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Abstract:

The future of any advanced reactor type can be assessed by determining the

savings in the total energy generation costs as weIl as in the raw material

consumption by its introduction into a nuclear pmver generation system. For

this purpose several probable nuclear strategies~ for a given nuclear energy

grot~h curve$ with different thermal converters~ advanced converters and fast

breeders '1ith either plutonium or uranium start-up~ have been analysed. The

results~ with the clearly defined assumptions made in the paper, indicate

that the THTR type ~ regarded as one of the advanced converters 1 would have

some economic and rat-l material advantage over the um. type or a tlvO type

strategy with Lvf-[ and sodium cooled oxide breeder. lrowever, the strategies

with steam cooled oxide and sodium cooled carbide breeders with U-235 start

up show definite and significant cost and raw material advantage over any

other strategies. These breeders with uranium start-up represent their Ol~

particular type of converters which supply all of the plutonium required by

them, and with their introduction the importance of high breeding ratio gets

considerably reduced.

Although the uranium start-up breeders require larger amounts of U-235 at

the beginning, the total uranium consumption with these systems over a 10ng

period of time would be considerably lower than those with any other thermal

or advanced converter systemso The results indicate further that the sodium

cooled carbide breeders vith U-235 start-up have the highest economic poten

tial and the lowest uranium consumption of the reactor types considered here.

and that a simultaneous development effort lvould be necessary for the steam

cooled and sodium cooled breeders because of the different degrees of diffi

culties associated with each systemo
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1. Introduction:

If one cons1ders the question of the future of the advanced converters, one

1s automatically led to the question of the future of fast breeders to have

a standard of comparison. In previous works {i,1:,7 the energy generation costs

end natural uranium consumptions for various individual proven and projected

thermal reactors as weIl as for projected sodium cooled fast breeder reactor

types were compared and analysed. Tbc costs and the natural uraniumrequire

ments for coupled reactor strategies with converter and breeder type reactors,

in ~1hich all the plutonium produced in the breeders end converters was utili

zed for the installation of new breeders, were also compared extens1vely in

these publications.

Recent analyses of similar type problems have sho~m that the previous types

of models should be supplemented with some modified reactor versions to per

mit further interesting conclusions regarding nuclear strategies in an ex

panding nuclear economy.

Prev10usly a number of thermal converters 't'TaS compared ,11th only tue types of

fast breeder systems, whereas the situation has been reversed now. In this

study a number of technically feasible and economically attractive projections

of fast breeder types has been compared with the proven light water reactor

type (Ll~) and .an advanced end economically attractive converter of the THTR

type. It 1s becoming more and more obvious that the fast breeder does not re

present a single reactor type but rather a whole generation of reactors with

different technical realizations of the same physical principle. All these

technical variations promise significant advantages over the proven cönverter

types. Tbe variations consist mainly of different coolants end fue! types. In

the present analysis fast breeders with steam and sodium cooling and with

oxide and carbide (in the case of sodium cooling) type fuel have been consldered.

It has also been found that all these Pu-fuelled breeders can be started up

with U-235 also without having to forego any significant cost advantage and

without any change in their technical lay-out. In this way such breeders are

no longer, as ltms assumed earlier, dependent on the plutonium produced from

the thermal converters but can supply the entire amount of Pu required by them

from their o,.,.m production and represent so to say, their Otin converter type.

Basically breeders with U-235 start-up offer two modes of operation. According

to the one mode U-235 may be supplied to the parent reactor for its runn1ng
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requirement and all the plutonium produced used to start-up fresh plutonium

fuelledfast daughter breederso In the other mode~ plutonium produced may

be fed back to the parent reactor until it is converted into a complete

plutonium fuelled fast breeder. Tbe first mode of operation is strongly

dependent on the price of plutonium; it is quite probable that under certain

conditions the averaged energy generation cost might increase with increasing

Pu priceo With the second mode of operation the energy generation costs from

the parent breeder are independent of the Pu price during Pu-recycling

vmereas, when it has been converted to a fully Pu-fuelled breeder~ an increase

in Pu price may eitherbe of advantage (for high breeding ratio) or the costs

may be independent of the Pu price (for low breeding ratio). On the basis of

these considerations the second mode of operation has been chosen for the

subsequent analysis.

The next point which causes some extension of the previous analysis is a more

optimistic est.imate of nuclear energy demand [j7. To assess the effect of

variation in the rate of nuclear growth~ the economics and the problem of

uranium reserves have been compared in this study with the slightly less

optimistic nuclear growth as sho~m in li,27.

The recent analysis has also shown that although the introduction of fast

breeders into a nuclear system makes the problem of the exhaustion of natural

uranium resources of secondary importance, the problem of the supply of en

riched uranium and the associated problem of the separative t-lOrk capability

in a diffusion plant attaius primary importance. In this connection it should

be stressed that the question of the very stze of the separation plant becomes

rather important as the unit separative work costs appear to be extremely

sensitive to the size of the separation plant and influence thereby the total

energy generation costs fram reactors based on enriched uraniumo

In view of the changed conditions as discussed above the previous studies

on nuclear strategies had to be extended. Eue for the purpose of comparison

the same methods of analysis have been adopted in the present study. This

means, a particular energygrowth curve has been assumed and different

reactor-types (the characteristicsof which do not change ~nth time) have

been taken to meet the demand, either with a single reactor type (oue type

strategy) or with two reactor types (coupled strategy) one of wh1ch acts

as a converter and the other as a breeder and all the excess Pu produced 1s

installed in new breeders. For comparison, the newly considered two type

strategies with U-235 and Pu start-up of breeders can be treated also
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according to the same method. The converter in such a two type strategy only

starts with U-235 and needs no further supply of this fissile material. Por

the same purpose of comparison the starting point for all the nuclear strate

gies has been taken to be 1970. lt is quite obvious that this type of model

analysis is not carried out to predict the future in all detail. lts rnain

importance lies in determining the influence of important parameters on such

models. However~ the relative importance of such parameters which influence

the future development in a major manner can be clearly assessed from this

type of model~analysis. The results of such an analysis permit the setting

of proper tarßet values for the envisaged development.

2. Reactor Types and Nuclear Strategies Considered

For the following analysis seven different reactor types have been cansidered

and theireconomic and t~chnical data important for this study are s~arized

in Table 1a.

The light water reactor (LvTR) corresponds to the LlJR-AEG-1970 and the thorium

high temperature reactor (THTR) to the TIITR-BBK of L~7. The THTR type represents

one of the most advanced thermal reactor types considered in the previous

study L~7.

All the fast breeder verstans with Pu and U-235 start-up have been computed

anew for this study. Detailed data sets have been given in Table Ib. The three

breeder verstons, one with steam cooling and oxide fuel and one of the sodium

cooled oxide type and one of the sodium cooled carbide type, correspond to the

three types now under active consideration. The first type with lts relatively

low breeding gain and high fissile inventory represents a version~ which appears

to be a natural extension of the weIl proven light t!ater reactors and may have

the potential for an early introduction 9 e. g. by the late seventies. The

second type represents the generally accepted version of the new breeder gene

ration using sodium cooling and oxide fuel, whereas the third version corre

sponds to a high performance breeder the introduction date of l1hich may be

during the eightieso

The optimistic rate of nuclear energy growth in Germany mentioned earlier,

1s sho~~ in Table II. For compar1son the pessimistic growth ~!hich was con

sidered as optimistic in L~7 has also been includedo



Table 1a:.-.--.........,..,.....,,-,._- .9.~~r ~cte r.!..~_!.~a; a _~~~_~h~._~~~ac~2-!'.s__S2.n..~.~der~~.

Initial
Fissile
Inventory

lf)...;..~--_. _._----_.__..--...._-----_..

Pu
surplus
lkg/!7

Total Capital
Investments
(+ First Core)

tr06
D~7

Energy Casts !DPf!kWh7- ' ....
Invest- Fuel Cycle Totd
ment First f· Total Energy
+ Oper. Core Le.aosts Costs

Time for
Conversion
toPu fuelled
Breeder t~7

Lig1:lt WaterReactor .(LWR)
6.,ith Pu recycling)

Thorium High Temperature
Reactor (THTR)

Steam~Cooled U-235 Start
up Fast Breeder (DUBR)

Socliwn-Cooleo. .Fast Breedet
with Oxid~ Fuel (Na:BR,(O»

Sodium~Cooled Fast Breeder
withCarbide Fuel (NaBR(C»

3.43

2.00

3.60

2.41

1.73

(135)
reeycled

o

(30)

166

188

510 (650) I 1.10 I 0.21 I 0.67 I t .77

550 (620) 1.17 0.10 0.46 1.63

I
510 (650) 1.10 0.24 0.50 1.60 ca. 14 Vi

I

580 (650) 1.23 0.• 13 0.37 1.60

580 (640) I 1.23 I 0.09 I 0.25 I 1.48

Sodium-Cool'ed U-235 Start
upFast B);:'eeder with Oxide
Fuel (N'aUBR(O»

SodiU1tl'''Cooled. U-235 Start
upFast Breeder with
C.;lrbidefuel(NaUßR(C»

3.20

2.17

166

188

580 (700)

580 (650)

1.23

1.23

0.19

0.12

0.47

0.32

1.70

1.55

ca. 6

ca. 4
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...e-.......... ~.............,.-__~ .

~_.~_._ ..__...-;.-------, ...
unit TlITR DUBR NaBR(O) N;tBR(C)' NaUBR(O) NaUBR(C)

Nettelec.power
Therm.effic.iency
Av. fuelrating
Av.buru"'up

P-,

6 5'
(J I

.l-I
\1) ~

p., tll
0.1-1
.w !/l
o
!/l.l-l
H tll

._--_.-.-----.....-._-
Th-232
WasteU
U··233
U··235
U··238
Pu-239+241

l-1\-te
1

HW/kg
MlM/kg

%

1000
0.345
0.0221
27.5

o
o
o
2.56
97.44
o

1000 1000 1000 1000 1000 1000
0.44 0.39 0.40 0.40 0.40 0.40
0.024 0.0493 0.0605 0.0705 0.0605 0.0705
57.1 32.8 25.7 20.56 25.7 20.56

",,-'._--- ---- -.._- ._...........-.-.,...,., -_._-._-'--'- ,._"'~"'--"-' ---_.._.._'--,~ ......,._",- ,~-----_._._-
--~_._._,_.-

95.17 0 0 0 0 0
0 0 9ff .50 95.ltO 0 0
1.51 0 0 0 0 0
2.31 6.5 0 0 7.3 5.78
0.25 93.5 0 0

I
92.7 94.22

0 o· 5.50 4.60 0 '0
_....-.- ~_.,-_.'_ .._._-~- _'~ . -.._.~... __-..._.,...._,"__,.-.._._...,.........-__,_..__..,.-.__,,_......._." ~__,_.'__"",' ._._.........:.-__,....-,. ,..._"__.".__._"...." ,_,._~_"._. . ._. _......_.._"!'""_._· i_"_"~_'''__._......__, ,,._,"'''" ,._,.

0'

o
94.58
o
o
0.
0.60

o
93.54
o
o
o
0.646·

o
91•• 58
o
o
o
5.42

o
93.54
o
o
o
6.46

o
93.97
o
o
o
0.177'"

95.50
o
2.17
0.76
0.21
o

o
o
o
0.85
98.34
0.52

%U-233
U-235
U-238

P...lV Th-232
6~ Wastl~ U
o tll

.c::
\1)0
p-,!/l
0'.-1
.l-I"t:l

~ oI.JPu-239+241
Htll
~-----_.'-.~.._-.--'._.'-'-.- . ~-r--"--'--

Fue! mass ratio
No. offuel batches
Load delay
Fabrication time
Reprocessiug time
In-pile time

0.970 0.91.0 0.973 0.973 0.978 0.973 0.978
4 ~ 3 3 3 3 3

a ,1.22 0.78 0.87 0.50 0.72 1.06 0.76
a I 0.50 0.50 0.31 0.50 0.36 0.36 0.36
a I 0.60 0.60 0.50 0.60 0.40 0.80 0.40 \

. a I 4.87 9.31 I 2.60 1.66 1•14 ,1 .66 I •14 .
......_-.__• ._ _~ ....___l,l.__ ~... ..~__ - ... ~__ ~... .._ ----__ -_....:•• - ~..._--~--,,---_ ...... - .... __• ~ ...4__-.-.-~ ...-.-- ........... ..,.-~ ......... ---- ... -.--..-~.'"'~ .."--...

• Excess Pu after conversion to Pu-Breeder
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Estlmated nuclear capacity in Germanj[ LGvl~7

Upper Est1mate

Lower Estimate

1970

2

2

1980

25

20

1990

85

62

2000

195

132

2040

800

770

The varlous nuclear strategies analysed in this paper are shown below:

I. Lvm (recycling) one type strategy

2. TurR oue type strategy

3. DuBR one type strategy

4. LtlR + NaBR(O) coupled strategy

5. LlV;R + NaBR(C) coupled strategy

6. NaUBR(O) + NaBR(O) coupled strategy

7. NaUBR(C) + NaBR(C) coupled strategy

It 18 worthwhile ment;ioning here that t~ steam cooled oxide fast breeder ~Jith

uranium start-up corresponds in reality tq a one type strategy~ as the amount

of Pu produced in excess 1s so smallthat ottly a very small number of Pu fuelled

breeders can be installed even in the year 2000.

3. ,Separative Work Capability and Costs

Any nuclear strategy based on enriched uranium reqtiires isotope separation capa

billty. The extent and duratlon of such capabilities depend mainly on reactöt

types used and the nuclear energy grolrth curve assumed. The unit separat1ve

work costs are rather sensitive to the installed separative work capability

of the isotope separation plant /47 and same relation between the stze of the- --
plant and the unit separative work costs is necessary to determine the total

ertergy generation costs for a nuclear strategy t~th enriched uranium fuelled

reactors. In the following paragraphs~ the assumptions, made to assess the

specific separative work costs for isotope separation plants with different

capacities, have been discussed and an analytical expression derived relating

the unitcosts with the capacity.

3.1. Assessment ofthe US Plant Capabilities and Costs

The major part of the present enriched uranium requirement of the Western world

for the generation of pO';'Jer is supplied from the American diffusion plants. The
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situation is not expected to change drastically during the foreseeable future.

As a first approximation~ therefore$ it appears reasonable to take the American

capability as the reference point.

A1though all the relevant technical and cost data for the American plants are

still classified? the total capability estimate for these plants by a number

of private industries [5$27 range between 19 - 21 • 106 kg units/a. Since

there are three diffusion plants$each capable of utilizing the same amount

of installed electrical power~ the capacity of all the three plants may be

taken to be the same~ although the estimated capital investment varies slightly

from plant to plant. The capacity of a single diffusion plant in the USA,

according to these estimates would, therefore, be around 7 • 106 kg units/a.

The published total investment costs for the three plants L~7 is around

~ 2~3 • 109• Assuming that with improved technology somewhat larger plants
6would be possible, an American plant with 8 • 10 kg units/a~ with a total

capital investment of ~ 1 • 109 and a unit separative work cost of ~ 30/kg

have been taken as the reference point for the present study.

3.2. Plant Scale-up Factor and Costs of a European Diffusion Plant

A French detailed estimate L~7 on European diffusion plants indicates that

they would have a scale-up factor of around 0,4. Such a low scale-up factor

is accounted for by the fact that a large part of the capital investment is a

function of the nu..1Ilber of stages only and some are independent of the through

put of the plant.

It was indicated further that a European diffusion plant with the largest

possible capacity wou1d still have about 30 %higher unit separative work costs

than an American diffusion plant with the same capacity.

3.2.1 Annual Costs in a Diffusion Plant

The annua1 costs comprise of the capital charges, personnel costs, electrical

energy consumption$ maintenance charges and any other fixed charges (Royalties~

patent fees, control etc.). Sum of these costs divided by the total separative

work capability in kg units/a gives the costs for one kg unit of separative

work. The raw material costs (UF6) are not included here as they are cons1dered

separately while calculating the enriched uranium price.

The number of operation and maintenance personnel is mainly a function of the

number of separative stages. In case the number of staRes in diffusion plants
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llith different capacities is kept the same~the personnel costs may be taken

to be independent of the plant capacity. Similarly~ the fixed charges, like

royalties and patent fees payable for the process or for specialized equipment

as well as analytical control and laboratory charges are also to a large extent

independent of the plant throughputs. The amount of electrica1 energy used in

aplant is directly proportional to the separation capability of the plant~ but

the unit cost of energy increases tnth decreasing stze of the plant as the

power generation units (for example nuclear power reactors) have also similar

scale-up factors.

3.3. Assumptions

All the assumptions made in determin1ng the annual charges for European diffusion

plants with different separative work capabilit1es are summarized below:

3.3.1 Thc largest probable stze of a single diffusion plant in the USA
6would be around S·lO kg/a.

3.3.2 The total capital investment for this American plant ~rould be 4,0.109 DM

and the unit separative llork costs from this plant 1;~ould be 120 m1/kgo

3.3.3 The total capital investment for the same stze plant if bullt in

Europe would be 30 % higher, i. e. 5,2 0 109 ~l.

3.3.4 Tbe capital investment in the range of 1 - 8 • 106 kg/a separative work

capability for European plants would change according to the·relation~

_ 9 - [Ar 1°,4K.rL10 DIjI = 5,2 '-----g-I (1 )
8·10 J

tmere Kr indicates the capital investment in 109 DM for a diffusion plant

having a capacity of AT kg of separative work per year.

3.3.5 Tbe energy costs in Dpf/kvfu, for the energy product1on units instal1ed

for the diffusion plant, in the capac1ty range of 0,1 - 1 eWe, would

follow the following relation~

(2)

iilhere CE gives the electrical energy generation costs in Dl'f/kHh for

a power station 1-7ith an installed capacity of E GHe in the range

O~l ~ E ~ 1.

It has been further assumed that the largest reactor unit installed
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would be 1 GWe. If the requirement of the diffusion plant exceeds thls

value, several reactors ,vould be installed in parallel and the t-Jeighted

average of the electrical generation costs from these reactor would form

the basis for calculation.

3.3.6 The number of operation and maintenance personnel required for a 8'106 kg/a

European plant wouId be 2400, i. e. one third of the total number of

personnel for the three American plants. This number of 2400 would remain
6the same for all the other European plants in the range of 1 - 8'10 kg/a

separative work capability. Similarly, the yearly fixed charges of

120'106 DM/a consisting of royalties, patent fees, control charges and

other miscellaneous items, are 10 %of the rest of the annual charges

for a 8.106 kg/a plant and wouId remain the same for all the other plants.

3.3.7 The diffusion plants are amortized over 25 years with an interest rate

of 7 %/a and a tax rate of 2,9 %/a, giving an amortization rate of

J1 ,76 %/a.

3.4 Annual Charges and Unit Separative Hork Costs as a Function of Diffusion

Plant Capacity

The capital investment, the annual charges and the unit separative work costs

for different European diffusion plant capacities have been summarized in

TableUI. The unit costs as a function of plant capability can be reproduced

within an accuracy of about 2 %with the following simple expression lZi:

(3)

The estimated capital investment reduces rather slowly from 5,2'109 DM for a

8.106 kg/a plant to 2,26.109 D11 for a 1.106 kg/a plant. The unit separative

work costs are 160 DH/kg for the 8'106 kg/a plant and are about 30 %higher

than the corresponding American plant and increase fairly rapidly to 560 mUkg

for the 1.10
6 kg/a plant. Subject to the assmuptions in 3.3., the rapid in

crease in separative work costs with decreasing diffusion plant size brings

out clearly the economic disadvantage associated with sroall size diffusion

plants.

3.5 Other Processes for U-235 Enrichment

A number of basically different methods La,2i may be used in principle for the
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enrichment of uranium. Since no reliable cost estimates for ·.large seale plants

with other methods have yet been published~ the foregone cost esttmates for

unit separative work with gaseous diffusion form the basis for the subsequent

analysis.

Table 111: Characteristic Cast Data for European Diffusion Plantswith

Different Separative Work Capability

6Sep. WG Capability 10 kg/a

LÄ.r_7
8 6 4 2

120 . 120

58 58

335 260

156 140

I.

11.

Capital Costs Lio9 DU7
- 6 -Annual Charges LIO Du/~1

J. Capital Charges
(11 s 76 %/a of Capital Costs)

2. Personnel
(2400 at .DH 24000/a and person)

3. Eneigy Costs

4. Haintenance
(3 % of Construction Costs)

5. Royalties. Patents, Control,
rIisc. (Fixed Charges la)

5,20

612

4,65

548

3,94

464

58

180

119

120

3,00

353

58

91

90

120

266

58

60

68

120

6. Total Annual Charges 1281 1126 941 712 572

160

111.. Unit Separative Hork Costs LDM/kg Ar_7 160

IV. Unit Ar Costs according to Equ. 3

[DH/kg A.r_1

188

190

235

242

356

368

572

560

Installed capacity of reactors to meet
thc energy !equirements of the diffusion
pla~ts LGW~1 3

Specific energy generation Costs (weighted
av.) lnpf IkTjJl17 1,6

2,25 1,5 0,75 0,33

1,74 1,77 1,80 2,35
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4. Results of the Strate8ies Conside~ed with Respect to Costs and Demand of

U-nat~ U-235 and Separative Work

The comparison of different models of nuclear energy production 1s carried out

on the basis of cost figures and that ofthe demand for raw material i. e.

U-nat and U-235~ as these figures are of primary econamic importance. Further~

more~ the question of the urgency and size of a European Isotope separation plarlt,
".rhich becom~s mote arid more 1mportant fot the supply bf fissile material of a

large nuropean nuc~ear energy industry~ may be analysed on the basis of the

figures on the demand for separative work capability for different nuclear stra

tegies. These demands are based on nuclear gro~h curves 0% Table 11.

I~ Table IV the results for the demand of fuel material for the seven strategles

considered are.given. The required demand of three types of materials has been

calculated ... U-235, enriched uranium (according t9 the enri,chnient necessary for

the d.ifferent reaetor types /27> and natural. urartium. The data are given for the
.,' --

upper and lower nucleareriergy demand curve. T1'1e last eolumn of Table IV repre-

sents the amount of Pu bound in all reactors for the considered strategy in the

year 2000. Theamount 18 a measure of the potential f~r the installation of ad

va~ced types of breeders w1th reduced inventory demand, i. e. high performance

'breeders.

Table V gives the required separative work for the different strategies and by

these figures an indication on the s1ze of an European separation plant~ which

is able to meet this requirement. In this analysis taU end concentration is not

changed for different plant size and is taken to be equal to the American plant.

Table VI contains specific cost-figures for all reactors considered which are

supplied with enriched uranium. As the costs for separative ,"ork are strongly

dependent on the size of the separation plant, this size indirectly influences

all power production costs of U-235 fuelled reactors. This dependence which is

most remarkable for Lvffi is sho~m in Tahle VI. In this analysis U30S and Pu prices

are taken according to the US price lists. Partial load of the separation plant

operation has not been considered.

Table VII gives the salient results for the economic comparison of different

strategies. The annual energy production costs are mean costs per kl{he of all

reactors in operation in the respective year for a given strategy. The present

worth represents the cumulative costs of energy production of a given strategy

in the period 1970 upto 2000 actualized with 7 % discount rate to the year 1970.

The cost figures as a function of the separation plant stze are obtained as
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foliows. Using American supply of enriched uranium one obtains the lower limit

of the cost figures. The upper limit results from adopting the minimum separa

tion plant size for each strategy. The last column gives cost flgures for the

use of a large European separation plant of about So 103 t/a ~. These figures

lie in bett7een the limits of the first and second column.



Table IV: J)el!.!.n.9...l.<?.!_JI~E!h!late..!'.!.a..!..,_~~}?.i._~ere..n...~._~t..!'.~t,:.e..8.!.e..s.

-,p..

315
430

190
270

DUBR

THTR

,,.. '''.-------------.----------.--.--.-'··---·-.-:::-·-:·'·_····--"··_···-·-·-·'·--r -----,-.-.'----'•."-'--.. ,··-··---··--·-·-.:-!f--::.'-.~.-'-'·-"--·-l'
.Annual Requirement Lt/~/l' Cumulative Requirement LI0 !I ,

Bound Pu-
U-235 1

1

enriched Uranium I U-235 ' enrich. natural Amount

1980 1990 2000. 1980 1990 2000 ~ 2000 Uranium UraniumL~i
2000 2000 2040 2000

...,,_._, _-. - _..'-,----_._--,-,_ _~ '.' _- ,-_ .. ,., .' _.•.__.'. -' __..,. ._ .. _ ' _.... , ".. _.•.'",.....•-, ".•..,,_., '_., ""_ '-
L1i.TR (recycle) LD 10,1 27,8 581 460 1390 2900 0,85 42 180 1800 I 70

UD 12,4 38,0 86 I 560 1900 4300 1,25 59 260 2000 100

LD 3,8 n,2 23,3 I 4 15 30 0,37 0,4 90 1200
UD 4,6 15,4 34,8! 5 20 40 0,53 0,6 ' 115 000

LD 11,1 20,4 30,8 I 170 310 470 0,48 7 WO 400
UD 14,0 28,3 56,0 I 210 430 870 0,70 11 145 600

LWR+NaBR(O)LD 10,7 25,8 37,3 I 430 1060 1600 0,14 30 155 440
UD 13,2 35,3 66,4 I 530 1400 2700 1,10 45 225 640

LWR+NaBR(C) LD I 10,4 21,1 25,21 420 810 1100 I 0,60 I 25 I 125 1.80" 2QO
UD 12,4 29,3 43,7 490 1200 1800 0,85 35 180 ~20 I 270

NaUBR(O)+NaBR(O) LD I 9,2 11,8 11,5 I 130 165 1551 0,30 I 4,01 6090 I 260
UD .l1,5 16,9 22,7 I 160 230 315· 0,45 6,2 95 125 I 370

NaUBR(C)+NaBR(C) LD I 5,3 3,5 0 I 90 64 0 I 0,.l1 I 1.,8 I 22 22' ! 265
UD 6,6 5,9 2,0 110 100 30 0,18 3,1 36 36 I 370

I
i
!

"

• LD • lower demand curve
UD '" upper demand curve
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European Plant
- 3 -Separative Hark Capability 110 t/al- -

Unit Separative Work Casts ZDH.lkg AT_7
2

368

4

242

6

t80

8

t60

USA Plant

!:Of 20

120
.;.,.---.__._._.._ ..._----~"_._-"'-"_._--_._._,--,,-,. .....--.._~,_ ...... ', .•_-~._._,"-"~ .._,.__._..-..._,,...._-"'-_.._~;....-._----------+_.,,--"'_.".--""...,--_.._~-,--~--- ..._.._-,---,

Energy Praductian Casts Zfipf IkWhI

LWR

UJR(recycle)

THTR

nUBR

NaUBR(O)

NaUBR(C)

2,30 2,02 1,91 1,85 1,77

2,22 1,98 1,89 t,84 1,77

I -~

0"

1,95 1,78 1,71 1,68 1,63

1,92 1,75 1,68 1,65 1,60

1,98 1,83 1,77 1,74 1,70

1,72 1,63 1,60 1,58 1,55



'.f.able"'y'!'~ : Costsof Nuclear Energy Production as a Function of Different Nuclear Strategies
.snc:l_Dif[E!t~t.!t. Si.:~e_()J.,_~~r.~~.!En J~!.~1!.t~_. __ .__ ._.__ .__. .__.".._...__._-.;..;._.._. ~. _

"'-J

European Separation Plan.t

{s· 103 t !a ~_I

Annual Present Worth
Gosts of Cum.Gosts

li09 DMla7 19.70-2000
1990 2000 li0

9 D~I

Size for
Strategy
PresentWorth
01: Cinn.Gosts

1970-2000

[109 D"!jl

European Separation. Plant
with :t1inimal

respective
Annual
Gosts

Li09 DM/tJ.7
1990 2000

USA Separation Plant

(=20 0 103 tla)

Annual Present Worth
Casts of Gum.Gosts
/To9 DM/al 1970-2000

1990 2000 Lr09D~1

6,90 14,7 41 ,1 7,2 15,2 42,7 7,2 15,2 42,7
9,15 21 , J 52,3 9,7 22,0 54,5 9,7 22,0 54,5

6,35 13,5 37,8 6,65 14,1 39,6 6,55 13,9 38,9
8,40 19,4 48,J 8,80 19,9 49,4 8,8 19,9 49,4

6,15 13,3 37,0 6,4 13,9 38,8 6,3 13,4 38,1
8,1.0 19, I 47,1 8,5 19,6 48,0 8,5 19,6 48,0

'6,75 14,1 40,4 7,15 14,8 42,9 7,0 14,5 41,5
8,95 20,4 51,4 9,3 21,0 53,0 9,3 21,0 53,0

6,55 13,3 39,2 7,15 14,1 43,1 6,75 13,5 40,4
8,65 19,3 49,8 9,15 20,0 52,5 8,9 17,7 51,S

6,57 13,8 38,7 1,45 15,3 44,3 6,75 14, J 39,7
8,65 19,8 49,7 9,3 21,0 53,2 8,9 20,3 51,0

I
I

5,96 12,2 35,1 6,7 13,4 39,0 6,05 12,5 I 35,6
7,85 17,9 45,1 8,9 19,5 51,3 7,8 J8,1 45,8

,---------"-."-...'-"'--.----'-.-,--"""""-"-----..........- ......,-...-~"--'--•.•-.-~,_.,....,M__~••~ ..."~.~'''__~·__<._._..."''......'''_._.." ,.,_'._".,_._. ",_.''''...-'O'.H._"'_'"_., ..,__''', ".-.,.... _ .._,.,__....'_,••__"..,
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'* LD "" 10wer demand curve
UD ... upper demand curve
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5. Discussion of the Results

The results as presented in Chapter 4 may be d1scussed under the following four

major heads:

1. Compar1son of the nuclear strategies based on fast breeders with U- and

Pu-start-up with that with the most advanced converter.

2. Comparison of the ~vo-type strategies lnth thermal converters and Pu

fuelled fast breeders and those with fast breeders with U and Pu-start-up.

3. Comparison between the steam cooled fast breeder version and the light

water reactor and comparison between the two sodium cooled fast breeder

versions.

4. Diffusion plant capabilities and costs as a function of different nuclear

reactor strategies.

5.] Comparison of the Nuclear Strategies Based on Fast Breeders wlth U- and

Pu-start-up with that with THTR Type.

5.].] The THTR version indicates, both, an economic advantage and a reductlon

in U consumption over the one type strategy with LvTR alone as weIl as over

coupled strategies with LTrR-NaBR (oxide and carbide type) upto the year 2000

as shovm belm-1 ~

THTR

LHR

LHR-NaBRO

LHR-NaBRC

Present l-lorth U-235 U-nat
upper demand curo. upto 2000
curve

48,1 Gm1 530 t ]]5 000 t

52,3 I! 250 t 260 000 t

51,4 Ii ]00 t 225 000 t

49,8 It 850 t 180 000 t

5.].2 As in the case of the LfJR type, the THTR type is incapable of solvlng

the long term problem of U-reserves although their introduct1on causes a signi

ficant reduction in the accumulated requirement of U-nat.

U~at upto 2040

LWR.

THTR

2 000 000 t

1 300 000 t

The TIITR type reactor has the lowest inventory of U-235 of all the reactors

considered here. However, since this U-235 is required in an almost pure form,

the diffusion plant capability required is rather high and increases continuously
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wlth time. Therefore;> l1ke L"&JR strategles~ a nuclear strategy based on THTR alone

has to depend always on dlffusionplant capab11ities for their enriched uranium

supply.

5.1.3 The one type strategy with THTR shows on!y insigniflcant advantage over

the steam cooled version with U-start-up regarding the U-requirement from the

short term point of view and ShOllS a considerably higher consumption of uranium

over a longer per10d of time. Economically and technologlcally the steam cooled

vers$,on wlth U-start-up appears to have significant advantages over the THTR

type.

~TR

DUBR

year
Present tvorth

2000

48,1 GDH

47 ~ 1 GD~1

U-235
2000

530 t

700 t

U-nat
.2040

300 000 t

600 000 t

5.1.4 The U-nat consumption and the U-235 requirement lnth THTR strategy are

higher than those with two type strategies with breeders lvith U and Pu start-up.

This 1s particularly obvious in ease of the carbide strategies. Economically

the THTR type appears to be better than the sonium cooled oxide version although

the situation 1s reversed l"ith the carbide type.

Present l'lorth U-235 U-nat
year 2000 2000 2040

TUTR 48~ 1 GDa 530 t 1 300 000 t

NaUBR-NaBR(O) 49,7 n 450 t 125 000 t

NaUBR-NaBR(C) 45 $1 n 180 t 36 000 t

5.1.5 An important advantage for the THTR type lies in the fact that the total

investment cost including the first core is lower than that for any of the

reactors considered here (620 IIDU as against 650 l1D~l snd above). RO't'.1eve:r:, 1t

has the disadvantage of not baving a plutoniumbUild-up potential which enables

the start-up of more advanced and economic fast breeder types.

5.2 Comparison of ehe Tv,oType Strategies t1ith Thermal Converters and Pu-fuelled

Fast Breeders snd those witb Fast Breeders with U- and Pu-start-up.

5.2.1 The point of vieu \lhich has been prevalent upto the present time that a

thermal converter generation 1s essential for the introduction of Pu-fuelled

fast breeders nolonger appears to be valid. A fast breeder w1th U-235 start-up
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contains so to say its own particu1ar typeof converter and supplies all its

Pu required regard1ess of the breeding ratio. Such a system coup1ed with the

Pu-breeder type offers significant economic and ra~~ material advantages over

the normal thermal converter-breeder coup1ed strategies.

Present W'orth U-235 U-nat
year 2000 2000 2040

LlJR+NaBR(O) 51,4 GDH 100 t 640 000 t

NaUBR(0)+l'laBR(O) 49~7
11' 450 t 125 000 t

LNR+NaBR(C) 49~8
u 850 t 320 000 t

NaUBR(C)+NaBR(C) 45,1 n 180 t 36 000 t

5.2.2 On the basis of the discussion in 5.2.1 it 1s quite evident that the

introduction of Pu-fuelled fast breeders is dependent on their technical

feasibility and bettel' economics and not on the availability of Plutonium

from thermal converters 01' breeders. On account of this, the great importance

attached to the b~eeding ratio of fast breeders unt!l nO~l 100ses apart of

its significance. This is particularly evident from the resu1ts of the strategy

based on steam cooled version.

5.3 Comparison Between the Steam Cooled Fast Breeder Versionand the Light Water

Reactor and Comparison Between the !Wo Sodium Cooled Fast Breedßr Verstons.

5.3.1 It is surprising to note that the strategy based on steam cooled version

with U-start-up indicates a number of advantages. Because of its favourab1e

economic structure the total energy generation costs are the 10west except

those with strategies ~nlth carbides. The U-requirement in this strategy i8

also reduced significant1yover all the other one-type-strategies and the

t~-7o-type-strategiestlith UJR-NaBR. Besides that, the steam cooled reactor

strategy is capable of storing large amounts ofpu produced, in a more economic

manner than the light tvater types for subsequent uti1ization in more economic

breeders. This version corresponds to a natural evolution of the Lt~ type and

can utilize the recyc1ed Pu more economically. It appears reasonab1e to assume

that this type would be ready for 1arge sca1e introduction during the late

seventies.

5.3.2 The sodium coo1ed fast breeders with oxide type fuel do not appeal' to be

economical1y as attractive as the THTR type 01' the steam coo1ed version with

Uranium start-ups It appears that the high1y efficient sodium cooling requires
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the highly ..efficlent carbidefuel to bring out the inherent and the large

potential ofthe sodiumcoolingc Forthis reason the carbide type fuelseems

to be thE! idealone for tbe sodium fast breeder systems and the oxide fuel re

presents only<an intermediate goal forthis type of breeders.

5.4 Diffusion Plant Capabilities and Costs as a Function of Different Nuclear

Reactor Strategies.

5.4.1 The lowest present worth of the energy generation costs upto the year 2000 7

amongst all the non-carbide strategies are given by the steam-cooled breeder

strategywieh U-235 start-up (48 • 109 DM with a European Diffusion plant and

47,1 • 109 DH uith American U-235 supply). This strate~, therefore, may form

a suitable basis for assessing the proper size of a European diffusion plant.
6·Tbe required separative work capability for this strategy i3 about 8 • 10 kg

unit/a in the year 2000. A lower separative work capability and therefore a

lowercapital investment for the diffusion plant may be obtained by golng over

to some other strategies, for example~ to the ones with sodium cooled reactors

t..rith Plutonium or uranium. start-up. The present ~lorth of the total energy costs

for these strategies are hOl>'leVer higher so that the lotter diffusion plant capital

investments do not pay off. Por the non-carbide strategies, therefore, the most

suitable diffusion plant capac1ty appears to be about 8 • 106 kg/a. Por this

size, a European plant seems justifiable, as the probable difference in the present

worth of the energy costs between those tvith enr1ched uranium fram the USA and

those from a European plant is less than 1 • 109 DM over aperiod of 30 years~

which may then be taken as a long term insurance for the supply of U-235.

5.4.2 The plcture changes entirely if the carbides turns out to be a suitable

fue! for breeders. With this fuel the maximum required diffusion plant capacity

upto the year 2000 1s only 1 • 106 kg/a. Since the unit separative work costs

in such a small plant 1s expected to be very high (DM 560/kp, instead of DM 160/kg

in a 8 • 106 kg/a plant), the present worth actualized to 1970 of the total

energy costs come out to be 51 ~3 • 109 D!:I; lvith enriched uranium supplied from

the USA, these costs are only 45,1 • 109 Dli i. e. lower by about 6 • 109 DM.

This difference corresponds to about 12 '109 D~1 if not actualized.

These figures irtdicate two significant disadvanta8es of a smal1 diffusion plant.

Firstly, the specific separative work costs are very high which cause an in

crease in the energy generation costs of individual reactors with enriched
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uranitnn (Ref. Tab. 6). Secondly, the energy generation costs in different

nuclear strategies based on such small plants may increase considerably and

remain high so long as those strategies depend on such small plants for their

enriched uranium supply. Coupled with these considerations,if reference is

made to the fact that with carbide breeders with U-235 start-up, the total

accumulated requirement of pure U-235 upto the year 2000 wouldbe only 180 t

(on the basis of models considered here)~ it appears reasonable to obtain

this relatively small amount entirely from the USA. Such a course of action

seems a11 the more.justifiablein view of the fact thatill case the carbides

prove their worth, the U-235 requirement in the USA itself would be reduced

so that theexisting US diffusion plant capability ltlould be in a position to

supplyto a larger installed nuclear capacity than that estimated today.

5.4.3 In .case the carbide line doesnot succeed, the present 't'l1orth difference

for the strategies with the fast steam cooled breeders betl:voeen the American

- ~l1Pply of enriched----l1!'anium-is--enly 1 •. 109 DM---as--mentioned--abo'Ve~,~~~-
9whereas the difference comes out to be larger than 6 • 10 Dl1 in case ofthe

carbide strategy. In other words, the use of the carbides decreases the really

necessary amount of U-235 in Europe and thereby makes the installation of an

European diffusion plant uneconomic and superfluous. In case of a steam cooled

oxide strategy on the other hand, a large scale diffusion plant is necessary

and because of the sound economic structure of the latter) the economicsof

this strategy also becomes attractive.

However, a cross comparison between the steam cooled version with the largest

European diffusion plant and the carbide version with the American supply

gives a 3 • 109 D11 advantage for the carbide line, indicating its economic

superiority over the steam cooled version.

5.4.4 The conclusions 5.4.1 to 5.4.3 indicate that in case the carbide line of

fast breeders does not turn out to be as successful as has been assumed in the

foregone analysis, a diffusion plant of at least 8 • 106 kg/a capacity should

be installed in Europe. On the other hand, if the carbide line becomes success

ful, no diffusion plant is required to be installed and the necessary amounts

of U-235 which are relatively small~ can be obtained from an outside source.

Since the technical feasibility of the carbide line and the large scale dif

fusion plant requirement can be assessed only during the early eighties, no

decision on the diffusion plant installation should be taken before that time.
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6. Conclusions

The discussions of the results asgiven in chapter 5 can be summarized in the

form of the following conclusions~

6.1 Although the THTRtllhlch appears to be the most advanced andtechnologically

feasible converter at present 1s incapable of solving the problem of U supply

from Cl long term point of vie~l it shows more favourable eeonomics and short term

U requirement as compared to the single type strategy w1th LtfR or the two type

strategies with L~rR and NaBR(O). However~ the steam cooled version and sod1um

cooled carbide version of fast breeders» both lnth U-235 start-up» appear to

offer s1gnif1cant econom.ic arid ral'i1 material advantages over the THTR.

6.2 It 1s not necessary to have athermal converter based nuclear strategy

to provide for plutonium required for the subsequent more economic breeder.

With the help of U-235 start-up any breeder represents its Olvn converter type

for the supply of its o~m plutonium and therefore the rate of introduction of

this type of reactors 18 independent of the breeding ratio.

6.3 The steam eooled version of fast breeders with U-235 start-up represents

the legit1mate» economic and the natural evolution of the light water reactor

type and provides the best means for Pu recycling. The most efficient sod1um

cooling wh1ch requires a special technology calls as a final target for the most

efficient carbide type fuel to bring out the inherent and significant advantages

of a future high performance breeder. Thus because of the different degrees of

difficulties associated with the steam cooled oxide and the sodium cooled carbide

verstons whieh may lead to a phased introduetion of the two types» both 9 the

steam cooled and the sodium cooled fast systems, have to be developed simul

taneously. The late seventies appear to be a proper target date for the intro

duetion of the steam cooled version) whereas that for the sodium cooled carbide

version can be the eighties.

6.4 In case the carbide line does not appear to be successful a diffusion plant

~!ith a capacity of at least 8 • 10
6 kg/a has to be installed in Europe. If the

carbide line can meet its target values» no diffusion plant 1s required. The

deeision regarding its installation needs to be taken only during the e1ght1es.
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