

KERNFORSCHUNGSZENTRUM

KARLSRUHE

Dezember 1967

KFK 682

Institut für Heiße Chemie

Das Schmelzdiagramm des ternären Systems CsCl - KCl - LiCl

R. v. Ammon

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

KARLSRUHE

Dezember 1967

KFK 682

Institut für Heiße Chemie

Das Schmelzdiagramm des ternären Systems CsCl - KCl - LiCl

von

R. v. Ammon

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H., KARLSRUHE

: .

a de la compañía de l

Einleitung

Bei früheren Arbeiten über die fraktionierte Kristallisation von Chloridschmelzen hinsichtlich der Abtrennung von Spaltprodukten waren wir auf überraschend niedrige Verteilungskoeffizienten bei der Verteilung von kleinen CsCl-Mengen zwischen Kristallisat und Schmelze im System KCl-LiCl gestoßen 1,2. Obwohl die Phasenzusammenhänge der 5 Alkalichloride untereinander schon oft untersucht worden waren (3a-c und 4a-d) fehlte bisher für das untersuchte System CsCl-KCl-LiCl das Zustandsdiagramm, so daß eine Erklärung der Ergebnisse nicht möglich war. Im folgenden geben wir deshalb das Schmelzdiagramm des ternären Systems CsCl-KCl-LiCl an.

I. Experimentelles

Da für die Fragestellung speziell die Kenntnis der primären Kristallisationsfelder und die Lage der Schmelzpunktminima und nicht eine detaillierte Aufklärung aller Phasenverhältnisse von Interesse war, benützten wir als alleinige Untersuchungsmethode die Differentialthermoanalyse.

1. Apparatur

Die DTA-Apparatur war ein kommerzielles Gerät der Fa. Netzsch, Selb/Bayern. Es wurden Probebecher aus Platin sowie Thermoelemente aus Pt-Pt/Rh verwendet. Der Meßkopf trug einen Gasdurchleitungsaufsatz, so daß eine trockene Stickstoffatmosphäre aufrechterhalten werden konnte. Aufheiz- bzw. Abkühlgeschwindigkeit war stets 5°/min.

2. Temperaturmessung

Das Meßthermoelement wurde mit einem geeichten Thermoelement (Fa. Philips) verglichen und so eine Eichkurve für den Bereich von 200-800° C hergestellt. Außerdem war bei jedem Versuch eine Kontrolle durch die Verwendung eines Quarz-Tonerde-Gemisches als Vergleichssubstanz gegeben, so daß jeweils die Temperatur der Quarzumwandlung bei 573° C angezeigt war.

- 2 -

Zur Auswertung wurden nur die Abkühl-Maxima herangezogen, und Zwar wurde als charakteristische Temperatur der Beginn des exothermen Effekts, der dem Kristallisations- bzw. Reaktionsbeginn entspricht, gewählt (Abb. 1). Die bekannten Schmelztemperaturen der Einzelkomponenten sowie einiger binärer Gemische bestätigten die Richtigkeit der Wahl dieses Ablesepunktes. Eine Verzögerung der Kristallisation beobachteten wir nie, nur die α -B-Umwandlung des CsCl schien bei wiederholtem Erhitzen und Abkühlen derselben Probe stark verzögert, worauf auch schon andere Autoren hingewiesen haben (z,B, 4, c).

Die Genauigkeit der Temperaturbestimmung betrug etwa ⁺ 3^o. Sie ist in jedem Fall besser als der auf anderen Ursachen beruhende Fehler, wie z.B. derjenige, der dadurch entsteht, daß die Kristallisation nicht in Gleichgewichtsbahnen abläuft. Wegen der guten Reproduzierbarkeit und inneren Konsistenz unserer Daten glauben wir jedoch, daß die gewählte Abkühlgeschwindigkeit und die Probenmenge (ca. 300 mg) klein genug waren, um bei jeder Temperatur eine genügend gute Durchmischung und damit Einstellung des Gleichgewichts zu gewährleisten. Der Fehler dürfte niemals mehr als 5^o ausmachen und betrifft nur die Temperaturen der sekurdären und weiteren Kristallisation. Alle Daten sind Mittelwerte aus mindestens 2, meist 3 Messungen.

3. Substanzen

Die Chloride (mit Ausnahme von LiCl p.a. Substanzen) wurden sorgfältig getrocknet, indem durch ihre Schmelze 1 Stunde lang Chlor und anschließend zur Entfernung von Chlorresten trockener Stickstoff geleitet wurde. Die Schmelze wurde dann durch Quarzfritten in Quarzrohre gesaugt, wo sie verschlossen aufbewahrt werden konnte. Das Öffnen dieser Rohre, sowie alle weiteren Manipulationen wie Abwiegen, Mischen, Füllen der DTA-Probenbecher wurden in einem Inertgas-Handschuhkasten vorgenommen. Dieser Handschuhkasten war ähnlich gebaut wie der am Argonne National Laboratory (U.S.A.) entwickelte ⁽⁵⁾. Die Atmosphäre (Stickstoff) wurde dabei im Umwälzverfahren über Molekularsieben laufend getrocknet. Ihr Feuchtigkeitsgehalt, der mit einem Feuchtigkeitsmeßgerät der Fa. CEC dauernd kontrolliert wurde, betrug weniger als 10 ppm.

¥ 2 4

- 3 -

Der Schmelzbunkt des so gereinigten KCl betrug 772° C, der von CsCl 643[°] (Umwandlungspunkt bei 457[°]C), Werte, die gut mit Literaturangaben übereinstimmen ^(4a, c, 6, 7). LiCl wurde nicht allein gereinigt, sondern im Gemisch mit KCl zur Herstellung der binären Gemische, die als Ausgangssubstanzen für die einzelnen Versuchsreihen dienten.

Im Ganzen wurden 92 Gemische verschiedener Zusammensetzung untersucht. Die meisten befinden sich auf senkrechten Schnitten durch das T/x-Diagramm, die von der KCl-LiCl Kante zur CsCl-Ecke verlaufen. Im Bereich der invarianten Punkte wurden einige zusätzliche Gemische gemessen.

Die binären KCl-LiCl-Gemische wurden nach dem Schmelztrocknen analysiert (Kalium-Bestimmung mittels Kalignost) und dann mit steigenden Mengen CsCl versetzt.

II. Die binären Randsysteme und der zu erwartende Typ des ternären Systems

Die drei binären Randsysteme stellen drei völlig voneinander verschiedene Typen von Phasendiagrammen dar:

1. Das am besten untersuchte System KCl-LiCl bildet ein einfaches Eutektikum ohne meßbare gegenseitige Löslichkeit (4a,6,10). Neuerdings wurden von russischen Autoren homeomorphe Umwandlungen für LiCl bei 565°C und für KCl bei 27 und 348°C angegeben (9). Die Schmelzpunkte unserer binären Gemische stimmen gut mit den akzeptierten Werten (8) überein. Das Eutektikum fanden wir bei 42 Mol-% KCl und 352°C.

2. <u>CsCl bildet mit KCl</u> eine lückenlose Mischkristallreihe mit Schmelzpunktminimum ^(6, 4c, d, 11). Eine Mischungslücke wird nicht angegeben. Einige von uns gemessene Kontrollpunkte liegen gut auf der von Zemczuzny⁽⁶⁾ bestimmteⁿ Kurve.

- 4 -

3. Das System <u>CsCl-LiCl</u> ist noch nicht eindeutig geklärt: während der früheste und eingehendste Bearbeiter (Korreng 1915 ⁽⁷⁾) die Existenz von zwei Verbindungen, nämlich von kongruent schmelzendem CsCl·LiCl und von inkongruent schmelzendem 2CsCl·LiCl annimmt, hält Dergunov (1951) ⁽¹²⁾ den Knick in der Schmelzkurve bei 59 Mol-% CsCl und 397^oC für die polymorphe Umwandlung des CsCl. Einigkeit besteht nur über die Existenz eines Eutektikums bei 58.5 Mol-% LiCl und 332^oC. Da aber im Fall RbCl-LiCl von Keitel (1925) ^(4c) eine 1:1 Verbindung, inkongruent schmelzend, zweifelsfrei nachgewiesen wurde, war wohl anzunehmen, daß auch CsCl mit LiCl mindestens eine Verbindung bildet.

_ 4 _

Aufgrund dieser Fakten war zu vermuten, daß das ternäre Diagramm CsCl-KCl-LiCl ähnlich dem von Keitel beschriebenen KCl-LiCl-RbCl aussieht (Abb. 2, nach 4c): nahe der LiCl-Ecke war ein ternäres Eutektikum zu erwarten. Ob noch ein oder gar zwei weitere invariante ternäre Punkte vorhanden sind, hängt davon ab, ob tatsächlich noch eine zweite CsCl-LiCl Verbindung existiert und davon, ob die Mischkristalle CsCl-KCl durch die Zugabe von LiCl unterhalb einer bestimmten Temperatur zersetzt werden. Da im Mischkristallsystem CsCl-KCl jedoch keine Mischungslücke beobachtet wurde, und da LiCl weder im KCl noch im CsCl löslich ist, ist auch im ternären System keine Mischungslücke zu erwarten. Auch im ternären System KCl-LiCl-RbCl konnte von Keitel (loc. cit) keine derartige Erscheinung bemerkt werden. Damit ist beim Vorliegen einer Verbindung mit nur einem invarianten Punkt zu rechnen, bei der Existenz von 2 Verbindungen mit einem weiteren. Ob der zweite invariante Punkt in diesem Fall Eutektikum oder Peritektikum ist, höngt davon ab, ob er innerhalb oder außerhalb des dazugehörigen Dreiphasen-Dreiecks liegt. Da die 1:1 Verbindungen nach Korreng zwar kongruent schmilzt (wir nennen sie im folgenden D1), aber kein ausgeprägtes Temperaturmaximum besitzt, somit den Grenzfall zwischen Eutektikum und Peritektikum darstellt, ist anzunehmen, daß die dazugehörige univariante Linie außerhalb des Dreiecks als Umwandlungslinie ins Innere des Systems verläuft, der invariante Punkt also ein Peritektikum, P, kein T-Minimum ist. Entsprechendes gilt für die von dem zur 2:1 Verbindung (D2) gehörenden peritektischen Punkt ausgehende univariante Linie.

- 5 -

Demzufolge würde man dann 4 Sättigungsflächen für die ternären Lösungen erhalten, wo diese jeweils mit einer anderen Kristallart im Gleichgewicht stehen: erstens mit reinem LiCl, zweitens mit der 1:1 Verbindung, drittens mit der 2:1 Verbindung und viertens mit Mischkristallen. Letzteres Feld müßte am größten sein. Beim Fehlen der 2. Verbindung müßte das Diagramm völlig analog der Abb. 2 sein, also nur 3 primäre Kristallisationsfelder besitzen.

III. Ergebnisse

Die Meßpunkte liegen auf 8 Schnitten durch das ternäre T, x-Diagramm, die von der KCl-LiCl Seite zur CsCl Ecke verlaufen. Mit den zusätzlichen Punkten und der jeweiligen Nummerierung sind alle Meßpunkte in Abb. 3 als Projektion des Konzentrations-Temperatur-Prismas auf seine Grundfläche verzeichnet. Die Meßergebnisse (Lage und Intensität der Kristallisations-Peaks) sind in den Tabellen 1-8 aufgeführt. Die Intensitätsangaben sind dabei in den meisten Fällen nur grobe Schätzungen des Verhältnisses der Peak-Flächen zueinander. Nur in einigen kritischen Fällen wurden die Flächeninhalte genauer ausgemessen. Die Zahlenwerte sind Prozente, wobei sich alle Flächen eines Meßpunkts zu 100 ergänzen. Bei einem Vergleich der Fläche untereinander wird dabei die vereinfachende Annahme gemacht, daß alle Zusammensetzungen dieselbe Schmelzwärme besitzen.

Infolge der Lage der Punkte sind gleichzeitig T, x-Schnitte parallel zur Seite AB wie auch in anderen Richtungen gegeben, wie z.B. die Schnitte, die die Teildreiecke begrenzen, nämlich BD₁ und BD₂. Die Kristallisationsbahnen der Punkte auf 10 Schnitten, die zur Ermittlung der Phasenverhältnisse nötig sind, sind grafisch in den Abb. 4-13 dargestellt.

. 6 .

- 5 -

IV. Diskussion

1. Ternäres Eutektikum

Alle Punkte, die innerhalb des Dreiecks ABD₁ liegen (Abb. 3), weisen als Endstufe der Kristallisation ein Maximum bei 263 + 3^oC auf (Mittelwert aller 46 Messungen, bei denen er auftritt). Im DTA-Diagramm ist dieser immer scharf ausgeprägt mit steilen Flanken im Gegensatz zu den von der primären oder sekundären Kristallisation herrührenden Maxima deren Tieftemperatur-Flanke mehr oder weniger langsam abfällt. Hier handelt es sich offensichtlich um das ternäre Eutektikum.

- 6 .

Seine Lage ergibt sich folgendermaßen: Im Kristallisationsfeld von A, in dem sich bei der primären Kristallisation die Schmelzzusammensetzung linear von A fortbewegt, berühren sich in der Geraden AE zwei sekundäre Kristallisationsfelder. Das macht sich darin bemerkbar, daß die Punkte VII 3 und 4, sowie VIII 3 direkt nach E fallen, d.h. sie besitzen nur 2 Maxima, dersekundäre fehlt völlig (Abb. 7 und 8). Die Gerade AE ist also ein geometrischer Ort für E. Einen zweiten geometrischen Ort stellt die Gerade BE dar: hier liegen die Punkte I 1, III 2, IV 2, V 5 und VI 4 auf der Berührungslinie zweier sekundärer Kristallisationsfelder. Die Schmelzzusammensetzung bewegt sich direkt nach E, während die im Felde BEe₁ liegenden Punkte die Tallinie e₁E treffen, die im Feld BPE liegenden die Tallinie PE.

Hierdurch ist außerdem schon geklärt, daß in diesem Teil des Zustandsdiagramms praktisch reines KCl primär kristallisiert, oder ein Mischkristall, dessen Zusammensetzung äußerst nahe bei der Ecke B liegt. Damit ist der Ausgangspunkt dieser Untersuchung, nämlich die Frage nach dem niedrigen Verteilungskoeffizienten von CsCl bei der Kristallisation KCl-LiCl reicher Schmelzen ^{X)} bereits geklärt: CsCl tritt also bei der Kristallisation von Ausgangsgemischen unterhalb der Linie

x) k = <u>C3Cl Kristallisat</u> CsCl Schmelze = 0,05 bei einer Ausgangskonzentration von 0.2 Gew.-% CsCl und weniger in KCl-LiCl.

- 7 -

BP praktisch überhaupt nicht im Bodenkörper auf. Nur oberhalb von BP scheiden sich CsCl-KCl Mischkristalle ab. Der Schnittpunkt der beiden Geraden BE und AE legt E eindeutig fest zu: 27 Mol-% CsCl, 17.5 Mol-% KCl und 55.5 Mol-% LiCl. Diese Zusammensetzung wird recht genau vom Punkt 92 getroffen (27.7 Mol-% CsCl, 17.3 Mol-% KCl, 55.0 Mol.% LiCl), der deshalb auch nur ein einziges Maximum aufweist.

Der Verlauf der eutektischen Linie e₁E wird von den Schnitten V, VI, IX, X und XI eindeutig festgelegt. Er macht sich dort durch ein scharf ausgeprägtes Minimum bemerkbar (z.B. Abb. 8). Die Punkte V1 und VI 2 und 3 besitzen nur 2 Maxima, so daß angenommen werden muß, daß sie in dem oder in unmittelbarer Nähe des Tals liegen. Das Auflösungsvermögen der DTA-Apparatur ist nicht gut genug, um hier den schwachen sekundären Effekt noch zu zeigen.

Die Lage der beiden anderen sich in E schneidenden univarianten eutektischen Linien e₂E und PE ergibt sich auf ähnliche Weise: e₂E durch die Schnitte XIII (Abb. 9) und XIV, sowie VII (Abb. 7) und VIII, wobei die Punkte VII 5 und 90 die Linie direkt treffen (2 Effekte),jedoch nicht Punkt VIII 7 (3 Effekte). Sie läuft offenbar sehr nahe an der A zugewandten Seite des letzteren Punkts vorbei, was aus der sekundären Kristallisationstemperatur geschlossen werden kann.

Kurve PE ergibt sich ebenfalls aus den Schnitten XIII und XIV, wobei sie offenbar zwischen den Punkten 91 und VII 6 verläuft, die beide nur 2 Peaks aufweisen, sowie sehr genau aus Schnitt XX (Abb. 12).

2. Der zweite invariante Punkt

Die Punkte des Vierecks BPD_1C weisen alle mit Ausnahme von einigen in der äußersten C-Ecke liegenden (I 7, 8 und 9 sowie III 8 und 9) einen ternären Haltepunkt bei 281 $\stackrel{+}{-} 3^{\circ}C$ (Mittelwert aller 34 Meßpunkte) auf. Für eine Anzahl von Punkten, nämlich alle, die sich innerhalb des Dreiecks BD_1P befinden, stellt dieser Punkt jedoch nicht die Endstufe dar, sondern wird noch bis zum

- 8 -

Eutektikum E als Endpunkt unterschritten. Diese Punkte weisen also 4 DTA-Maxima anstelle der üblichen drei auf. Daraus ist zu schließen, daß es sich bei diesem invarianten Punkt nicht um ein Temperaturminimum, also ein Eutektikum handeln kann, sondern daß vielmehr ein Umwandlungspunkt (Peritektikum) vorliegen muß. Ein weiterer Hinweis dafür ist auch die Lage dieses Punktes: er liegt offenbar außerhalb seines Dreiphasen-Dreiecks BCD_1 (oder ED_2D_1), wodurch es zur Ausbildung eines Vierphasen-Vierecks kommt.

Seine Lage (37 Mol-% CsCl, 14 Mol-% KCl, 49 Mol-% LiCl) ergibt sich wie folgt: Die Gerade BP ist ein geometrischer Ort für P, da sich hier wieder zwei sekundäre Kristallisationsfelder berühren; den Punkten IV 3 und VI 6 fehlt deshalb der sekundäre Effekt, sie bewegen sich direkt nach P (Abb. 5 und 6). Auch hier befinden wir uns also noch im Gebiet der primären Kristallisation von praktisch reinem KCl.

Einen zweiten geometrischen Ort für P stellt die Gerade D₂P dar. Da jedoch kein Punkt direkt auf sie zu liegen kommt (sowohl VII 7 als auch VII/8 zeigen noch schwache sekundäre Effekte wenige Grade über der Temperatur von P), ist diese Gerade nicht ganz eindeutig festzulegen.

Mithilfe der beiden restlichen Tallinien, die sich ja in P schneiden müssen, kann die Lage von P aber noch mit einer Genauigkeit von etwa – 1 Mol-% bestimmt werden: D₁P läuft durch Punkt VIII 9 (außer P und E nur noch ein Maximum, jedoch nicht durch VII 7. Die zweite peritektische Tallinie pP läuft offenbar durch Punkt VII 9, bei dem ebenfalls die sekundäre Kristallisation zwischen der primären und dem Umwandlungspunkt P fehlt. Beide Linien können aber durch die in Frage kommenden Schnitte nicht eindeutig ausgemacht werden, da es hier zu einer Komplikation kommt. Die breite Mulde des Schmelzpunktminimums der Mischkristallreihe BC zieht sich durch das ganze Zustandsdiagramm hindurch, wie an den Schnitten I bis VI (z.B. Abb. 5 und 6) sowie BD₁ (Abb. 4) und XXI (Abb. 13) deutlich abgelesen

- 8 -

- 9 -

werden kann, und überlagert sich daher auch den peritektischen Linien pP und D₁P, so daß diese in manchen Schnitten (z.B. XV, XVI und XXI) deutlich ausgeprägte Minima zeigen und mit eutektische Linien verwechselt werden könnten. In anderen Schnitten, wie z.B. VII (Arb. 7) oder VIII ist der Knick im Temperaturprofil ebenfalls nur schwer auszumachen.

3. Weitere Merkmale des Zustandsdiagramms

a. Dritter invarianter Punkt

Somit kann auch die Frage nach einem dritten invarianten Punkt endgültig verneint werden: wäre er vorhanden, müßte statt der breiten Mulde ein deutlich ausgeprägtes Tal von der Seite BC aus, beginnend in einem kritischen Punkt, herabziehen. Die Existenz eines solchen Tals wird aber von keinem Schnitt, weder von einem der Schnitte II - VI, noch von XV, XVI oder XVII (Abb. 10) nahegelegt. Einzig und allein 4 Punkte (I 3, 4 und 5 sowie III 4) im fraglichen Bereich (Abb. 9 und 10) zeigen schwache sekundäre Effekte, die unter Umständen auf eine Entmischung hinweisen könnten. Diese Effekte sind jedoch so schwach (siehe Tab. 1 und 3), wenn auch reproduzierbar, daß wir sie für die Interpretation unserer Daten nicht heranzogen.

Wäre ein dritter invarianter Punkt existent, dann müßte es auch ein drittes Dreiphasen-Dreieck, nämlich BCD₂ geben, dessen Punkte nicht mehr P erreichen dürften. Daß letzteres aber eindeutig der Fall ist, wurde schon oben dargelegt.

b. Das Mischkristallfeld

Das Mischkristallfeld BCpP besitzt einige besondere Merkmale: Wie Schnitt XVII (Abb. 10) zeigt, treffen die Kristallisationsbahnen aller Punkte dieses Schnittes, soweit sie im Mischkristallfeld liegen, die univariante Umwandlungslinie pP bei sehr nahe beieinander liegenden Temperaturen (325 - 330°C). Dies gilt nicht nur für diesen Schnitt, sondern für alle Punkte, die im Misch-

- 9 -

kristallfeld des Dreiecks BCD₁ liegen, mit Ausnahme derjenigen, die in der äußersten C-Ecke und nahe dem Randsystem CD₂ liegen. Letztere treffen die Linie pP bei höheren Temperaturen (ca. 350° C), jedoch auch wieder in einem engen Temperaturintervall. Besonders deutlich wird dieser Sprung der Sekundärtemperatur in Abb. 11 (Schnitt XVIII). Es ist höchst wahrscheinlich, daß der Crund hierfür wieder in der Mulde des Mischkristallminimums zu suchen ist, deren Flanke der Linie pP eine steile Partie in dem betreffenden Bereich aufprägt.

Die Punkte in der äußersten C-Ecke (ab etwa 80 Mol-% CsCl) erreichen anscheinend nicht mehr den peritektischen Punkt P. Ob dies nur durch die mangelnde Empfindlichkeit der Meßmethode vorgetäuscht wird, oder ob dort das Vierphasen-Viereck von P eingeschränkt ist, kann mit den DTA-Daten allein nicht entschieden werden.

c. Polymorphe Umwandlungen

Die a-3-Umwandlung des CsCl kann, wie schon anfangs erwähnt, sehr stark verzögert werden, und deshalb bei zu tiefen Temperaturen erscheinen, oder sich ganz der Beobachtung entziehen. Besonders ist dies bei Mischkristallbildung mit KCl der Fall^(4c). Dies ist der Grund, warum wir nur bei zwei CsCl-reichen Gemischen einen Effekt feststellten, der mit einiger Sicherheit nur dieser Umwandlung zugeordnet werden kann (IV 9, Abb. 5 und VII 11, Abb. 7). Die Erniedrigung der Umwandlungstemperatur ist in beiden Fällen beträchtlich (50-60⁰).

Von Korreng ⁽⁷⁾ wurde auch eine Dimorphie der Verbindung 2CsCl·LiCl angegeben. Die thermischen Effekte, die er bei etwa 360° C so interpretierte, konnte er auch durch kristalloptische Befunde erhärten. Bei unseren Messungen konnten wir nur wenige, keineswegs zwingende Hinweise auf diese Erscheinung finden: allein die Punkte VIII 10 und 11 (Abb. 10 und 11) zeigen bei 325° C einen zusätzlichen Effekt, den wir anders nicht deuten können. Die Kristallisationstemperaturen der andern Punkte im Kristallisationsfeld von D₂ liegen schon so niedrig, daß so wie so nur die Tieftemperaturform auskristallisiert. Für eine definitive Beantwortung dieses Problems, das hier nicht weiter interessiert, müßten jedenfalls noch andere Untersuchungsmethoden, vor allem kristallographische herangezogen werden.

- 11 -

Zusammenfassung

Zusammenfassend läßt sich das ternäre Zustandsdiagramm CsCl-KCl-LiCl folgendermaßen beschreiben:

- 1.) Die Existenz der beiden von Korreng im Randsystem CsCI-LiCI beschriebenen Verbindungen CsCI-LiCI und 2CsCl·LiCI konnte bestätigt werden.
- 2.) Da eine Mischungslücke in der Mischkristallreihe CsCl-KCl nicht vorhanden ist, treten nur zwei invariante Punkte auf.
- 3.) Der eine invariante Punkt ist ein Eutektikum mit bemerkenswert tiefem Schmelzpunkt: 263 + 3°C bei einer Zusammensetzung von 27 Mol-% CsCl, 17.5 Mol-% KCl und 55.5 Mol-% LiCl. Die drei dazugehörigen festen Phasen sind: LiCl, KCl (bzw. ein Mischkristall, dessen Zusammensetzung dem reinen KCl sehr nahe kommt), und die Verbindung CsCl·LiCl. An den drei sich in E schneidenden univarianten, eutektischen Linien kristallisieren folgende festen Phasen nebeneinander: LiCl und KCl an e₁E; LiCl und CsCl·LiCl an e₂E; und KCl und CsCl·LiCl an PE.
- 4.) Der zweite invariante Punkt liegt außerhalb seines Dreiphasen-Dreiecks, so daß es zur Ausbildung des Vierphasen-Vierecks BCD₂D₁P kommt. Es handelt sich daher um ein Peritektikum (Zusammensetzung: 37 Mol-% CsCl, 14 Mol-% KCl, 49 Mol-% bei einer Temperatur von 281 ⁺ 3^oC).

Hier besteht das Gleichgewicht:

Schmelze P + Mischkristall M = $D_1 + D_2$

- 12 -

An den beiden sich in P schneidenden peritektischen Linien laufen folgende Umwandlungsreaktionen ab:

> Mischkristall M + Schmelze S = D_2 (an pP) und Schmelze S + D_2 = D_1 (an D_1P).

5.) Somit gliedert sich das Phasendiagramm in vier primäre Kristallisationsfelder auf, die als Projektion auf das Konzentrations-Dreieck zusammen mit den Isothermen der Liquidusfläche in Abb. 14 gezeigt sind:

Am größten ist das Mischkristallfeld, das mehr als 2/3 der gesamten Fläche einnimmt (BCoPEe₁). Es läßt sich jedoch unterteilen in zwei Teilfelder BCpP und BPEe₁, da in letzterem ein sehr CsCl-armer Mischkristall konstanter Zusammensetzung, wenn nicht reines KCl kristallisiert.

Im zweiten Feld kristallisiert die reine Komponente LiCl (e₁Ee₂A). Schließlich besitzt jede der beiden Verbindungen je ein Feld: CsCl·LiCl kristallisiert primär im Feld e₂EPD₁, 2CsCl·LiCl im Feld pD₁P.

Anerkennung: Herrn P. Dreßler wird für die Durchführung der experimentellen Arbeiten herzlich gedankt.

- 12 -

- 13 -

Literatur de la company de la

- 1. R.v. Ammon, KFK-Report Nr. 502 (1966)
- 2. R.v. Ammon, Radiochim. Acta, im Druck

3. Eine kritische Zusammenstellung findet sich in:

- a) W.D. Robertson: Binary Phase Diagrams of Halide Salts, YALE-2723 (13. Juni 1966), 2 Bände
 Weitere Sammelwerke:
- b) P.V. Clark: Physical Properties of Fused Salt Mixtures, SC-R-65-930 (Sandia Laboratory, Albuquerque), 2 Bände (15. Juni 1965 und November 1966)
- c) E.M. Levin, C.R. Robbins, H.F. McMurdie: Phase Diagrams for Ceramists; The American Ceramic Society 1964
- 4. a) KCl(RbCl, CsCl)-LiCl-NaCl: Th.V. Richards, W.B. Meldrum, J.Am.Chem.Soc. <u>39</u>, 1816 (1917)
 - b) KC1-LiC1-NaC1:
 E.K. Akopov, Zhur.Neorg.Khim. 1, 1024 (1956)
 - c) KCl-LiCl-RbCl; CsCl-KCl-RbCl: H. Keitel, Neues Jahrb. Mineral.Geol.Beil. <u>52 A</u>, 378 (1925)
 - d) CsCl-KCl-NaCl: I.I. Il'yasov, A.G. Bergman, J.Inorg.Chem. USSR 7 (3), 355(1962)

5. M.S. Foster, C.E. Johnson, C.E. Crouthamel, ANL-6652 (1962)

- 6. S.Zemczuzny, F. Rambach, Z.anorg.Chem. <u>65</u>, 403, (1909)
- 7. E. Korreng, Z.anorg.Chem. 91, 194 (1915)

- 14 -

- 8. E.Aukrust, B. Björge, H. Flood, T. Førland, Ann.Acad.Sci. New York 79, 830 (1960)
- 9. A.G. Berman, A.I. Kislova, V.I. Posypaiko, J.Gen.Chem. USSR 24, 1287 (1954)
- 10. E. Elchardus, P. Laffitte, Bull.Soc.Chim. <u>51</u>, 1572 (1932)
- R.J. Havighurst, E. Mack, Jr., F.C. Blake, J.Am.Chem. Soc. <u>h7</u>, 29 (1925)
- 12. E.P. Dergunov, Zhur.Fiz.Khim. 25, 584 (1951)

- 14 -

<u>Abb.1</u>: Typisches DTA - Diagramm der Kristallisation eines ternären Schmelzgemischs

<u>Abb. 2:</u> Isothermen des ternären Systems KCI-LiCI-RbCl nach Korreng⁽⁷⁾

<u>Abb. 6:</u> Konzentrations - Temperatur - Diagramm von Schnitt VI

Abb. 7: Konzentrations-Temperatur-Diagramm von Schnitt VII

Abb. 9: Konzentrations-Temperatur-Diagramm von Schnitt XIII

<u>Abb.11:</u> Konzentrations - Temperatur-Diagramm von Schnitt XVIII

Abb.13: Konzentrations-Temperatur-Diagramm von Schnitt XXI

Zeichenerklärung zu den Abbildungen :

- * Primäre Kristallisation
- Sekundäre Kristallisation oder peritektische Reaktion
- Peritektikum P
- ▲ Ternäres Eutektikum E
- und Polymorphe Umwandlungen

<u>A = LiCl</u>, <u>B = KCl</u>, <u>C = CsCl</u>, <u>M = Mischkristall</u>, <u>D</u>₁ = CsCl · LiCl <u>D</u>₂ = 2CsCl · LiCl, <u>S = Schmelze</u>, <u>e</u>₁ und <u>e</u>₂ = eutekt. Punkte <u>p = peritektische Punkte</u>

Versuchs- Nr.	Zı	usammense (Mol-%)	etzung	Primäre Sekundäre Kristallisation				Umws zu	ndl. D ₂	Peritektikum P		Eutektikum E	
and a second	CsCl	KCl	LiCl	-0 <u>-</u> C	Int.	C.	Int.	° C	Int.	°C	Int	°C.	Int.
	• •												
IO		79.,9	20,1	7:00	65	343	35	, aprilis		catas	ene .	ting .	(560)
I 1	10,0	71,9	18,1	662	60	265	20	800	502 1	case	9220	257	20
I 2	20,0	63,9	16,1	635	60	60 0	(m)	313	25	274	15	ww	3613
I 3	30,0	55,9	14,1	616	57	387	3	326	35	276	5	6780	6223
I 4	40,0	47,9	12,1	600	60	385	3	327	35	272	2	C00	eznej.
I 5	.50. , 0	40,0	10,0	578	60	366	2	325	37	273	1	240	902
I 6	60,0	32,0	8,0	590	69	6400	··· • • • • • • • • • • • • • • • • • •	326	30	275	1	811 0	cúc
I 7	70,0	24,0	6,0	602	80	64429	033	328	20	Land	e#2	wa	1230
I 8	80,0	16,0	4,0	619	85	100	azis	337	15		1000	eio	600
I 9	90,0	8,0	2,0	640	90	aita		348	10	enor		5443)	88024
·81:	100,0	-	chep	643	100	457 ^a) [*] ** ₂₀ *	en konstra	(123	6000	9808	teng	6007
82	80,0	20,0	- 600	626	100	616 ^b) 100	(323	daa)	 	. 6240 .		şabu
83	60,0	40,0		618	100	613 ^b) 100	, NASJ		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	eux .	eus	diaze
84	40,0	60,0	1000 ·	652	100	637 ^b): 100	5473)		daati'	cean	. 	. Cable
85	20,0	80,0	in and a second se	715	100	678	645		0. 6.6		<u> 800</u>	· 🖮 . '	
86		100,0	en e	772	100	6,00	65420	800	2009	9000			aic

Tabelle	1:	Konzentrat:	ions-Tempe	ratur-D	iagramm
---------	----	-------------	------------	---------	---------

von Schnitt I und benachbartem Randsystem CsC1-KC1

a) a-B Unwandlung b) Solidus-Temperatur aus Aufheizeffekt

 $h_{tr} \sim a_{tr} \approx a_{tr} \approx a_{tr}$

Versuchs-	Zusammensetzung (Mol-%)			Primäre Sekundäre Kristallisation				Umwandl. zu D ₂		Peritektikum P		Eutektikum E	
and and a second se	CsCl	KCl	LiCl	°C	Int.	°C	Int.	°C	Int.	°C	Int.	°C	Int
87	· natio	64,4	35,6	586	40	353	60	87 23	ciştə-	2003	88D	0050	<i>66</i> 5
II O	1	59,9	40,1	544	30	356	70	-	, tata		. 640	città	win
38	5,0	61,2	33,8	594	35	325	50	Clinica	্য প্রায়	6666	400	260	15
CI 1	10,0	53,9	36,1	557	25	296	35	9,05	(199) (1990)	anio	tipoliti	262	40
I 2	20,0	47,9	32,1	544	30	270	10	αχάη.	CAN	enio	5453	263	60
II 3	30,0	41,9	28,1	528	30	· 0%	1.100	306	33	277	35	262	2
II 4	40,0	35,9	24,1	516	25	-	akar	326	50	282	24	265	1
II 5	50,0	29,9	20,1	515	35	-cuite	0000 .	330	45	282	20		\$400
II 6	60,0	24,0	16,0	535	50	catris -	, eau	327	40	278	10		61369
LI 7	70,0	18,0	12,0	582	60	Q âg	-	338	35	275	5	1260	4 0000

· · · · · · protection

)

Tabelle 2: Konzentrations-Temperatur-Diagramm von Schnitt II.

 $\partial_t C_{t-t-t} \partial_t \partial_t (t-t) = 0$

 $\gamma \sim - \sim \sim \gamma \sim$

ng sa alatan da s	104 -			an en en en garger ante en en da. L											
r				·											
Versuchs- Nr.	Zusammensetzung (Mol-%)			Primäre Sekundäre Kristallisation			Umwa zu	ndl. D ₂	Perite	Peritektikum P)ktikum			
	CsCl	KCl	LiCl.	°C °	Int.	°C	Int.	°c	Int.	°C	Int.	°C	Int.		
	(*************************************					ann a chuir an chuir ann an chuir ann ann ann ann ann ann ann ann ann an							nadirecties and an a		
II O	Genti	51,1	48,9	477	15	357	85	a t)	çıda	'aisa' '	' ¢2059	(cos)	(200)		
III 1	10,0	46,0	44,0	487	25	309	40	site	Cirs)	cia	437 89	263	35		
S III	20,0	40,9	39,1	490	30	405	ato a	<i>616</i>		13498	6589	261	70		
II 3	30,0	35,0	34,2	485	25	(1 6)	8:29	307	25	280	30	263	20		
CII 4	40,0	30,7	29,3	477	25	397	1	327	50	276	24	<i>12</i> 39	ciju		
II 5	50,0	25,6	24,4	485	35	RÇD	. 556	329	45	282	20	600	Geo		
III 6	60,0	20,5	19,5	522	50	eparela	9 1. 39	325	35	282	15	stati	ciaș		

Tabelle 3: Konzentrations-Temperatur-Diagramm von Schnitt III.

and the second Eutektikum Sekundäre Umwandl. Peritektikum Versuchs-Zusammensetzung Primäre (Mol-%) Kristallisation zu D₂ E р Nr. °C °C °C °c °c LiCl Int. KCl Int. CsCl Int. Int. Int. 42,6 57,4 IV O 352 100 **C**788

319

9480

54

0000 taxy

319

40

259

263

267

262

263

284

282

283

283

280

40

40

23

10

3

35

80

40

1

1

e140

anna 11 with the	1.		10 W 10 W
10000110	11	K on row theta che we we have on the M of the M of M of M of M of M of M of M of M of M of M of M of M of M of M of M of M of M of M of M of M	- 4 - M
10000000	- YY -	TOURCHPICTOUS CENNELCONT AT CONTRACT CONTRACTO	- V - min

10 NC -

IV	7	70,0	12,8	17,2	547	65	0100)	 337	32
IV	8	80,0	8,5	11,5	581	68,5		348	31,5
IV	9	90,0	4,3	5,7	620 403 ^a)	80,5	.	348	19,5

389

420

427

427

11

20

20

19

 α - β -Umwandlung a)

10,0

20,0

30,0

40.0

IV 1

IV 2

IV 3

IV 4

38,3

34,1

29,8

25,6

51,7

45,9

40,2

34.4

 $B_{1}^{1} \cdots + f_{n}^{n} f_{n}^{n} f_{n}^{2} \cdots = f_{n}^{n}$

.

								State State.						
Versuchs- Nr.	Zusammensetzung (Mol-%)			Pri	märe Krist	Sek allisat	undäre ion	Unwandlung zu D ₂		Peritektikum P		Eutektikum E		
en alle se anna anna anna anna	CsCl	KCl	LiCl	°C	Int.	°C	Int.	°C	Int.	°C	Int.	°C	Int.	
alaningkan serijan ingan delaminingkan delaminingkan delaminingkan delaminingkan delaminingkan delaminingkan de		Santhard (1999) and a start of the start of th		4-11000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-1000-1-10	9									
V O	-	35,0	65,0	405	10	354	90		2006	بنھ	itter:		42547	
V 1	5,0	33,3	61,7	342	75	nicht	aufgelöst	. amo.	Classo	90%)*	dain	263	25	
Ϋ 2	10,0	31,5	58,5	315	50	**	tî	isste	QQBar .	anto	c antr	266	50	
V 3	15,0	29,8	55,2	329	7	301	40	ater	040	antin	ditali	263	53	
V 4	20,0	28,0	52,0	352	10	275	3		Alian .	46 2		265	87	
V 5	25,0	26,3	48,7	367	13	273	3 2	30 <i>60</i>	850	#20	2000	263	85	
v. G	30,0	24,5	45,5	372	13	6 278	57	640	-	-	9.545	263	30	
V (7	35,0	22,8	42,2	377	10	ىنە	99459	304	25	283	60	268	5	
V 8	40.0	21,0	39,0	377	7	¢.p	1990 J	313	40	285	53	265		
V 9	45,0	19,2	35,8	384	5			335	45	282	50		1000	

)

services in the second

Tabelle 5: Konzentrations-Temperatur-Diagramm von Schnitt V

oficial and the second s	14 				10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	r.							11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
ersuchs- Nr.	Zusa	mmenset: (Mol-%)	2 un g	Primäre Sekun Kristallisatic			ndåre on	ndäre Umwandl. on zu D ₂		Peritektikum P		Eutektikum E	
and the second	CsCl	KCl	LiCl	°C	Int.	°c	Int.	°C	Int.	°c	Int.	°c	Int.
	-					an an fan maler fersteren an fersteren fersteren fersteren fersteren fersteren fersteren fersteren fersteren f					andin yana di kanan kina di kanan kina di kanan kanan ka	an a	
VI O IV	800 6	28,8	71,2	455	30	357	70	trate	ianio	tites	ettip	6038-	فلزود
VI 1	10,0	26,0	64,0	347	10	312	40	6 ,02	640	فتتة	يعين	261	50
VI 2	15,0	24,5	60,5	306	35	nicht	aufgel.	641	40%ib	vites	daab.	267	65
VI 3	20,0	23,1	56,9	288	20	ŦŦ		820	att:		585	257	80
VI 4	25,0	21,6	53,4	287	5	660	100 A	w	6763	ندند 	daana)	260	95
92	27,7	17,3	55,0	tina	فنع	فند		-	1999	1000	and3	265	100
VI 5	30,0	20,2	49,8	306	5	273	55	00as	¢i3	2 45	10 2 0	259	40
91	32,6	16,0	51,4	279	30	nicht	aufgel.	Mario I	Géni	4 120	6040p	266	70
VI 6	35,0	18,8	46,2	318	6	853	¢139	4040	860	284	50	265	24.24
VI 7	40,0	17,3	42,7	323	3	qasar	(586)	305	50	280	45	263	2.
VI 8	45,0	15,9	39,1	339	2	tikear		327	52	283	45	265	1
VI 9	50,0	14,4	35,6	405	10	611	· trús	334	55	281	35	and a	8011
VI. 10.	60,0	11,5	28,5	475	20	623	4329	348	60	278	20	- -	62066

Tabelle 6: Konzentrations-Temperatur-Diagramm von Schnitt VI

.

 $\mathbb{P}_{p}(Y) \in \mathbb{Q}[V_{p}(f_{p}^{*})] \times \cdots \times \mathbb{Q}[V_{p}^{*}]$

a de la companya de l																
Versuchs- Nr.	Zusa (mmenset: Mol-%)	Zung	Primë Ki	ire ristall	ndäre	Umwa: zu D	ndl. 1 ^{bzw.]}	Peri 2	Eutei	Eutektikum E					
n an	CsCl	KC1.	LiCl.	o ^C	Int.	o contraction contraction contractions of the contraction contract	Int.	o C	Int.	°C	Int.	°C.	Int.	the defendance of the second		
VII O	Vien	19.3	80,7	508	55	348	45	' davis	ča).	 هنه	4005	quad	áposi			
VII 1	10,0	17.4	72,6	497	30	294	25	4990	ative .	6849	45i6p	256	45			
VII 2	15,0	16,4	68,6	409	25	282	15	653	3860	-	diane -	264	60			
VII 3	20,0	15,4	64,6	367	15	ciaio	aiste	-	83	cito	4000	258	85			
VII 4	25,0	14,5	60,5	303	10	utio	6 12	taika	1000	ing a	1200	267	90			
VII 5	30,0	13,5	56,5	272	20	nicht	aufgel.	5 au	4 22	2020	2060	263	80	,		
90	32,6	9,8	57,6	285	45	. 79	11	6 20	e mi	244	esiles	268	55			
VII 6	35,0	12,5	52,5	281	30	81	89 ·	\$ 55	1620	6 10	ຄົດອ	261	70			
89	37,7	9,0	53,3	291	45	275	10	aa .	atti	804j	cate:	265	45			
VII 7	40.0	11,6	48,4	295	10	لنفيته	2017	288	10	280	70	263	10			
VII 8	45,0	10,6	44,44	313	35	ajia	10.00 ·	290	5	283	57	264	3			
VII 9	50,0	9,6	40,4	333	55	4280	604D	n.aufg	el.	288	45	time -	citte			
VII 10	60,0	7.7	32,3	442	20		alexi -	349	60	284	20	attana a	449			
VII 11	70,0	5,8	24,2	528	35	392 ^a)	349	55	279	10	42029	Quer			

,

فمد محصورين

a) Wahrscheinlich $\alpha-\beta$ Umwandlung