

KERNFORSCHUNGSZENTRUM

KARLSRUHE

November 1968

KFK 722

Institut für Angewandte Reaktorphysik

The Amounts of Fission Product Nuclides Produced in ²³⁹Pu-Fuelled Fast Reactors and the Related Heat Generation After Shut-Down

D. Gupta, F. Heller, R. Schröder

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

November 1968

KFK 722

Institut für Angewandte Reaktorphysik

THE AMOUNTS OF FISSION PRODUCT NUCLIDES PRODUCED IN ²³⁹PU-FUELLED FAST REACTORS AND THE RELATED HEAT GENERATION AFTER SHUT-DOWN

by

1) D. Gupta, F. Heller, R. Schröder

Gesellschaft für Kernforschung m.b.H., Karlsruhe

1) At present at the Institut für Experimentelle Kernphysik

<u>-</u>		· · ·		
,				
2				
:				

·

1. INTRODUCTION

To obtain the decay heat generated by the fission products of ²³⁹Pu, first the concentration of individual fission products was calculated as a function of in-pile time, cooling time, and specific power of the reactor. The equations used and the results of these calculations are presented and discussed in chapter 2. On the basis of these results, the activities and the decay power of individual fission product nuclides was calculated and, finally, these quantities were summed up to result in data for gross fission products. These latter calculations and their results are presented and discussed in chapter 3.

2. CONCENTRATION OF FISSION PRODUCT NUCLIDES

2.1 Basis of calculation

The concentrations of fission product nuclides have been calculated according to the following equation:

(1)
$$N_i$$
 (t,T) = 3,12 \cdot 10^{10} \cdot B \left\{ y_i \frac{1 - e^{-(\lambda_i + \sigma_i \phi)t}}{\lambda_i + \sigma_i \phi} + \frac{y_{Mi} \sigma_{Mi} \phi_i}{\lambda_{Mi} + \sigma_{Mi} \phi} \right\}

$$\left(\frac{1-e^{-(\lambda_{i}+\sigma_{i}\phi)t}}{\lambda_{i}+\sigma_{i}\phi} - \frac{e^{-(\lambda_{Mi}+\sigma_{Mi}\phi)t}-e^{-(\lambda_{i}+\sigma_{i}\phi)t}}{\lambda_{i}-\lambda_{Mi}+(\sigma_{i}-\sigma_{Mi})\phi}\right)\right) e^{-\lambda_{i}T}$$

where

<u>/</u>cm⁻³_7 N_i(t,T) concentration of fission product nuclide i <u>/</u>sec_7 in-pile time t <u>/</u>sec_7 cooling time Т $\frac{1}{1}$ specific power of the reactor В yield Уi $\underline{/}$ sec $\underline{-1}$ of fission product nuclide i λ; decay constant <u>/</u>cm²_7 (n, γ) cross section σi $/\mathrm{cm}^{-2}\mathrm{sec}^{-1}$ 7 φ neutron flux, summed over all energies and averaged over the core volume

Subscript M

Quantity refers to nuclide, that is transformed to nuclide i by (n, γ) process

For a nuclide with half life of less than one year, $\sigma_{,\phi}$ was neglected as compared to λ_i and, in addition, the generation of the nuclide by (n, γ) capture of another nuclide was neglected. Nuclides with half lives less than 5 days were not considered. The yields for the short lived nuclides were taken to be equal to those for the stable or long lived auclides that form the end products of the respective chains. The numerical values for yields and half-lives that were used for the calculations are shown in table 1, the yields were taken from tables given in 17. The (n, y) cross sections were taken from 127, 137 and 147as a function of energy. To obtain the one-group cross sections that enter in (1), the multi-group cross sections were weighed with a neutron spectrum averaged over the core volume of the reactor in question. This spectrum was calculated by one dimensional diffusion theory in 26 energy groups by means of the Karlsruhe nuclear code system NUSYS.

The number of fission product nuclides within a kg of fuel is obtained as

(2)
$$n_i(t, T) = \frac{10^3 N_i(t, T)}{\rho \cdot \omega}$$

and the nuclide concentrations are converted to weights by

(3)
$$F_i = \frac{10^3 \cdot N_i(t,T) \cdot A_i}{L \rho \omega}$$

where

 $F_i / \frac{g}{kg \text{ fresh fuel}} - \overline{7}$ total weight of fission product nuclide i relative to 1 kg of fresh fuel

A_i

L

ρ

atomic weight of fission product nuclide i

Avogadro's number

fuel fraction in core

 $\omega / g cm^{-3} /$

fuel density

-2-

2.2 Results of calculations

The amounts of fission products available after various cooling times were calculated for the sodium cooled fast breeder reactor design Na-1 /5/ and for the steam cooled fast breeder reactor design D-1/6/. The relevant reactor data are shown in table 2. Tables 3 and 4 show the related amounts of fission product nuclides for various cooling times and of fission product chemical elements for a cooling time of 100 days.

3. ACTIVITY OF FISSION PRODUCT NUCLIDES AND PRODUCTION OF DECAY HEAT

3.1 Basis of calculation

The heat generated after reactor shut-down is obtained by summing up the fractions of the decay energies absorbed in the reactor vessel for all radioactive nuclides present. In average, half of the decay energy is carried away by the neutrinos and, therefore, will not be transformed into heat. The energy due to β - and γ -radiation, on the other hand, will be totally absorbed.

The activity of 1 kg fuel after a cooling time T is given by

(4)
$$Z(t,T) / \frac{Curie}{kg} / = \sum_{i} \frac{\lambda_i n_i (t,T)}{3.7 \cdot 10^{10}}$$

The corresponding heat production by β - and γ -radiation amounts to:

(5) $P_{\beta}(t,T) / \frac{W}{kg} / = \sum_{i}^{\Sigma} E_{\beta_{i}} \lambda_{i} n_{i}(t,T)$

and

(6)
$$P_{\gamma}(t,T) / \frac{W}{kg} / = \sum_{i} E_{\gamma i} \lambda_{i} n_{i}(t,T).$$

The total heat production is given by the sum of the β - and γ -contributions:

lide i

(7)
$$P(t,T) = P_{\beta}(t,T) + P_{\gamma}(t,T)$$

where

$$E_{\beta i} / Wsec_{\overline{1}}$$
 mean energy of β -radiation
 $E_{\gamma i} / Wsec_{\overline{1}}$ mean energy of γ -radiation of nuc

-3-

Values for the mean energies were taken from the tables by King and Perkins $/\overline{7}$. The more important data have been checked using recently edited tables $/\overline{8}$ $\overline{7}$ $/\overline{9}$ $\overline{7}$.

3.2 Discussion of the influence of approximations made

The error due to the neglection of fission products with half lives of less than 5 days was found to be less than 1 % for cooling times t > 30 d. The heat contribution due to the higher isotopes of uranium and plutonium does not exceed 1 % of the total effect and, therefore, was also neglected.

Eight nuclides considered have daughter nuclides with half lives of less than 5 days. These can be taken into account with sufficient accuracy, if the decay energy of the mother nuclide is replaced by $E_{m} + \frac{\lambda_{d}}{\lambda_{d} - \lambda_{m}} E_{d},$

where the subscripts m and d refer to mother and daughter nuclide. The factor of E_d was found to deviate appreciably from unity for the transition ${}^{140}_{Ba} \xrightarrow{140}_{La} {}^{140}_{La}$ only.

3.3 Results of calculations

Tables 5 and 6 present numerical values of the specific activities and of the corresponding heat production for all nuclides considered in this paper for the reactor designs Na-1 and D-1. These data are given for three cooling times. Figures 1 to 3 show the expressions just mentioned after they have been summed over all the nuclides as a function of cooling time, the numerical values for the total heat production generated by β - and γ -radiation are also shown in table 7. An error of \pm 5% is assigned to these data, due to errors in input data and to approximations made.

The time behaviour of the heat production as a function of in pile-time t and cooling time T is usually approximated by a Way Wigner formula

(8)
$$P(t,T) = K / T^{-x} - (T+t)^{-x} / .$$

This formula expresses the results obtained in this report quite well, if the following values are chosen for the free parameters

$$x = 0.33$$

$$K = 855 \frac{W}{kg} \text{ for Na-1}$$

$$K = 639 \frac{W}{kg} \text{ for D-1}$$

Here, t and T have to be measured in <u>days</u>. It was checked, that the exact results are approximated to ± 3 % for T = 600 d if these parameters are used in (8). It is possible, to express the time behaviour of the heat production by fission products for Na-1 and D-1 fuel (s. table 7) by a single formula (8) with x = 0.33 and K = 6.45 $10^3 \frac{W}{MW}$ x). Apparently, the difference in neutron spectrum of the two reactor typesth is insignificant in this respect.

Fig. 4 shows the heat production for various in-pile times as a function of cooling time. The curve related to $t = \infty$ was calculated by means of equation (8). The other curves were obtained by a more exact procedure: The time dependence of the contributions of ¹⁰⁶Ru and ¹⁴⁴Ce was calculated explicitely (according to $1-e^{-\lambda t}$), the remaining nuclides were divided into two groups with average half life of 50 d and 15 a. In addition, Fig. 4 shows curves for $t = \infty$ for ²³⁵U taken from $/_{.7}$ and $/_{.10}$. From these two sets of curves, those due to King and Perkins are considered more reliable $/_{.11}$. Calorimetric measurements made by Johnston $/_{.12}$ in 1965 on ²³⁹Pu after a in-pile time of 37 days resulted in a decay power by 6 % less than for ²³⁵U. The higher values for the longer irradiation times considered in this report are mainly due to the higher yield of long lived ¹⁰⁶Ru that accompanies the fission of ²³⁹Pu.

In case P is expressed in units $\frac{W}{MW}$. Note the relation $P \int \frac{W}{MW} \int 7 = \frac{t}{am} P \int \frac{W}{kg} \int 7$ t in-pile time (days) am burnup $\int \frac{MWd}{kg} \int 7$

-5-

REFERENCES

- / 1_7 CROALL, I.F., WILLIS, H.H., Proc. of the IAEA Conf. on Physics and Chemistry of Fission, vo. I, p. 355, 1965
- /2/ JOANOU, G.D., AEC Report GA-2451 (1961)
- / 3_7 GARRISON, J.D. ROOS, W.B., Nuclear Science and Engineering 12, 115 (1962)
- <u>/</u>4<u>/</u> LIIKALA, R.C., AEC Report HW-75716 (1963)
- / 5 / SMIDT, D., MÜLLER, A., et.al., KFK 299 (1964)
- /6 7 MÜLLER, A., KFK 392 (1966)
- [7] PERKINS, J.F., KING, R.W., Nuclear Science and Engineering 3, 726 (1958)
- <u>/</u>8_7 SEELMANN-EGGEBERT, W., PFENNING, G., Radionuklid-Tabellen, edited by BMwF (1964)
- $\sqrt{9}$ Nuclear Data Sheets, edited by the National Academy of Sciences
- <u>/</u>10_7 STEHN, J.R., CLANCY, E.F., Proc. 2nd, Int. Conf., Geneva 1958, Vol. 13, p. 49
- / 11_7 SHURE, K., USAEC Report WAPD-BT-24 (1961)

/ 12_7 JOHNSTON, K., J. Nucl. Energy 19, 527

BIBLIOGRAPHY

- / 13_7 UNTERMYER, S., WEILLS, J.T., Heat Generation in irradiated Uranium, Report ANL-4790 (1950)
- [14_7 DAY, R.A., CANNON, C.V., Direct Calorimetric Study of fission Product Decay, in Radiochemical Studies: The Fission Products, Paper 41, National Nuclear Energy, Series IV, Vol. 9, p. 422, McGraw-Hill New York

- [15_7] PERKINS, J.F., KING, R.W., Energy Release from the Decay of Fission Products, Nucl. Sci. Eng., 3, 726 (1958)
- [716_7 STEHN, J.R. CLANCY, E.R., Fission Product Radioactivity and Heat Generation, in Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva 1958, Vol. 13, p. 49, United Nations, New York 1958
- / 17_7 KNABE, W.E., PUTNAM, G.E., The Activity of the Fission Products of U 235, USAEC-Rep. APEX-448 (1958)
- [18] J SPEIGLER, P., Energy Release from the Decay of Fission Products USAEC Report NAA-SR-Memo 4126 (1959)
- [19] BEAN, Mc, I.J., Energy Release from Fission Product Decay British Report AERE-R-3033 (1959)
- / 20_7 BEAN, Mc, I.J., U-235 Fission-Product Decay Energy Nucl. Power, 5, 115 (1960)
- [21]7 SHERMAN, D.C., The Total Energy Release per Fission of U-235 and its Time Dependence, USAEC Report, KAPL-M-DCS-4 (1960)
- / 22_7 BINFORD, F.T., Decay Heat Removal from Research Reactors, Nucl. Safety 1 (3), 34 (1960)
- <u>7</u>23<u>7</u> ZUBAREV, T.N., SOKOLOV, A.K., Calculation of Heat Release in a Shutdown Reactor, J. Nucl. Energy, Pt. A, <u>13</u>, 72 (1960)

- <u>1</u>24_7 PETROV, Yu, I., Gamma Radiation from U-235 and Pu-239 Fission Fragments, N. Nucl. Energy, FL. A, <u>12</u>, 129 (1960)
- <u>/</u>25_/ LEVOCKKIN, F.K., SOKOLOV, Yu.Ya., Time Course of the Decay of Fission Products from U-235 and Pu-239 At. Energy, <u>10</u>, 403 (1961)
- [26] SHURE, K., DUOBZIAK, D.J., Calculating Energy Release by Fission Products, USAEC Report WAPD-T-1309 (1961)
- <u>/</u>27_7 SHURE, K., DUOBZIAK, D.J., Calculating Energy Release by Fission Products, Trans. Am. Nucl. Soc., 4 (1) (1961)
- / 28_7 SHURE, K., Fission Product Decay Energy, USAEC Report WAPD-BT-24 (1961)
- / 29_7 McLAIN, H.A., U-235 Fission Product Heating, Nucl. Safety 3 (3), 23 (1962)
- / 30_7 DELENE, J.G., Shutdown Heat Generation Nucl. Safety 5 (1), 40 (1963)

<u>JOHNSTON, K.,</u> A Calorimetric Determination of Fission Product Heating in Fast Reactor Plutonium Fuel J. Nucl. Energy Parts A/B, 19, 527 (1965)

TABLE 1. DATA OF FISSION PRODUCT NUCLIDES

	Half life	Ē _β • <u>/</u> Μe <u>ν</u> 7	$\overline{E}_{\gamma}/MeV_7$	Cumulative yield
Vr 85	10.6 a	0.221	0.004	$5.40.10^{-3}$ (Rb)
S= 80	50 4 d	0.556	0.000	$1.71 \cdot 10^{-2}$ (Y)
Sr 09	<u> </u>	1 091	0.000	$2.24 \cdot 10^{-2} (7r)$
Sr 90 + 1 90	20 a	1.001	0.000	$2.60 \cdot 10^{-2} (7r)$
Y 91	58 Q	0.593	0.074	$5.00 \cdot 10^{-2}$ (Mo)
Zr 95 + Nb 95	65 a	0.111	0.974	$5.00.10^{-2}$ (MJ)
Nb 95	35 d	0.045	0.760	5.00.10 (Mo)
Ru 103 + Rh 103^{m}	40 d	0.104	0.499	5.65·10 ^(Rh)
Ru 106 + Rh 106	1 a 1	1.368	0.328	4.70.10 ⁻² (Pd)
Cd 113 ^m	14 a	0.195	0.270	$6.50 \cdot 10^{-2}$ (Cd)
Cd 115 ^m	43 d	0.595	0.030	$3.50 \cdot 10^{-4}$ (In)
Te 129 ^m + Te 129	33 d	0.563	0.236	$1.40 \cdot 10^{-2}$ (I)
I 131	8.0 d	0.183	0.392	3.79·10 ⁻² (Xe)
Xe 133	5.3 d	0.155	0.027	6.90·10 ⁻² (Cs)
Cs 137 + Ba 137 ^m	30 a	0.239	0.595	$6.30 \cdot 10^{-2}$ (Ba)
Ba 140 + La 140	12.8 d	0.799	2.962	5.56•10 ⁻² (Ce)
Ce 141	32.5 d	0.146	0.097	$5.30 \cdot 10^{-2} (Pr)$
Ce 144 + Pr 144	277 d	1.288	0.080	3.84 • 10 ⁻² (Nd)
Pr 143	13.7 d	0.315	0.000	4.57•10 ⁻² (Nd)
Nd 147	11.1 d	0.271	0.137	$1.94 \cdot 10^{-2}$ (Sm)
Pm 147	2.65a	0.062	0.000	$1.94 \cdot 10^{-2}$ (Sm)
Sm 151	93 a	0.023	ò.000	7.80.10 ⁻³ (Eu)
Eu 154	16 a	0.233	1.160	(n,γ) process of Eu 153
Eu 155	1.7 a	0.040	0.090	2.10.10 ⁻³ (Gd)
Eu 156	15 d	0.420	1.160	1.10·10 ⁻³ (Gd)

TABLE 2. REACTOR DATA

		Na-1	D-1	Ì
·	Specific power B $\frac{1}{1}$	380	400	
н — — — — — — — — — — — — — — — — — — —	Fuel fraction ω	0.305	0.43	
	Fuel density ^{x)} $\rho / \frac{g}{m^3} / \frac{1}{m^3}$	9.4	9.4	
	Burn up $f = \frac{MWd}{t} = 7$	80,000	55,000	
	In-pile time / d_7	604	556	

^x) density of the oxide

TABLE 3. AMOUNTS OF FISSION PRODUCTS IN G/KG FRESH FUEL, FROM NA-1 AND D-1 FAST BREEDER REACTOR TYPES

Z	Element	A			Nacooling t	a-1 ime[days]			coolin	D-1 g time[da	ys7		β, γ Activity
			200	150	100	50	30	200	150	100	50	30	[MeV]
35	Br	81	0.0503	0.0503	0.0503	0.0503	0.0503	0.0346	0.0346	0.0346	0.0346	0.0346	
34	Se	82	0.0063	0.0063	0.0063	0.0063	0.0063	0.0019	0.0019	0.0019	0.0019	0.0019	
36	Kr	85	0.1503	0.1517	0.1531	0.1545	0.1550	0.1038	0.1047	0.1057	0.1066	0.1070	ß:0.83;0.67
	Kr	83,84,86	0.4609	0.4609	0.4609	0.4609	0.4609	0.3181	0.3181	0.3181	0.3181	0.3181	γ:0.31;0.15
	Kr	total	0.6112	0.6126	0.6140	0.6154	0.6159	0.4219	0.4228	0.4238	0.4247	0.4251	
37	RЪ	total (85+87)	0.4559	0.4559	0.4559	0.4559	0.4559	0.3115	0.3115	0.3115	0.3115	0.3115	
38	Sr	89	0.0042	0.0083	0.0166	0.0329	0.0434	0.0031	0.0062	0.0124	0.0246	0.0324	β:1.46
	Sr	90	0.6982	0.7006	0.7029	0.7053	0.7063	0.4806	0.4823	0.4839	0.4856	0.4862	β:1.54
	Sr	88	0.4476	0.4476	0.4476	0.4476	0.4476	0.3079	0.3079	0.3079	0.3079	0.3079	
	Sr	total	1.1500	1.1565	1.1671	1.1858	1.1973	0.7916	0.7964	0.8042	0.8181	0.8265	
39	Y	91	0.0107	0.0195	0.0355	0.0646	0.0820	0.0080	0.0146	0.0265	0.0482	0.0612	β:1.55
	Y	89	0.5405	0.5364	0.5281	0.5118	0.5013	0.3717	0.3686	0.3624	0.3502	0.3424	·
	Y	total	0.5512	0.5559	0.5636	0.5764	0.5833	0.3797	0.3822	0.3889	0.3984	0.4036	
40	Zr	95	0.0314	0.0533	0.0908	0.1548	0.1916	0.0233	0.0398	0.0678	0.1154	0.1429	B:0.4:0.36
	Zr	90,91,92,93	6.4851	6.4763	6.4603	6.4312	6.4138	4.4354	4.4288	4.4169	4.3952	4.3822	γ:0.76;0.73
	Zr	total	6.5164	6.5296	6.5511	6.5860	6.6054	4.4587	4.4686	4.4847	4.5106	4.5251	
41	NЪ	95	0.0331	0.0543	0.0794	0.1197	0.1323	0.0245	0.0402	0.0591	0.0891	0.1055	β:0.16; γ:0.76;0.23

-11-

TABLE 4. AMOUNTS OF FISSION PRODUCT CHEMICAL ELEMENTS FROM NA-1 AND D-1 FAST BREEDER REACTOR TYPES AFTER 100 DAYS OF COOLING

Fission Product Chemical Elements	Keactortype					
$\frac{7}{1} \frac{8}{1} \frac{7}{1}$						
NG 110011 1001						
Br	0,0503	0,0346				
Se	0,0063	0,0019				
Kr	0,6140	0,4238				
Rb	0,4559	0,3115				
Sr	1,1671	0,8042				
Y	0,5636	0,3889				
Zr	6,5511	4,4847				
Nb	0,0794	0,0591				
Mo	8,0063	5,4942				
Tc	1,9043	1,3420				
Ru	7,4618	5,1851				
Rh	1,9855	1,3704				
Pd	4,7026	3,1909				
Ag	0,5343	0,3639				
Cd	0,2274	0,1573				
In	0,0135	0,0093				
Te	1,3109	0,9700				
I	0,7834	0,5386				
Xe	11,0777	7,6272				
Cs	9,5336	6,5267				
Ba	3,3106	2,2853				
La	2,8557	1,9375				
Ce	6,1442	4,2870				
Pr	2,6144	1,7874				
Nd	7,9067	8,7237				
Pm	0,7720	0,5392				
Sm	1,8374	1,2754				
Eu	0,2212	0,1977				
Gđ	0,1526	0,1110				
Total	82.8438	60.4185				

Cooling Time:	,	30 d			100 d			200 d	
Nuclide	z <u>/</u> C/kg_7	Ρ _β /_W/kg_7	P ₇ /_W/kg_7	z <u>/</u> c7kg_7	P _β /_W/kg_7	P ₇ /W/kg_7	z <u>/</u> c/kg	_7 P _β /_W/kg_7	P ₇ /W/kg_7
Kr 85	61.4	0.080	0.012	60.7	0.079	0.001	59.2	0.077	0.001
Sr 89	956.3	4.151	0.000	482.5	1.588	0.000	121.7	0.400	0.000
Sr 90	201.6	0.645	0.000	200.9	0.642	0.000	199.4	0.637	0.000
Y 91	2025.2	7.114	0.055	876.7	3.080	0.024	264.1	0.928	0.007
Zr 95	4119.4	2.651	23.288	1952.2	1.256	11.036	674.9	0.434	3.816
Nb 95	5238.7	1.381	23.520	3126.4	0.820	14.098	1302.2	0.344	5.879
Ru 103	7486.8	2.313	11.080	2225.8	0.688	3.294	391.9	0.121	0.580
Ru 106	6631.7	26.880	6.420	5805.4	23.530	5.620	4806.2	19.480	4.653
Cd 113	5.8	0.001	0.009	5.8	0.001	0.009	5.4	0.001	0.009
Cd 115	23.7	0.083	0.004	7.9	0.028	0.001	1.5	0.005	0.000
Te 129	1400.5	2.782	1.163	325.9	0.648	0.271	37.9	0.075	0.032
I 131	321.7	0.263	0.747	0.7	0.028	0.002	1.3.10	-4 0.000	0.000
Xe 133	147.9	0.136	0.024	1.6.10 ⁻²	0.000	0.000	3.3.10	-8 0.000	0.000
Cs 137	506.8	0.377	0.926	504.6	0.375	0.922	501.0	0.372	0.915
Ba 140	2638.0	5.820	21.508	62.6	0.133	0.491	0.3	2 0.001	0.003
Ce 141	3114.0	2.697	1.787	699.0	0.605	0.401	82.1	0.071	0.047
Ce 144	.6490.9	21.636	1.567	5471.9	18.240	1.321	4256.2	14.187	1.027
Pr 143	1120.6	2.094	0.000	33.3	0.062	0.000	0.2	0.000	0.000
Nd 147	335.0	0.538	0.271	4.0	0.006	0.003	8.0.10	-3 0.000	0.000
Pm 147	746.0	0.247	0.000	709.5	0.260	0.000	659.6	0.242	0.000
Sm 151	8.2	0.001	0.000	8.2	0.001	0.000	7.3	0.001	0.000
Eu 154	4.8	0.007	0.034	4.8	0.007	0.033	4.7	0.001	0.032
Eu 155	111.1	0.026	0.059	102.7	0.024	0.055	91.4	0.022	0.049
Eu 156	27.9	0.069	0.192	1.1	0.003	0.008	1.4.10	-2 0.000	0.000
Sum:	44030	82.018	92.669	22672	52.076	37.591	13467	37.401	17.049

TABLE 5. ACTIVITY Z [Curie/kg_7, HEAT PRODUCTION / Watt/kg_7 OF FISSION PRODUCTS PRESENT IN 1 kg OF Na-1 FUEL

-13-

Cooling Time:		50 d	64 <u>-</u> 2		100 d	na a ta sa ang ang ang ang ang ang ang ang ang an		200 d		
Nuclide	z <u>/</u> C/kg_7	P _β /W/kg_7	P _y /W/kg_7	Z <u>/</u> C/kg_7	P _β /_W/kg_7	P _y /_W/kg_7	Z <u>/</u> C/kg_7	$P_{\beta}/W/kg_{7}$	P _y /_W/kg_7	
Kr 85	42.4	0.055	0.001	41.9	0.055	0.001	41.1	0.054	0.001	
Sr 89	715.1	2.353	0.000	360.4	1.186	0.000	,90.1	0.296	0.000	
Sr 90	138.8	0.444	0.000	138.3	0.442	0.000	137.3	0.439	0.000	
¥ 91	1190.4	4.182	0.033	654.5	2.299	0.018	197.6	0.694	0.005	
Zr 95	2481.1	1.597	14.026	1457.7	0.983	8.241	500.9	0.322	2.832	
NB 95	3501.7	0.929	15.837	2328.4	0.616	10.510	955.8	0.258	4.360	
Ru 103	3952.1	1.221	5.849	1663.0	0.514	2.461	290.8	0.090	0.430	
Ru 106	4556.2	18.467	4.411	4142.6	16.791	4.010	3426.3	13.887	3.317	
Cd 113	4.0	0.000	0.006	4.0	0.000	0.006	3.9	0.000	0.006	
Cd 115	13.2	0.046	0.002	5.3	0.019	0.001	1.2	0.004	0.000	
Te 129	684.8	1.361	0.569	236.8	0.470	0.197	30.9	0.061	0.026	
I 131	37.1	0.026	0.086	0.6	0.000	0.001	4.3.10-4	0.000	0.000	
Xe 133	8.1	0.007	0.001	$1.4 \cdot 10^{-2}$	0.000	0.000	2.8.10 ⁻⁸	0.000	0.000	
Cs 137	348.4	0.259	0.636	347.3	0.258	0.634	345.1	0.256	0.630	
Ba 140	657.0	1.464	5.438	47.1	0.099	0.338	0.14	0.001	0.002	
Ce 141	1517.2	1.314	0.871	393.4	0.453	0.300	62.5	0.054	0.038	
Ce 144	4941.8	14.973	1.084	3975.6	13.252	0.960	3114.7	10.382	0.752	
Pr 143	300.2	0.561	0.000	26.6	0.050	0.000	0.13	0.000	0.000	
Nd 147	71.8	0.115	0.058	3.2	0.005	0.003	1.9.10 ⁻²	0.000	0.000	
Pm 147	512.7	0.188	0.000	495.6	0.182	0.000	461.2	0.169	0.000	
Sm 151	5.6	0.001	0.000	5.6	0.001	0.000	5.6	0.001	0.000	
Eu 154	3.7	0.005	0.025	3.6	0.005	0.025	3.6	0.005	0.025	
Eu 155	76.5	0.018	0.041	72.4	0.017	0.038	64.6_2	0.015	0.034	
Eu 156	8.9	0.022	0.061	0.9	0.002	0.006	6.8.10-3	0.000	0.000	
Sum:	31739	59.914	70.074	16404	37.658	27.789	9733	26,990	12.424	

TABLE 6. ACTIVITY Z / Curie/kg 7, HEAT PRODUCTION / Watt/kg 7 OF FISSION PRODUCTS PRESENT IN 1 kg OF D-1 FUEL

-14-

TABLE 7. TOTAL HEAT PRODUCTION OF FISSION PRODUCTS

Cooling time:	· · ·	30 d	50 đ	100 đ	150 d	200 d
	Na-1	175	134	90	69	54
P / W/kg 7	D-1	130	99	66	50	39
	Na-1	1325	1015	680	520	410
$P / W/MW_{th} $	D-1	1310	1000	665	505	397

-18-

(1) King and Perkins (1958) Shure (1961)

(2) Stehn and Clancy (1958)

-19-