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Abstract. The noise .in the neutron de~ector signal from a reactor with an external controlloop is theoretically investigated.
Delayed ne~trons ar~ mcluded. A practwal formula for the noise power spectral density contains 4 contributions: (1) White
detector J:.1Olse, (2) nOlse fro~ an external ~eactivitype~turbation, (3) noise of the same origin (i. e. branching processes) as that
observed m zero-power experIments, (4) nOlse produced m the controlloop by the neutron detection process. A rigorous stochastic
treatment shows, that this formula is a very good approximation, when the neutron population is high and its fluctuations are
sufficiently small.

1. Introduction
The output of a neutron detector in a reactor at

steady state is the sum of its mean value and statisti­
cal fluctuations. The analysis of this noise, by different
experimental, theoretically related methods, is an
established technique for obtaining or supporting in­
formation on the reactor's dynamic performance [1,2].

The frequency analysis of the current from a
neutron-sensitive ionization chamber determines the
power spectral density of the noise contained in the
detector signal. This technique has been treated
quite early in respect to zero-power reactors [3-5]
and is convenient for power reactors, when the rate
of neutron detections becomes very high.

* Work performed within the association in the field of
fast reactors-between the European Atomic Energy Commu­
nity and Gesellschaft für Kernforschung m. b. H. Karlsruhe.

Apart from a trivial contribution, i. e. white de­
tector noise, the noise in the neutron detector signal
reflects the fluctuations in the neutron population.

In a reactor at full power the neutron population
fluctuates primarily because of the statistical modu­
lation of the reactivity,by random variations of the
coolant inlet temperature or velocity, formation of
bubbles in the coolant etc. These effects constitute an
external, autonomous reactivity perturbation (!o(t),
which drives the reactor with its external and internal
feedback loops.

The other extreme is a subcritical reactor with a
spontaneous fission neutron source. In such zero­
power assemblies reaetivity perturbations are quite
unimportant. The neutron fluctuations are, then, due
only to the subcritical neutron multiplication being a
stochastic branching process.
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Fig. 1. Scheme of the reactor with external control loop and PSD measuring
equipment
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So far, only this second case has got a satisfactory
theoretical treatment, although obviously the effects
observed in zero-power experiments should be present
to some extent also in reactors at any power-level.
However, it seems unrealistic to aim at a stochastic
treatment of a reactor and retain all complications of
space- and energy-dependence, external and internal
feedbacks, mechanisms perturbing the reactivity etc.

We investigate here the power spectral density
(PSD) of the neutron detector signal obtained from
an externally perturbed point reactor with a single
external control loop. The results will be directly
applicable for long-time low-power experiments with
a reactor under automatic control. The frequency
characteristics of the controlloop shall be quite general,
and delayed neutrons are duly considered.

In section 3a practical formula
(3.11) is developed and discussed. In
the rest of the paper an attempt is
made to confirm this formula by a rig­
orous stochastic treatment. This confir­
mation could not be obtained quite
generally. But we can show that (3.11)
is at least a very good approximation,
if the neutron population is sufficiently
high and the fluctuations are small.

2. Reactor Model, Definitions
We consider a reactor with a control

loop (Fig. I); eo signifies a reactivity
perturbation (input), ec is the control
reactivity (feedback); then e = eo - ec
lli- iQe ~§t~re::J,()tivity--"- Let11 (0- b~ the neutroILPQ:R1!: _ ~"WJihj~.'!)_a,l!cl(~)lecJttci1l11::Je l'€lg~rCl13<i l1s_a,Sll.Il:l 9:L
lation at time t arid No a constant dernand vahie, arid partial feedback reactivities ej,
assume

as usual. In a deterministic model N (t) is a linear
function of the net reactivity,

The controller response function g(t), which is zero
for t <0, is assumed to have a Fourier transform G(w),

Let the feedback reactivity be a linear function of
bNjNo,

00

ec(t) = Ig({}) N(t-;~-No d{}. (2.4)
-00

ho(t), which is zero for t<O, has a Fourier transform
Ho(w), i. e. the frequency response function of the
reactor without feedback. With l = prompt neutron
generation time, ßk and Ak =fraction and time con­
stant of the k-th delayed neutron group, this is
known to be

3. Heuristic Development

We will now .. derive non-rigorously and briefly an
expression for the PSD (=power spectral density)
of the noise in the signal of a detector outside the
control loop, i. e. the Fourier transform S(w) of the
autocorrelation function Rn (i) of the detector signal,

Each partial term obeys a differential equation

d N (t) - No (. J (2 10)Iltej(t)=aj No +pjejt), J=l, ... , ..

Part of the controlloop is the neutron detector, e. g. a
boron-lined ionization chamber. Let R (t) be the neutron
detection rate (pulsesjsecond) and R o--:. WoNoj(vl) its
constant average; Wo = detector sensitivity (pulsesj
fission), v =mean mimber of fission neutrons per
fission. Then

d a·
diei(t)= Jl

o
R(t)-ai+Piei(t). (2.lOa)

aijR o is seen to be the average increase of this partial
feedback reactivity per detected neutron.

(2.2)
00

bN =N(t) -No =No J ho({}) e (t -{})d{}.
-00

J

" a'G(w) = L..J -.-'-,
j~l ~W-Pj

(2.5)
00

S(w) = L: Sk(w) = JRn (i)e- i ")'.. di ..
-00

(3.1)
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The terms Sk(W) of the sum are related to dilferent
sources. This absorption detector has asensitivity ~
(pulses/fission) and detects neutrons at an average
pulse rate RI =~F with F =No/(vl) =mean fission
rate. The autocorrelation function will oe defined as

When all other sources of noise in the control loop
(e. g. spurious detector pulses, electronic noise) can
be neglected, we have

(3.10)

co

rl= <~2> = Jw l (~)~2d~ ~ 1. (3.3)
o

We require, that the reactivity perturbation eo (t) has
a time average eo = 0, and define its PSD by

SI{W) = ~Frl' (3.5)

S2(W) = WlF2!H(w)12PO(W). (3.6)

In a first approximation the reactor (with its control
loop) depends deterministically on eo(t). We then may
insert (2.7) into (3.2), perform the Fourier transforma­
tion according to (3.1) and get

The mathematical treatment presented for this case
can easily be adapted to the general model assumed
in the previous sections.

Let n, c, el be the number of neutrons, number of
precursors and the feedback reactivity at time t. As
far as nuclear processes are concerned, during an
infinitesimal interval (t, t +dt) the following alter­
natives must be considered:

1. No process occurs.
2. One precursor decays.
3. One neutron is captured or leaks out, but it is

not detected by the control detector.
4. One neutron is captured in the control detector,

and thus contributes to the feedback reactivity.
5. One neutron produces fission and generates m

prompt neutron plus 0 or 1 neutron precursor.
These alternatives have known probabilities. In

addition, the feedback reactivity el will shift according
to (2.lOa) by an amount

LI el = -adt +beldt. (4.2)

As we want to neglect in this investigation any addi­
tional (electronical or mechanical) noise in the control
loop, this shift is a deterministic contribution.

Let p(n, c, el' t)del be the probability at time t for
the nul'Ylbers n, c and a feedback reactivity in an

4. Stochastic Formulation
~ 'I'o~gBtsimpleequati0ns,-we- restriet-this-aetailed

exposition to a case with one group of delayed neutrons
and the simplest controller response function

a
G(w)=-'--b; g(t)=a·ebt for t~O. (4.1)

%w-

Befare starting to develop the same formula by
stochastic methods, we want to point out some of its
salient features, which should be observable in
reactors with typical controlloops and with reactivity
perturbations mostly in the lower frequency region.
The white noise term SI' which alone is ,...,~ and
which would not be present in a two-detector cross
correlation experiment [6], is not considered in this
connection.

1. At high power F, the term S2 dominates for
medium frequencies. At high frequencies, when the
PSD Po (w) of the reactivity perturbation is attenuated,
the term S3 may become important.

2. At very low power F the term S3 dominates for
medium and high frequencies, when G(w) R:! O.

3. At low power and for very low frequencies the
term S4 cannot be neglected, especially when the sen­
sitivity Wo of the detect?r in the control loop is low.

in (3.9). With this assumption we can collect the
terms SI to S4 and 0 btain

S(w) = ~Frl +WlF

[
- ]_ (3.11)

.!H(w)12 F-Po(w) + ')J(V~l) + ~IG(w)12 .

(3.4)

(3.2)

co T

P, ( ) =J -ion: li J!!o(t+T)!!o(t)dt d
o w e T~ 2T. T.

-co . -T

In unperturbed, stationary, subcritical assemblies the
dominating source of neutron fluctuations are all
branching reactions, especially the fissions [6]. This
source of noise is expected also in the reactor con­
sidered. On a heuristical basis, we want to treat it as
an additional equivalent reactivity perturbation with
a white spectrum -Po' (w) = const. The appropriate
normalization can then be determined by an extra­
polation to high frequencies w, when G(w)~0,
H(w) R:!Ho(w) and the theory of zeropower correlation
experiments [6] is again applicable. Thus, the analog
of (3.6) becomes

S3(W) = Wl2F~ IH(w)12. (3.7)')J

Rn(-r) = ~Frlt5(i) + w;.:N.l202 lim
')J T-+co

T.J (N(t+T)-No)(N(t)-No}dt
2T·Nl .

-T

If an autocorrelation experiment processes analog
signals, the first, singular term of Rn (i) yields a
contribution proportional to the mean square of the
detector pulse amplitude. All other contributions are
proportional to the square of the mean amplitude.
This is taken into account by the factor rl [5]. Let
the probability density of the pulse amplitudes ~ be
wl (~) and let the mean amplitude be <~> = 1. Then

Any spurious detector signal R s (t) in the control loop
generates feedback reactivity according to (2.4). One
can easily verify that a spurious control detector
signal with a PSD Rss(w) generates spurious feedback
reactivity es with a PSD

p.(w) = IG(w) 12Rss(W)/(WoF)2. (3.8)

According to (3.6) this contributes to S(w) a term

S4(W) = (~/Wo)2'1 H(w) 12 .1 G(w) 12 • Rss(w). (3.9)

The detector signal in the controlloop carries, besides
the desired information on the actual neutron popu­
lation, white noise with a spectral density WoF r0'

cf. (3.5). The factor To~ 1 is the analog of Tl' cf. (4.11 a).
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Herein we use as an abbreviation

00 00 00

L L J p(n,c, (!l,t)dr.h -1. (4.3)
n~O c~O -00

The arguments given above lead directly to a balance
Eq. (4.5), in which

e' =e1(1 +bdt) -adt; de' =de1(1 +bdt) (4.4)

is used as a substitution on the l.h.s.

p (n,c, e', t +dt)de' = p (n, c, e1' t)d e1+dtd e1

'[-(ÄC+ ;)p(n,c, ...)+Ä(c+I)

( 1 1 ) r n + 1 (1 n eo - el ~)'p n- ,c+ , ... T -l- ~rt---v--v

00

'ljJ(ß'V,u,v) = (1 +ß'V(v -1)) L qmum R:! 1
m~O

+'V(l-ß)(u -1) +ß'V(v -1) +v2 (D -2ß) (4.10)

. (u -1)2/2 +ßv2(u -I)(v -1) + ...

with the parameter D=v(v-I)/'V2:=::::;0.8 [7]. Terms
of order ß2 have been dropped. When we combine(4.9)
and (4.9a) we use the expansion (4.10) and a Taylor
expansion of the exponential function. This introduces
the normalization integrals

00 00

J Wo (.;) d'; = J wo(';)';d~ = 1, (4.11)
o 0

(4.11a)
00

J wo(~)';2d'; =ro;;;; 1,
o

for the pulse amplitudes of the control detector. We
thus obtain

(4.5)

00

Wo(n+l) f·p(n+I,c, ... )+ vl wo(,;)
o

( a;) ~ n+l-m
'p n+I,C,e1-R,t d';+ L..J vl

o m=O

. (1}v+eo-e1)qm[(I-ß'V)p(n+I ~m,c, ...)

+ß'Vp(n+I-m,c-I, ...)]].

~ j(u,v,x,t)=-iaxj+ibx .ol +Ä(u-I) ~/
ut tuX uV

-Ä(V-I)~+~~[~(iaX _ roa2x2+...)
OV l OU v Ro 2Rä

In most r.h.s. terms the arguments e1,t have been +(eo(I-ß)-ß)(u-I)+ß(I+eo)(v-l)
omitted. eo is the time-dependent reactivity pertur-
bation, Wo/v the probability for neutron decay by + (I+eo)v(D-2ß) (U-;1)2 +(1 +eo)vß(u-I) (4.12)
capture in the control detector. wo(~) gives for this
detector the distribution of relative pulse amplitudes. . (v -1) + ...] - ~~ [(I-ßHu -1) +ß(v -1)

1>, = 1/'1'; at any time the probability for a neutron lt OXOU

_ ~ec:y~b! ~~::'~I~ --Ätl•. =Il-I-=-.ö \ci•• - I71R\- _! ~(D_-3!) (U-; 1~2~+ ßviu -l)(v =1) +~'J.- -----
L! T \!!o - !!171" - \..L T!!O - !!1I1'" \""""'7

qm is the probability för m prompt fission neutrons, ßv
the average number of precursors per fission. In (4.5)
we assume a) that not more than one precursor is
formed in a fission, and b) that prompt fission neutrons
and precursors are generated independently. This
assumption is reasonable and without significant in­
fluence on the final results.

We transform (4.5) by introducing the generating
function j=j(u,v,x,t),

00 00 00

j(u,v,x,t)=L LunvcJeiQlxp(n,C,e1,t)del' (4.7)
n~O c~O -00

This partial differential equation is the consistent
generalization of the deterministic reactor dynamics
equations, including a linear reactivity feedback term.

5. Necessary Approximations to (4.12)
From its definition (4.7) we see that the generating

function j (u, v, x, t) yields the expected numbers of
neutrons and precursors, N (t)and C(t) respectively,
the expected feedback reactivity ec(t) and higher order
moments as first or higher order derivatives at
u=v=I, x=O.

(4.9a)

From the first order derivatives of (4.12) we get an
interesting form of the reactor dynamics equations,

(5.2)

(5.1)

(5.Ic)

(5.2a)

(5.1 b)

(5.Ia)

0/
<n) (t) = au (1, I,O,t) =N(t),

0/
<c) (t) = a; (1, I,O,t) =C(t),

0/«1) (t) = ~ (1,1,0, t) = ec (t),
tuX

02
/

<e1n)(t)=~(I,I,0,t) etc.
tuXuU

dN= eo(l-ß)-ß N _~1< ) +ÄC
dt l leIn,

~= ß(l+eo) N _L<n n) -ÄC
dt l l <::1 ,

dec = -a +b + ~~N a(N;;No) +bnc' (5.2b)
:I, ec •. IR <::
WII v v 0 ...... 0

(4.8)

(4.9)

00

+ ~ f wo(~)exp (ia;X) d';~
v Ro OU

o

( eo ) 8f 1 0
2

/ 1+ \Pt +v 'ljJ(ßv,u,v) DU - 'ljJ(ß'V,u,v) 'Vi DXOU J •

If we substitute (4.4),

eiQ1X =eiQ'X(I - i xe' bdt +ixadt + ...)
on the l.h.s. of (4.5), this part transforms to

l.h.s. =j(u,v,x,t+dt) -bdtix+ j(u,v,x,t)
tuX

+adt ixj(u,v,x,t) +....
The r.h.s. of (4.5) transforms to

dt [0/ 0/r.h.s·=j+T -uau-Äl(v-u)a;

+(I-~- eo+~)~+~~
! v OU vt OXOU
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The last of these equations is identical with (2.10).
But (5.2), (5.2a) correspond to familiar forms of the
reactor kinetics equations only, if we may approximate

<eln)(t) ~ <el)(t)·<n)(t) =ec(t)·N(t). (5.3)

From the first order derivatives of (5.8) at u =V = 1,
x =0, we now get instead of (5.2), (5.2a)

dN = I.!o(l-ß)-ß N _ I.!c(l-ß) N, +AC (59)
dt 1 l 0 ,.

p(n,c, el,t) ~ p(n -I,c, el,t) (5.6)

for In -Nol~No' Because of (5.5) this holds, then,
for all n.

From (5.5) and (5.6) we get approximately

In general, only with high neutron populations N this
is a good approximation. For eo 0 one can obtain
exact equations for the stationary solutions N, C, ec
etc. From (5.2) to (5.2b) one easily gets in this case,
without external reactivity perturbation,

But the relations N = No or ec = 0 do not follow from
(5.2b) and, as higher order equations show, they are
only approximately valid for No> 1. The crucial term
in (4.12) is the second order derivative 82 f/8u8x,
because it puts higher order moments as source terms
into differential equations, that should yield lower
order moments, e. g. <eIn) in (5.2), (5.2a). To over­
come this difficulty we have to introduce approxi­
mations. Our first two assumptions are:

1. The control loop restricts the deviation of the
actual numbers n of neutrons from the constant
demand No to small amplitudes (this depends, of
course, on the right choice of the control loop para­
meters). Thus, we put

p(n,c,lh,t) =0 unless In -Nol~No' (5.5)

2. The demand value No is sufficiently high, so
that we may approximate in minor terms of (4.12)

- -

(5.12)

(5.10)

(5.14)

(5.13)

(5.11)

(5.15)

IeoI' IeIl, IecI~ 1 .

~=~!L[-ß(U-I)+ß(V-I)+ iXal]
ot l OU No

01 No 01+A- [(u-I) -(v-I)]---.-
OV l tOX

[
iXbl]. (I-ß)(u-I)+ß(v-I)-~

No [ ixal
+-l1 eo(I-ß)(u-I)+eoß(v-I)-~

+ (D-
2
2ß)v (u-I)2+ßv(u-I)(v~I)- r;a~~r].

In this final stage we get a set of approximate,
linearized reactor dynamics equations, the last of
which is again identical with (5.2b) and (2.10).

dN -_LN + AC - No(l-ß) ( _ )
dt - l l ec eo,

dO ß Noß
---a;t=TN -AC --l-(ec-eo),

N
'lfJ2(U -1) (v -1) ~ßvT (u -1) (v -1)1, (5.13a)

2 roa
2vl 21 b'lfJa x ~ 2w.:N x . (5.13 )
o 0

~= ß(I+l.!o) N _ ecß N. -AC (5.9a)
dt l l - 0 •

(5.2b) is left unchanged. Thus, the approximation (5.7)
leads to neutron kinetics Eqs. (5.9), (5.9a), which are
linearized in respect to the treatment of the feedback
reactivity.

Equations which determine the second order
moments <n(n-I), <nc), <neI)' <c(c-I), <ceI)'
<ei) may be similarly generated as the appropriate
second order derivatives of (5.8) at u =V = 1, x =0.
Such equations now cannot contain higher order
moments as source terms. Thus, in principle, moments
of any order can be successively computed from (5.8).

Practical considerations favour the inclusion of
some more approximations:

3. To make the linearization of the reactor kinetics
equations possible, we demand

Including all these approximations into (5.8), we get
its final form,

In analogy to (5.7) we then get

~!L~ l.!oNo 1
l ou'- l .

4. We are content with approximate solutions that
yield first and second order moments, which are
correct within the previously stated approximations.
Then we may drop all higher order terms of (5.8) and
l1,pI>r9~/l;t!ltl1{~ 1l1!I!Q! }~Il1§ 'l.Jh, 'l.f!-2' 'l.f!-a by:

01 01
(1 + eo) -0 - No -------0 R::3 No I,u t X

( 1)2 v(D-2ß) No ( 1)21'lfJl U - ~ 2 -l-u- ,

(5.4)

(5.8b)

(5.8a)

)Jj=ßNfl, <eIn) =0,

a(N -No)fNo+bec=O.

00

021 00 00 f . .
--= '\' '\' nun-lvc ~n etQ1Xp(n c n t)dnouox L..J L..J ,,1' ,,,1' ,,1

n~O c=o -00

00

00 00 f" (57)~ L: L: Noun-lvc ~eletQlXp(n-I,c,el,t)del .
n~O c~o -00

01= No 8X (u,v, x,t).

With this substitution and some reordering of terms
(4.12) yields a simplified equation

~; =+ :~[(eo(I-ß)-ß)(u-I)+ß(I+eo)

.(v-I)+ixalfNoJ+A :~ [(u-I)-(v-I)]
(5.8)

- ~o i~: [(I-ß)(u-I)+ß(v-I)-ixblfNo]

- ixal +'lfJl(U _1)2 + 'lfJ2(U -I)(v -1) - 'lfJax2 +...
'lfJl = 'lfJl (u, v, x, t) etc. have the meaning

v(D-2ß) [ 01 8f ]
'lfJl- ---~ (I+eo)au- No iox '

'lfJ2 = ßt [(1 +eo) :~ - No i~X] ,

(5.8c) dl.!c a N b
~=-N + ec- a .
"'. 0
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M 00

dm(t)=L; Jhmi(t-{})bi({})d{} (6.3)
i=l -00

which decay to zero for t ---'7 <Xl in view of (6.1 a).

Lemma 1. When the source functions bm(t) are
bounded and otherwise wellbehaved, functions

(6.10)gmn=gnm' m, n=l, ... , M

and they are solutions of

d M
(ji gmn(t) =.L: (amjgjn +anjgjm) +cmn(t). (6.11)

1~1

Prooj. a) The symmetry (6.10) follows from an
interchange of the summation indices i, kin (6.9) and
the symmetry (6.8).

_b):El~r>lo~tillg (6.2)oneobtaillsfI.'0IIl.j6.9J

Lemma 3. For all t, T~ 0 the Green's functions
defined by (6.2) obey the relations

M

hmn(t+T) = L;hmi(T)hin(t). (6.7)
i=l

M 00

gmn(t) - L; J hmi(t-{})hnk(t-ff)cik({})d{}. (6.9)
i,k=l -00

These funetions are elements of a M-row symmetrie
matrix (gmn)

For a proof, substitute t' = t +T and insert (6.6)
and (6.2) into (6.5). For T=O one gets the correct
initial values xm(t).

As a special case, with bm -0, and as a useful
corollary we obtain

M

L anjgjm
j=l

Lemma 4. Let cmn(t) be elements of asymmetrie
M-row matrix (cmn),

Cmn=Cnm , m, n=l, ... , M. (6.8)

When the cmn(t) are bounded and otherwise well­
behaved, we can define functions

This yields directly (6.11).

Lemma 5. Let y be a M-component vector and
j(y,t) a function, which obeys

0/ ~. 0/
Bi = L.J. amnYm ay

m,n=l ; M (6.14)

+ [~1 bmYm +m~=l CmnYmYnl j

with parameters amn , bm(t) , cmn(t) as stated previously.
A constant boundary value is

(6.6)

(6.2a)

a13 = - (l-ß)Nofl,

a23 = -ßNofl, (6.1)

a33 =b.

a12 =A,

a22 = -}"
a32 =0,

an = -ßfl,

a 21 -ßfl,

an = afNo,

Xm(t+T)

=i~l [hmi(T)Xi(t) +lhmi(t+T-{})bi({})d{}]

All eigenvalues (Xm of the matrix (amn) shall have
negative real parts

Real part (Xm<O m=l, ... , M. (6.1a)

Otherwise the reaetor with its controlloop would not
be stable. We will define a set of Green's functions
hmn(t), for m, n = 1, ... , M, by putting

d M
(jihmn(t) = .L: amihin(t) for t~O,

t~l (6.2)

hmn(t) =0 for t<O, hmn(O) =r5mn ,

bmn = Kronecker's symbol. These Green's functions
_ ß,reßums lLi e~p01).entials _ _ _ _

M

hmn(t) = L; Cmnie"it for t>O,
i=l

exist for m = 1, ... , M. The integrals converge for
Green's functions of type (6.2a). These funetions are
solutions of

d M
(jidm(t) = .L: amidi(t) +bm(t)· (6.4)

t=l

6. Mathematical Background
We will now formulate a few simple lemmas, which

apply to equations of type (5.14), (5.15) in general.
Assume a M-row square matrix (amn) with real,

constant elements. In our special case, M = 3 and the
amn are the matrix elements of (5.15)

For a proof, one has simply to insert (6.3), (6.2)
into (6.4).

(There are other solutions to (6.4) but, as one can
easily show, only the solutions (6.3) are bounded for
all times t.)

Lemma 2. If for t' ~t and m=l, ... , M
M

d~' xm(t') = .L: amixi(t') +bm(t') (6.5)
t~l

are valid, then

Note. The step from (4.12) to (5.8), involving the
approximation (5.7), was nece8sary to make the
mathematieal treatment feasible. The next step from
(5.8) to (5.14) is convenient, as it leads to simpler
expressions. In any special case straight-forward
procedures can check the importance of the neglections
made after (5.8).

is true for an r ~ 0 and m = 1, ... , 111. t(O,t)=l. (6.14a)

6b Nukleonik, Bd. 11
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(6.16)

One solution of this problem is

t(y,t) =exp lm~1 dm(t)Ym + m,~=1 !Tmn(t)YmYn] (6.15)

with the functions dm(t) and !Tmn(t) as given by (6.3)
and (6.9) respectively.

Proot. a) The boundary value (6.14a) is obvious.
b) The ansatz (6.15) reduces the problem (6.14) to

the verification of

:t lm~l dmYm + m,~=l !TmnYmYn] = m,~=l amnYmdn

M M ( M+ L bmYm + L amnYm .L 2!TnjYj
m=1 m,n=1 , 1=1

+ GmnYmYn).

Use of the symmetry !Tnj -!Tjn has been made. From
(6.16) all linear terms in Ym cancel on account of (6.4).
All second order terms in Ym Yn cancel as well, as can
be seen after reordering the term

M M
L 2amn L !TnjYmYj

m,n=1 j=1
M M M M

= L amj L !TjnYmYn + L anj L !TjmYnYm (6.16a)
m,j=1 n=1 n,j=1 m=1

M M

= L YmYn L (amj!Tjn +anj!Tjm)'
m,n=1 j=1 .

Thus on account of (6.4) and (6.11), the relation (6.16)
becomes an identity.

Tue significance of thjs result c b~womes obvious;
when one compares (6.14) and (5.14). With M -3
these relations are equivalent, as we may in (5.14)
substitute

Yl=u-l, Y2=v-l, Y3=ix. (6.17)

The boundary condition (6.14a) applies as the usual
normalization of a probability generating function,
cf. (4.3), (4.7).
The matrix elements amn are given in (6.1). For the
source functions bm(t) we obtain from (5.14)

b - eo(t)No(I-ß) b - eo(t)Noß b
3

= -a. (6.18)
1- 1 '2- 1 '

Comparing (5.15) and (6.4), we see that under these
conditions the functions dm (t) are components,

d1(t) =N(t), d2(t) =C(t), d3(t) =ec(t), (6.19)

of one solution of the reactor dynamics Eqs. (5.15).
Actually, it is the only solution without transients
and that is bounded for all times t.

In our special case, the matrix elements Gmn are
constants,

(D-2ß)vNo ßvNo
Gn = 21 ,G12 =G21 = 2l'

r
o
a2v1 (6.20)

G13 =G22 =G23 =G31 =G32 =0, C33 = 2Jv..N: '
o 0

As a consequence, also the matrix elements !Tmn' which
are defined by (6.9), must be constant. To perform
the integration of (6.9), one has first to obtain by
some numerical method the Green's functions hmn (t)
from (6.2).

Thus, we can solve (5.14) and obtain a generating
function of type (6.15). This function applies to a
controlled reactor, which responds to a reactivity
perturbation eo(t) and is stationary otherwise. All
initial transients must have decayed, as they have
been intentionally excluded during the derivation of
this solution.

From this generating function we can, then,
compute first and second order moments of such
quantities as the numbers of neutrons and precursors,
n and G, or the feedback reactivity el' We should, of
course, not completely forget the approximations
implicit in (5.14).

7. Correlation Funetion tor the Deteetor Si!Tnal

For the signal of the independent detector, which
is outside ihe controlloop, we want to use now a more
concise definition of the autocorrelation function, viz.

Rn (r) = Jt;.Frl b(r)
T

+ 'W;.2Nä tim JN(t)N*(t+7:)dt _R2 (7.1)
v212 T-.co 2T'Nä l'

-T

Herein N (t) is the expected number of neutrons at
time t, i. e. the usual solutionof (5.15) or (2.7). N* (t +r)
is the expected number of neutrons at time (t + r)
provided that one neutron was detected (this applies
for r> 0) at time t. When we compare (7.1) with the
Eq. (3.2), we see that the necessary refinement is now
the distinction between N* (t +r) and N (t +r).

To compute N* (t +r) for r> 0 we define
p*(n, G, el' t+r) =probability density for the set of
values (n, G, (11) at time (t + r) atter one detector pulse
"-+-+;"",,,, ,\;\T;+1> +1>;" " .."hn-1>;l;+TT i'ln"-,,C;+TT"",' ""nTT n-n+ ,,-Ti;
aJÜ-lIHll.v (i. "Tüll OJILDp.LOOQn,::n.:.llliy Uv.lIOJ.li"y ·V\'Ci.ll.laiJ' CvOu-p

a corresponding generating function t*(u, v, x, t+r)
similar to (4.7). It can be developed as follows:

1. At time t the probability for detecting a neutron
is proportional to the actual neutron population n.

2. An absorbing detector reduces for each pulse
the number of neutrons by one unit.

3. An independent detector leaves other para­
meters unchanged.

Thus in the limit r--+O

p* (n -1, G, el' t) "'-'n· p(n, G, el,t). (7.2)

For the corresponding generating function this means

t*(u,v,x,t),...." 0: t(u,v,x,t). (7.2a)

The necessary normalization t*(I,I,O,t+r)-1 then
yields the initial value for r R:! 0

* _ 01 01t (u,v,x,t)-8U:(u,v,x,t)/8U:(I,I,O,t). (7.3)

With the substituted variables (6.17) and with (5.1)
this reads also

t*(y,t) = ::1 (y,t)/ ::1 (O,t) = ;:1 (y,t)/N(t). (7.3a)

Eq. (5.14) or the equivalent (6.14) is valid also for
this generating function (r > 0) :

or M or
-o-(y,t+r)= L aikYi-o-(y,t+r)

7: i,k=1 Yk (7.4)

+ r;~ bi(t +r) Yi +;~, GikYiYkl t*(y,t +r).
l ,,-- """-- J
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1* is distinguished from I, as given by (6.15), only by
the restrietion T~O in (7.4) and the speeified initial
value (7.3a).

From now on, all derivatives shall have the argu­
ment y=O. Then (7.4) gives for i =1, ... , M

(J2/* M 8/*
T8(t+T) = L aik-8-(t+T) +bi(t+r). (7.5)

Yi T k=l Yk

Therefore Lemma 2 is applieable. Espeeially, for i = I

88/* (t+T)
Y1

M [ 8/* fco ] (7.6)
= L h1k(r) -8-(t) + ~k(t +T -ß) bk(ß)aß .

k=l Yk t

But, as the cik are symmetrie, (7.11) is identieal with
(7.11a) and may be inserted into (7.1) for any T.

N (t) and N (t + r) are expectation values, given
by (2.7), and R1= w;.NoJ(vl). From (7.1) wethen
obtain a final expression

co 00

Ru (r) = w;.Fr1O(T) + lli2F2 faß Jaß! tim
T-+co

-00 -00

T

. f :~h(ß)h(ß')eo(t+T-'I9)eo(t-ß!) (7.12)
-T

M co

+lli2F L ;Ci~ !'hli ('I9)h1k (ß+r)aß.
i,k=l OV -'co

From (6.15) we obtain (at y=O!)

8~21Yk (t) = ::1 (t) ::k (t) +2Ylk (t) . (7.8)

An equation of type (7.6) holds also for 8fJ8Y1' so that
(7.7) and (7.8) eombine to give

~(t) 8/* (t+T)=~(t).~(t+T)
8Y1 8Y1 8Y1' 8Y1

_ _ _ _ __ _ _ _ _ . JI- o·n)
+22: Ylk(t)hlk (r).

k=l

On aeeount of (7.3a) this leads to

8/ 8/* M 82 /
-8-(t)'-a-(t+T) = L hlk (T)a-8-(t)

Y1 Y1 k=l Y1 Yk

M 8/ fco
+ L a(t) h1k(t+T-ß)bk(ß)aß.

k=l Y1 t

(7.7)

8. Evaluation 01 the PSD

From the definition (3.1) of the PSD, as the Fourier
transform of (7.12), we see that we have to deal with
4 eontributions :

1. White detector noise from the first term of
(7.12). This is obviously Sl(W) as given by (3.5).

2. Noise caused by the reaetivity perturbation eo.
Fourier transforming the second term of (7.12) yields
S2(W) as given by (3.6) and (3.4).

3. Noise from branching proeesses S3(W), conne:;ted
with ~1 and ~2 = C21 of the last term.

4. Noise originating in the reaetivity feedback
loop S4(W), conneeted with C33 . - All other coefficients
cik are zero, cf. (6.20).

From the last term of (7.12) we get

M 2c
--SJ(-r.)-\±,Q'-(ri)\-~W2-li'-'\' __ mnu_ {~r.,\Fl- {r~,\ (Q 1\ ­
~3~~1 J ~4\~1 -"1~' L.J N vl ~~lm\ VJI~~ln\VJ1> \U'~I

m,n=l 0

(8.5)

At Y = 0, the derivatives define the expected numbers
of neutrons N(t) and N*(t +T), so that

N(t) ·N*(t +T)

=N(t) ·N(t +r) +2 f Ylm(t)~m(r). (7.9a)
m=l

For Ihm(t) we may substitute (6.9) and apply Lemma 3,

M

L h1m (r)Y1m(t)
m=l

M co

= L ~m(T)f~i(t-ß)hmk(t-ß)Cik(ß)aß (7.10)
i,k,m=l -00

M co

- L J~i(t-ß)h1k(t+T-ß)Cik(ß)aß.
i,k=l -00

In our case the Cik' as given by (6.20), are constant, so
that finally for T > 0

N(t).N*(t+T) =N(t)·N(t+T)

M co (7.11)
+2 L Cik J ~i(ß)~k(ß+T)aß.

i,k=l -co

For negative T, the initial pulse of a delayed coinci­
denee is at time (t+T), the final pulse at time t. This
means, that for T<O the integrand of (7.1) is

with Hmn(W) = Fourier transform of hmn(t). The
Hmn(w) may be expressed in terms of H(w). From the
kineties Eqs. (5.15) follows that H(w), defined by (2.7),

. obeys in our ease (2.8) with G(w) from (4.1) and

Ho(w)=(I- !~~w)/(iwl+ A~7w)' (8.2)

From (6.2) we can derive that the functions IJmn(w)
obey for m, n = 1, ... , M equations

M

iwHmn(w) = L amjHjn(w) +omn' (8.3)
j=l

with the amj from (6.1) and omn = Kronecker's symbol.
By elementary algebra one gets

Hu(w) = l-~ H(w), H13 (W) = ~o~i<:;)' (8.4)

J.+iw

(8.4a)

Thus the contribution from branehing processes, i. e.
fissions, according to (8.1) and (6.20) becomes

S3(W) = lli2FI Hu (w) 1
2 [;:~1l + NoV~~~:W2)]

= WfFD IH(w)12A(w)

N(t+T)·N*(t) =N(t+T)·N(t)

+2 f CikJhli (ß+T)hlk (ß)aß. (7.11a)
i,k=l -co

with D =v(v -1)Jv2 and

A( )= J.2+ w2(1-2ßfD) ~l.
.W Jc2+ w2(I-ß)2 (8.5a)
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But with D~O.8 [7] and ß<lO-2A(w) is almost
constant and equal to 1. In this approximation S3(W)
as given by (3.7) is confirmed.

The remaining term of (8.1) with C33 yields directly
S4(W) as given by (3.9) and (3.10).

9. Concluding Remarks
So far the expression (3.11) has been confirmed

here for one special case. The general development of
the stochastic treatment with 6 groups of delayed
neutrons and a controller response function (2.5), (2.6)
with J terms has also been carried out. The general
procedure is to introduce vectors

c=[c1 ,···,c6], P=[!?l'."'!?J], (9.1)

specifying the numbers of precursors and the actual
values of all partial feedback reactivities !?j defined
by (2.9), (2.10).

The corresponding probability density p(n,c,p,t)
is then used to define a generating function j(u,V,JJ,t)

similar to (4.7) with the vectors v and JJ related to C

and p. The subsequent development becomes very
similar to that presented above and leads, with the
approximations of section 5, to a confirmation of
(3.11) for the general case.
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