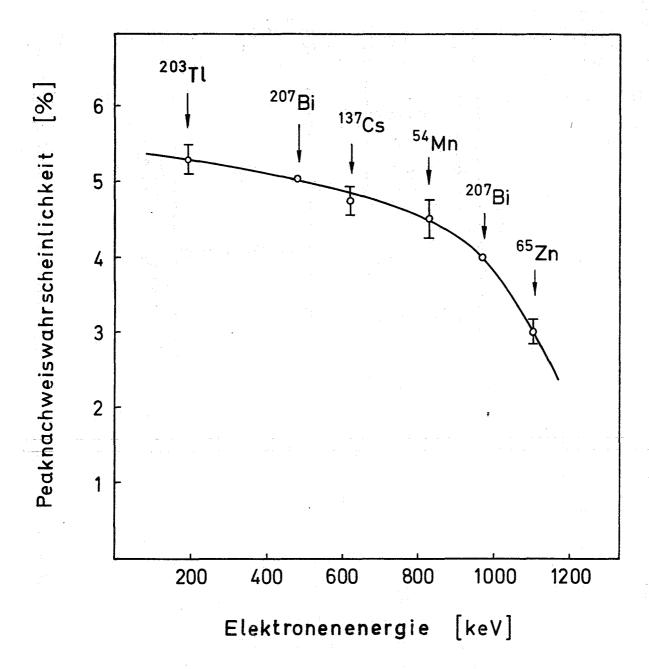


Abb. 2 Peaknachweiswahrscheinlichkeit des Siliziumdetektors bei einem Abstand von 8 mm zwischen Präparat und Detektor.

Die eingetragenen Fehlergrenzen resultieren hauptsächlich aus den Fehlern der experimentellen Konversionskoeffizienten der betreffenden Nuklide. ¹⁶⁻¹⁸) Für ²⁰⁷Bi wurden theoretische Konversionskoeffizienten von Sliv und Band ¹⁹) benutzt. (Die Multipolaritäten der beiden Übergänge sind experimentell gesichert.)

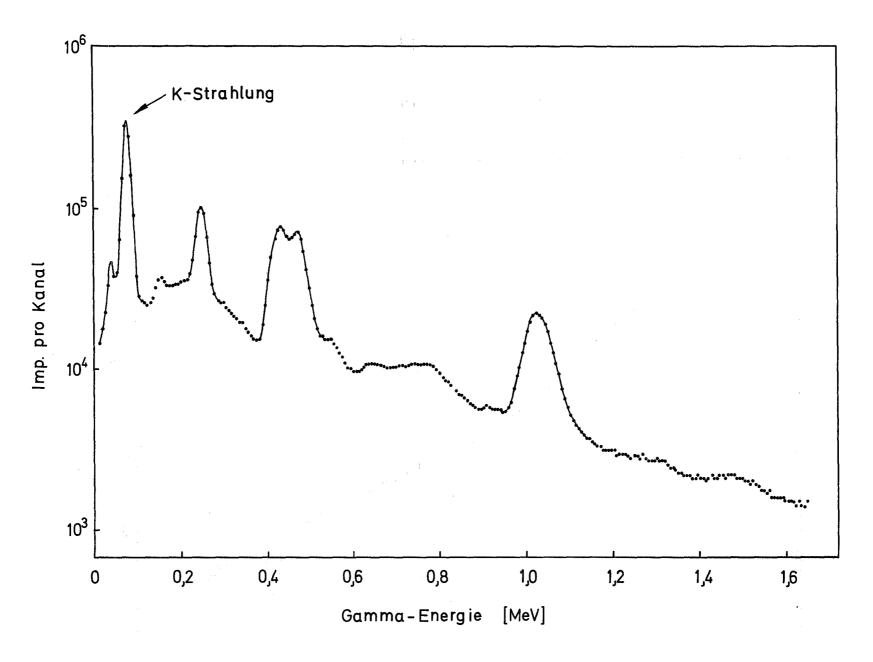


Abb.3 Gamma-Spektrum des ²⁰⁰Bi von 0 bis 1,6 MeV

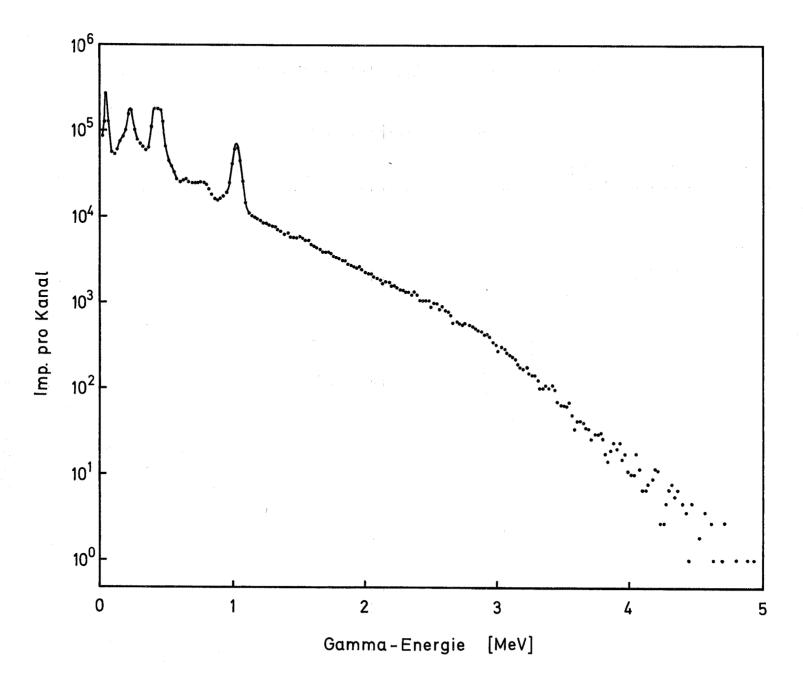


Abb.4 Gamma-Spektrum des ²⁰⁰Bi von 0 bis 5 MeV

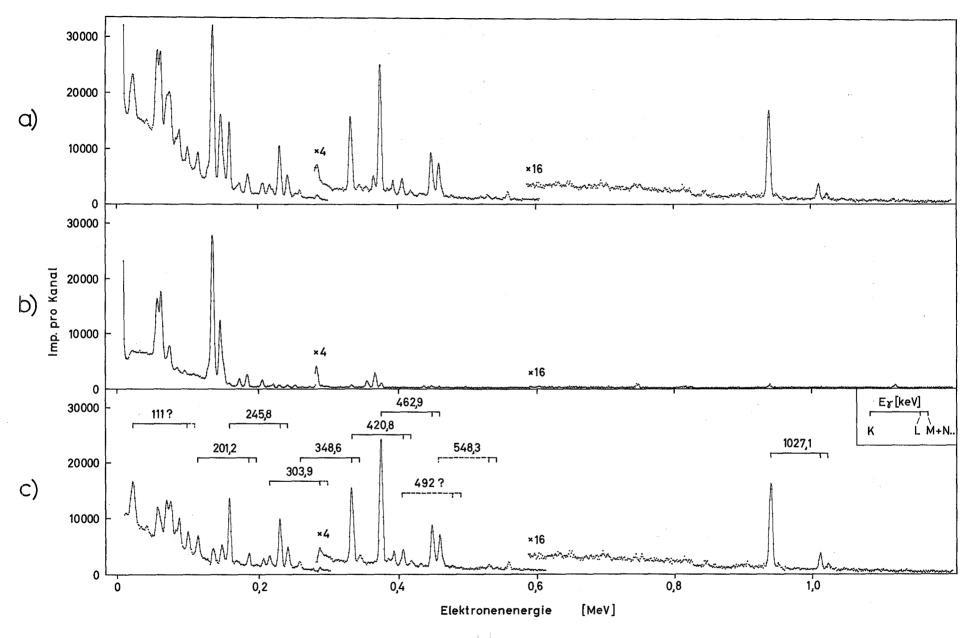


Abb.5 Konversionselektronenspektren

c) ²⁰⁰Bi

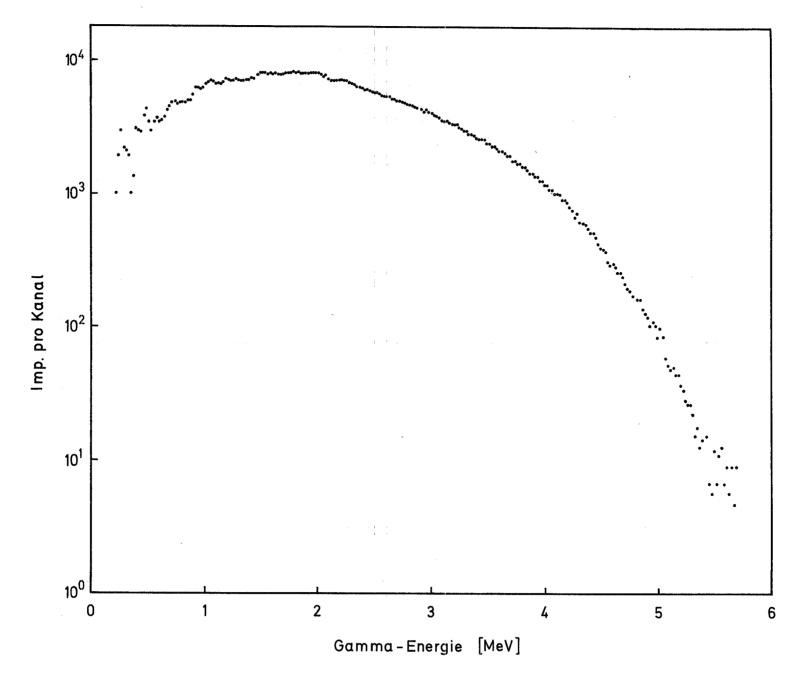


Abb. 6 Zwei – Kristall – χ – Summenspektrum des ²⁰⁰Bi

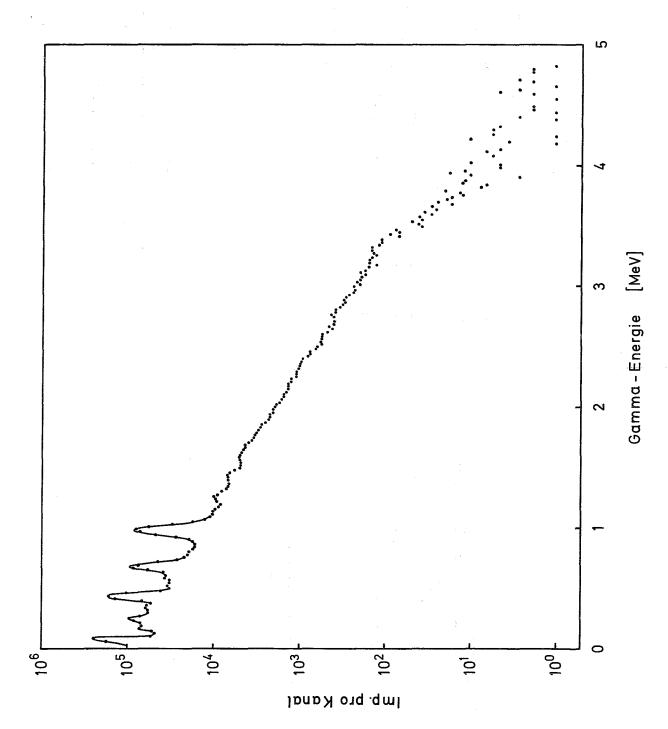
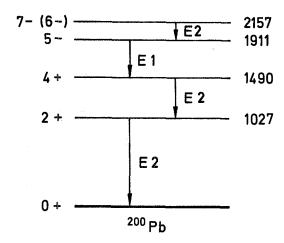



Abb.7 Gammaspektrum des ²⁰²Bi von 0 bis 5 MeV

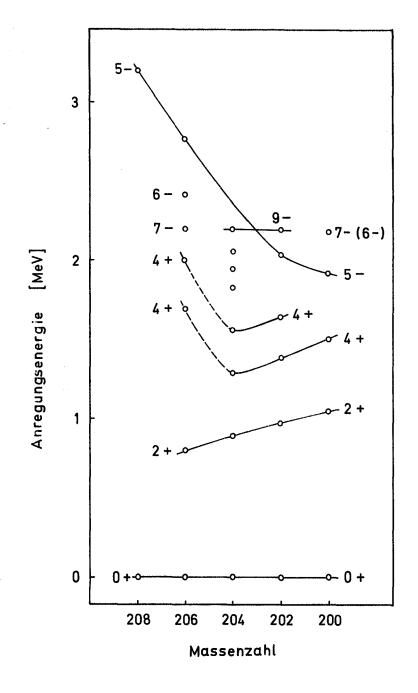


Abb. 8 Niveauschema des ²⁰⁰Pb

Abb.9 Angeregte Zustände der geraden Bleiisotope