

KERNFORSCHUNGSZENTRUM

KARLSRUHE

Januar 1967

KFK 539/III EUR 3951 d

Mary - Marson -

Institut für Reaktorentwicklung

Struktur-, Ausdehnungs- und Verbiegungseffekte im schnellen Reaktor Teil III: Anwendung auf Na-l Reaktor

Y.S. Hoang

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

Januar 1967

KFK 539/III EUR 3951 d

Institut für Reaktorentwicklung

STRUKTUR-AUSDEHNUNGS-UND VERBIEGUNGSEFFEKTE IM SCHNELLEN REAKTOR *)

Teil III

Anwendung auf Na-1 Reaktor

Y.S.Hoang

Gesellschaft für Kernforschung mbH.,Karlsruhe

x) Diese Arbeit wurde im Rahmen der Assoziation zwischen der Europäischen Atomgemeinschaft und der Gesellschaft für Kernforschung mbH.,Karlsruhe auf dem Gebiet der schnellen Reaktoren durchgeführt.

.

Inhaltsverzeichnis

1.	Einleitung	and the second se	(1)
2.	Die zur Berechnung verwend	eten Daten	(2)
	2.1 Konstante Größen	• • •	(2)
	2.2 Parameter-Größen		(10)
3.	Verbiegung des Na 1-Reakto	n na Merzin – Langewin	(12)
	3.1 Verbiegung des Na 1-Re	aktors im normalen Betriebszustand	(12)
	3.2 Veränderung der Fixier (1 Fixierstelle)	stellenlage bei Na 1	(20)
	3.3 Untersuchung mit 2 Fix	ierebenen bei Na 1	(25)
	3.4 Verschiedene Kühlmitte	laufheizspannen	(26)
4.	Verschiedene Subassembly-S	chlüsselweiten	(30)
	4.1 Veränderliche Lage der (1 Fixierebene)	Fixierstellenebene	(30)
	4.2 Veränderliche Lage der (2 Fixierebenen)	Fixierstellenebene	(30)
5.	Zusammenfassung		(35)
	Literaturverzeichnis		(36)

a d'ar

1. Einleitung

Die Methode zur Berechnung der Verbiegungen der Subassemblykästen während verschiedener Leistungszustände des "Schnellen Reaktors" und die daraus resultierenden Biegespannungen und Reaktivitätseffekte wurden in Teil 1 (1) dieser Arbeit behandelt. Der dort beschriebene Formalismus wurde für die IBM 7074 programmiert und steht als Programmsystem mit den Programmen

 DANGER
 (05850)

 SPALTR
 (05859)

 TEMPER
 (05860)

 REASP
 (05870)

zur Verfügung. Eine Beschreibung dieser Programme mit einem Testbeispiel wird im Teil 2 (2) dieser Arbeit gegeben.

Im nachfolgenden 3. Teil der Arbeit werden die beschriebenen Rechenmethoden auf den Na 1-Reaktor angewendet und die erzielten Ergebnisse diskutiert.

Die geometrischen Daten und die Materialzusammensetzungen der einzelnen Reaktorzonen wurden der Na 1-Studie (3) entnommen.

Die Schlüsselweiten der Subassemblies und die axiale Anordnung der Fixierstellen am Subassembly werden in diesen Rechnungen als Parametergrößen betrachtet.

Außerdem wird die Kühlmittelaufheizspanne zwischen O und 300 ^oC variiert. Die Eintrittstemperatur (430 ^oC), die Bezugstemperatur (500 ^oC) und alle übrigen Daten werden konstant gehalten.

Den Berechnungen mit dem Programm 05870 gingen eine zweidimensionale 6-Gruppen-Diffusionsrechnung mit dem Programm Twenty-Grand Mod (4) und eine zweidimensionale Störungsrechnung zur Ermittlung der Dangerkoeffizienten für den Brennstoff, das Strukturmaterial und das Kühlmittel mit den Programmen Flux Input und 2-D-Pert (6) voraus. 2. Die zur Berechnung verwendeten Daten

- 2.1 Konstante Größen sind:
 - a) die Core-Geometrie (Skizze 1), die Materialzusammensetzungen der einzelnen Zonen (Tabelle 1) und die Dangerkoeffizienten (Abb. 1a - 1d)

Zusammensetzung (Vol. %)							
			inneres Core	äußeres Core	i. rad. Blanket	ä. rad. Blanket	axiales Blanket
1	1 Kühlmittel		50	50	21,8	29,81	50
2	2 Strukturmaterial		19,6	19,6	21,9	21,87	18,6
3	5	Spalt-	3,2	4,1		-	
	nns to fi	Brut-	27,2	26,3	48,3	48,32	30,4
	Bre	Ges.	30,4	30,4	48,3	48,36	30,4

Tabelle 1

Materialzusammensetzung in der Zone

- 2 -

<u>Abb. 1a</u>

Axialer Verlauf der Danger-Koeffizienten pro cm³-Gemisch (Brennstoff, Kühlmittel und Strukturmaterial) der jeweiligen Materialzone (Kurven für Konstanten Radius) - 4 -

Abb. 1 c: Axialer Verlauf der radialen Gradienten der Dangerkoeffizienten pro cm³ Gemisch (Brennstoff, Kühlmittel und Strukturmaterial) der jeweiligen Zone (Kurven für konstanten Radius)

Abb. 1 d: Radialer Verlauf der radialen Gradienten der Dangerkoeffizienten pro cm³ Gemisch (Brennstoff, Kühlmittel und Strukturmaterial) der jeweiligen Zone (Kurven für konstante Höhe)

- 6 -

Für die Berechnung wurden alle Subassemblies gleichmäßig in mehrere Abschnitte aufgeteilt (Abb. 3). Die Nummerierung der Abschnitte erfolgt von unten nach oben durch arabische Zahlen. Die Enden der axialen Abschnitte (genannt axiale Stelle) stehen für das Anbringen der Fixierstellen zur Verfügung und werden durch römische Zahlen gekennzeichnet.

- '8 -

c) die von der 2-dimensionalen Diffusions- und Störungsrechnung übernommenen radialen Schrittweiten und Schrittzahlen

	Zone	Schrittweite	Schrittzah]	radiale Dicke der Zone
$N\mathbf{r}$	9410	Cm	a ta an	CM
1	erstes inneres Core	2,06	15	30,9
2	zweites inneres Core	2,15	32	68,8
3	äußeres Core	2,065	20	41.3
4	inneres Blanket	2,125	8	17
5	äußeres Blanket	2,9	10	29

Sie werden in Tabelle 2 angegeben.

Tabelle 2 radialer Schritt

d) die Stoffgrößen des Kühlmittels (Natrium)

Die temperaturabhängigen Stoffgrößen, wie die spezifische Wärme c_p und das spezifische Gewicht \hat{I} , ergeben sich für Natrium nach der Beziehung:

$$c_p = 0.33816089 - 1.080748 \cdot 10^{-4} \cdot T + 5.709285 \cdot 10^{-8} \cdot T^2$$

+ 28.47117 \cdot 10^{-12} \cdot T^3 [Kcal/Kg°c]
 $\gamma = 0.949 - 2.23 \cdot 10^{-4} \cdot T - 1.75 \cdot 10^{-8} \cdot T^2 [Kp/dm3]$

e) die Stoffgrößen des Strukturmaterials (Incoloy 800)

Der temperaturabhängige Elastizitätsmodul von Incoloy 800 läßt sich nach folgender Formel berechnen:

- $E = 2,0122396 3.872437 \cdot 10^{-4} \cdot T 4.975779 \cdot 10^{-7} \cdot T^{2}$
 - $1.0957468 \cdot 10^{-9} \cdot T^3 + 3.018352 \cdot 10^{-12} \cdot T^4 1.8430009 \cdot 10^{-15} \cdot T^5$

 $[10^{6} \cdot Kp/cm^{2}]$

Der mittlere lineare Temperaturausdehnungskoeffizient α zwischen zwei Temperaturen T₁ und T₂ ergibt sich aus:

$$\alpha = (f_{(T_2)} - f_{(T_1)})/(T_2 - T_1)$$

wobei

$$f_{(T)} = -81,978333 + 9,9560615 \cdot T + 7.0908336 \cdot 10^{-2} \cdot T^{2}$$
$$-2,0125951 \cdot 10^{-4} \cdot T^{3} + 2,5741799 \cdot 10^{-7} \cdot T^{4}$$
$$-1,156537 \cdot 10^{-10} \cdot T^{5} \quad [10^{-6} \text{cm} \cdot \text{°C/cm}]$$

ist.

2.2 Parametergrößen sind:

a) die Fixierstellen

An den Enden der axialen Subassemblyabschnitte (Abb. 3) können beliebig viele Fixierstellen angebracht werden. Zunächst wird nur eine Fixierstelle betrachtet, deren axiale Lage verändert wird.

b) die Subassembly-Schlüsselweiten

Die Nennschlüsselweiten eines Subassemblies in der Na 1-Studie ist 18 cm.

Eine Aufgabe dieser Arbeit ist es, eine möglichst günstige Schlüsselweite des Subassemblies in Bezug auf die Reaktivitätsänderungen, die Biegespannungen und die Verbiegungen zu suchen.

Es wurden daher für die Rechnung 3 verschiedene Nenn-Schlüsselweiten gewählt.

Diese verschiedenen Schlüsselweiten erforderten in einigen Fällen eine Änderung von konstruktiven Daten die in der folgenden Tabelle 3 dargestellt werden.

Daten	[cm]		Nm	Be-	1	2	7
Nenn-Sch	1	B _N	18	12	9		
Subassembly-	Schlüsselweit e		2	B	17,85	12,6	9,2
querschnitt	Wanddicke		3	S	0,4	0,275	0,225
Subassembly-	untere Seite		4	D	10,5	8,2	6,0
fußquer-	obere	Durchmesser	5	D	10,5	8,2	6,0
schnitt	Seite	Wanddicke	6	S	0,75	0,55	0,45
Rohr-	obere	Durchmesser	7	D	12	9,5	8,0
querschnitt	Seite	Wanddicke	8	S	0,75	0,55	0.45
	untere Seite		9	D	7	5,5	4,5

Tabelle 3

Aus diesen Daten (Tabelle 3) ergeben sich die Trägheitsmomente, die Widerstandsmomente und die Maxwell'sche Einflußzahl des Punktes auf dem Führungsrohr, auf dem der unterste Punkt des Subassemblyfußes anliegt.

Diese Größen werden in der Tabelle 4 wiedergegeben. Die dazu benötigten Formeln werden aus Teil 1 (1) dieser Arbeit übernommen.

на страна (1996) - При страна (1996) - При страна (1996)					· · · · ·	·	
Dater	Daten			Dimen- sion	1	2	3
Nenn-Schlü	isselweit e	BN	1	-	18	12	19
Subassembly	Trägheitsmom	J	2	cm ⁴	1023	203	64
querschnitt	Widerstandsm	• W	3	cm ³	114,6	29,7	12,5
Subassembly=	Trägheitsmom	J	4	cm ⁴	400	100	32
fußquer- schnitt	<u>Widerstandsm</u>	W	5	cm ³	53,3	23,3	11
Einflußz	α	6	10	1,77	5,25	11,3	

Fabelle 4

· 3. Verbiegung des Na 1-Reaktors

3.1 Verbiegung des Na 1-Reaktors im normalen Betriebszustand:

12 -

Zunächst wurde durch eine 2-dimensionale Diffusionsrechnung die Leistungsverteilung ermittelt und dann für jedes Subassembly mit Hilfe des Programmes TEMPER (05860) (2) der Temperatur- und Temperaturgradientenverlauf berechnet. Ein Teil dieser Ergebnisse wird in den Abb. 4 und 5 für zwei charakteristische Subassemblies Nr. 10 und Nr. 13 dargestellt (Definition nach Abb. 2b). Mit Hilfe dieser Ergebnisse war es nun möglich, mit dem Programm RERKSP (05870) (2) die Biegelinie für jedes Subassembly zu berechnen, wie sie sich unter der Einwirkung von Temperaturerhöhungen und Temperaturgradienten bei Berücksichtigung der Ein**s**pannverhältnisse einstellt.

Für den Na 1-Reaktor war die Fixierebene nach der Definition der Abb. 3 an die Stelle XVIII verlegt worden. Die Auflagerverhältnisse gehen aus Abb. 2a hervor und entsprechen dem Fall 4 in Abschnitt 3.3 von Teil 1 (1) dieser Arbeit.

Für die weiteren Untersuchungen und Ergebnisse war es außerdem wichtig, einen sog. Bezugsreaktor festzulegen, der in diesem Falle eine einheitliche Bezugstemperatur von 500 ^oC hat und unverbogen ist. Die Bezugstemperatur orientiert sich an der mittleren Temperatur des Strukturmaterials im Reaktor bei normalem Betriebszustand und ist maßgebend für die Stoffgrößen. Die Abb. 6 zeigt schematisch den Verbiegungszustand der Subassemblies Nr. 9 - Nr. 13 des Na 1-Reaktors bei Nennleistung.

Die Ausdehnung der Subassemblykästen auf der Ebene der Fixierstellen führt zu einem Ausbiegen der Subassemblies. Diesem Ausbiegen infolge Temperaturausdehnung überlagert sich die durch den Temperaturgradienten verursachte Verbiegungslinie so, daß sie durch die untere Auflagerstelle und die obere Fixierstelle als fester Nullpunkt läuft. In Abb. 7 wird die Ausbiegung für die 3 charakteristischen Subassemblies Nr. 10, 11 und 13 der Abb. 2b dargestellt. Die Anteile der Verbiegung durch den Temperaturgradienten und der Verbiegung durch Ausdehnung der Kästen werden dabei herausgestellt.

Abb. 6

Schematische Darstellung von Verbiegungszuständen der Subassemblies Nr. 9 – 13 Magstab : 5 mm ≙ 1 mm

- 15 -

beim Bezügsreaktor freie Verbiegung ohne mögliches Antiegen von Subassem an anderen Stellen als an den Fixierstellen totsächliche Verbiegung

Abb. 8 zeigt die Gegenüberstellung der Gesamtverbiegung für diese 3 Subassemblies. Das Subassembly Nr. 11 verbiegt sich um 6 mm mehr zur Coremitte hin als Subassembly Nr. 10, d.h. es muß in diesem speziellen Falle durch die (Fixier-) Stützscheiben ein Mindestabstand von 6,0 mm gewährleistet werden, wenn sich die Subassemblykästen auf der Ebene der Axialstelle XI (Definition der Abb. 3) nicht berühren sollen. Für alle übrigen Subassemblies genügt der in der Na 1-Studie angegebene Abstand von 1,5 mm. Die maximale Ausbiegung bzw. die maximale Ausfächerung befindet sich mit 13,6 mm bzw. 9,2 mm am obersten Ende des äußersten Blanketsubassemblies Nr. 13.

Die maximale Biegespannung tritt am oberen Auflagerpunkt des Subassemblyfußes auf. Von allen Subassemblies ist sie mit

a start and the start of the st

beim äußersten Blanketsubassembly Nr. 13 am größten. Der Übergang vom unverbogenen Bezugsreaktor zum verbogenen Reaktor bei Nennleistung bedingt einen Reaktivitätsbeitrag von

ing with the

$$\Delta S_{aee} = 1,1536 \cdot 10^{-3}$$
 [-]

Davon entfallen auf die reine Temperaturausdehnung der Subassemblykästen auf der Ebene der Fixierstellen:

$$\Delta S_{\tau} = -0,43 \cdot 10^{-3} [-]$$

und auf die Temperaturgradienten

 $\Delta S_{76} = 1,5836 \cdot 10^{-3}$ [-]

Diese Reaktivitätswerte haben zunächst keine praktische Bedeutung und stellen nur Bezugswerte dar, da alle nachfolgenden Rechnungen ebenfalls auf den fiktiven Bezugsreaktor bezogen werden.

Viel wichtiger ist die Änderung der Reaktivität für beliebige Änderung des Temperatur- und des Temperaturgradientenfeldes. Hier werden jedoch von allen möglichen Störungen des Temperatur- und Tem-

MADE IN GERMANY

peraturgradientenfeldes vorläufig nur solche behandelt, die sich auf eine einfache Veränderung der Aufheizspanne des gesamten Reaktors zurückführen lassen. die genaue Ermittlung aller übrigen Fälle würde eine Kopplung dieses Programmes mit einem Dynamikprogramm erfordern, welches die Temperaturverteilung für alle Subassemblies während der Exkursion ermittelt.

Es werden also quasistationäre Fälle mit verschiedener Aufheizspanne berechnet; z.B. $T = 130^{\circ}$ C bzw. 150° C bzw. 170° C. Aus den sich dann ergebenden Reaktivitätswerten, die alle auf den Bezugsreaktor bezogen sind, erhält man einen Reaktivitätskoeffizienten für den Na 1-Reaktor.

$$\begin{bmatrix} \frac{d \, \gamma_{ges}}{d \, (\Delta T)} \end{bmatrix}_{T=150^{\circ}C} = -0.2 \cdot 10^{-5} \quad \begin{bmatrix} \circ c^{-1} \end{bmatrix}$$

Dieser Wert teilt sich auf in den Effekt der reinen Ausdehnung der Kästen auf der Ebene der Fixierstellen:

$$\left[\frac{d \, \mathcal{G}_{\rm T}}{d \, (\Delta T)}\right]_{\rm T=150^{0}C} = -1,38 \cdot 10^{-5} \, \left[{}^{\rm o}{\rm c}^{-1}\right]$$

und den Effekt der Temperaturgradienten

$$\begin{bmatrix} \frac{d \ \ \ \gamma_{TG}}{d \ \ (\Delta T)} \end{bmatrix}_{T=150^{\circ}C} = 1,18 \cdot 10^{-5} \quad \begin{bmatrix} \circ_{C} - 1 \end{bmatrix}$$

Der positive Anteil der Temperaturgradienten (Bowingeffekt) ist hier beträchtlich; er kompensiert den notwendigen negativen Strukturausdehnungskoeffizienten fast vollkommen.

Die Ergebnisse zeigen:

Für Na 1 führt die Wahl der Fixierstelle 18 (Abb. 3)

a) zu einem zu großen positiven Bowingeffekt

- b) zu großen Ausbiegungen der Subassemblies gegeneinander, die einen Mindestabstand von 6 mm zwischen den Subassemblykästen erfordern, wenn ein Berühren der Subassemblies vermieden werden soll. (1,5 mm Abstand bei Na 1 vorgesehen).
- c) die Biegespannungen bleiben in zulässigen Grenzen.

Es liegt nun nahe, eine günstigere Lage der Fixierstelle zu suchen, oder auch mehr als 1 Fixierstelle anzubringen.

3.2 Veränderung der Fixierstellenlage bei Na 1

(1 Fixierstelle)

Für die gleichen Ausgangsdaten und mit den gleichen bereits beschriebenen Methoden wurden nun verschiedene Fälle durchgerechnet, indem die Fixierstelle auf andere Ebenen verschoben wurde. (siehe Abb.3) Die Ergebnisse dieser Rechnungen wurden in den Abb. 9 bis 11 dargestellt. Auf der Ordinate ist jeweils die Höhe der Fixierstellenebene ausgehend vom unteren Blanket angegeben.

Abb. 9 zeigt

- a) die Mindestabstände, die vorhanden sein müssen, damit sich die Subassemblies Nr. 10 und 11 nicht berühren.
- b) die Maximalwerte der Ausbiegung des Subassemblies Nr. 13.
- c) die maximale Ausfächerung des Blanketsubassemblies Nr. 13 am oberen Ende.

Die erforderlichen Mindestabstände zwischen dem 10. und 11. Subassembly sind umso größer, je höher die Fixierebene wandert. Die maximale Ausbiegung bzw. die maximale Ausfächerung erreichen ihre maximalen Werte, wenn die Fixierebene im Bereich der Axialstelle X bis XII liegt. Abb. 10 gibt die maximalen Biegespannungen in Abhängigkeit der Höhe der Fixierebene an. Die maximale Biegespannung tritt immer am oberen Ende des Subassemblyfußes des 10. Subassemblies (äußerstes Core-Subassembly) oder des 13. Subassemblies (äußerstes Blanket-Subassembly) auf.

Abb. 10: Maximale Biegespannung im Subassembly Nr. 10 und Nr.13 des Na 1 - Reaktors für verschiedene Lagen der Fixierebene

- 22 -

Abb. 11: Reaktivitätskoeffizient bezogen auf die Änderung der Kühlmittelaufheizspanne △T für verschiedene Lagen der Fixierebene (eine Fixierung bei △T = 150 °C)

Sie bleibt für alle Höhen der Fixierebenen, die unterhalb der Axialstelle XVIII liegen,

d.h.
$$|6| \leq 640 \, [\text{kp/cm}^2]$$

Diese Spannungen sind zumutbar.

Diese Spannung beschränkt sich auf die äußere Kastenspannung, während die innere Wandspannung nicht berücksichtigt wurde.

Abb. 11 stellt die Reaktivitätskoeffizienten, bezogen auf die Änderung der Kühlmittelaufheizspanne in Abhängigkeit von der Höhe der Fixierstellenebene, dar.

Die Reaktivitätskoeffizienten werden außerdem in Anteilen für die Ausdehnung der Kästen durch Temperaturerhöhung und für die Temperaturgradienten angegeben. Man erkennt, daß die Fixierstelle XVIII für den Na 1-Entwurf in Bezug auf "Bowingeffekt" schlecht gewählt wurde. Für eine Fixierebene XIX würde der positive Anteil des Temperaturgradienten den negativen Anteil der reinen Kastenausdehnung sogar überwiegen, und man erhielte einen positiven Reaktivitätskoeffizienten in Abhängigkeit der Erhöhung der Kühlmittelaufheizspanne.

Günstige negative Reaktivitätskoeffizienten ergeben sich, wenn man die Fixierstelle zwischen den Stellen XI bis XIII anordnet. In diesem Bereich ist der Anteil des "Bowing-Effektes" negativ bzw. so schwach positiv, daß der reine Ausdehnungseffekt überwiegt. Folgene Schlußfolgerung könnte gezogen werden:

Unter Berücksichtigung der 3 Kriterien

a) erforderliche Mindestabstände maximale Ausbiegung maximale Ausfächerung

müssen in erträglichen Grenzen bleiben

- b) maximale Biegespannung
- c) negativer Reaktivitätskoeffizient bezogen auf die Änderung der Kühlmittelaufheizspanne muß gewährleistet sein.

würde man die Fixierebene zwischen die Stellen XI und XIV legen.

- 24 -

Es liegt nahe, die gleichen Untersuchungen mit 2 Fixierebenen durchzuführen, um deren Einfluß auf die 3 Kriterien zu ermitteln. Die große Zahl der möglichen Anordnungen läßt sich auf einige konstruktiv interessante Fälle zurückführen. Es wurden zunächst 3 Fälle untersucht, wobei

- a) die Lage der oberen Fixierstellenebene in der Höhe der 18. Axialstelle gehalten wurde.
- b) die Lage der unteren Fixierstellenebene nacheinander in der Höhe der Axialstellen VIII, X und XIV verlegt wurde.

Es zeigt sich, daß für die drei in Abschnitt 3.2 aufgestellten Kriterien zum Teil günstigere Ergebnisse erzielt werden können (Tabelle 5).

		<u> Anno 1977 (an 1977)</u> a		***	and the second states of the
		Dimen- sion	8/18	10/18	14/18
Mindestabsta	and	mm	2,3	1,4	0,5
maximale Verbie	gung	mm	9,1	8,8	8,9
maximale	Blanket	kp/cm ²	1898	2788	4862
Biegespannung	Core	kp/cm ²	135	449	1224
Reaktivitätsän-	$\frac{d \mathcal{G}_{T}}{d(\Delta T)}$	10 ⁻⁶ °c ⁻¹	- 7,4908	- 10,9295	- 19,1595
derung pro ^O C Aufheizspannen-	$\frac{\mathrm{d} \varphi_{\mathrm{TG}}}{\mathrm{d} (\Delta \mathrm{T})}$	10 ⁻⁶ °c-1	1,916	0,032	- 2,990
änderung	d १ _{ТG} व (ठग)	10-6%-1	- 5,4718	- 10,7938	- 22,0351

Tabelle 5

Durch die Anordnung der 2 Fixierebenen in der Nähe der axialen Coremitte (Stelle 8, 10 und 14) wird die Innenverbiegung der Subassemblies infolge der Temperaturgradienten (Bowing-Effekt) wesentlich unterdrückt. Der "Bowing-Reaktivitätskoeffizient" $\frac{d \ TG}{d}$ ist entweder nur schwach positiv oder gar negativ. Die erforderlichen Mindestabstände sind 2,3 mm, d.h. die beim Na 1-Entwurf angenommenen Spalten zwischen

^{3.3} Untersuchungen mit 2 Fixierebenen bei Na 1

den Subassemblykästen können fast verwirklicht werden. Da die Ausbiegung infolge der Temperaturgradienten nun durch die 2. Fixierstellenebenen in kurzem Abstand gehalten wird, erhöhen sich aber die maximalen Spannungen. Sie überschreiten vor allem für die radialen Blanketsubassemblies weit den zulässigen Bereich. Wenn man die Vorteile der Anordnung von Fixierebenen trotzdem aus-

nutzen will, muß man versuchen, die Biegespannungen in den Blanketsubassemblies zu vermindern. Dies kann geschehen durch:

- a) kleinere Aufheizspanne
- b) Maßnahmen zur Verbesserung der Durchnischung des Kühlmittels
- c) kleinere Schlüsselweite
 - für die Blanketsubassemblies.

Alle diese Vorschläge zielen auf eine Verkleinerung der Temperaturgradienten ab.

3.4 Verschiedene Kühlmittelaufheizspannen

Für den Na 1-Reaktor wurde die Kühlmittelaufheizspanne ∆T im Bereich 0---300 [^oC] verändert.

In den Abb. 12 a und b wurden die auf den unverbogenen Bezugsreaktor bezogenen Reaktivitätsbeiträge:

 $\boldsymbol{\varsigma}_{\mathrm{T}}$ hervorgerufen durch die Temperaturausdehnung der Subassemblykästen

 \mathcal{G}_{ma} hervorgerufen durch die Temperaturgradienten

in Abhängigkeit der Kühlmittelaufheizspanne aufgetragen. Die Lage der Fixierebene (1 Fixierstellenebene) wurde als Parameter betrachtet. Aus diesen Diagrammen können sofort die Änderungen der Reaktivitätsbeiträge $\Delta S_{\rm T}$ und $\Delta S_{\rm TG}$ für eine Änderung der Aufheizspanne abgelesen werden.

Der Übergang von der Aufheizspanne $\Delta T = 0$ (d.h. der Reaktor besitzt eine überall konstante Struktur- und Kühlmitteltemperatur von $T = 430^{\circ}$ C)

zur Aufheizspanne $\Delta T = 150$ [°C] bei Nennleistung ergibt z.B.

$$\Delta S_{\rm T} = -1,92 \cdot 10^{-3}$$
$$\Delta S_{\rm TG} = 1,58 \cdot 10^{-3},$$

wenn die Fixierebene in der Höhe der Axialstelle XVIII liegt. Die auf eine Änderung der Aufheizspanne bezogenen Reaktivitätskoeffizienten:

$$\frac{d\mathcal{G}_{T}}{d(\Delta T)} \quad und \quad \frac{d\mathcal{G}_{TG}}{d(\Delta T)}$$

können hieraus direkt als Steigerung dieser Kurven ermittelt werden.

Da die Kurven fast Geraden darstellen, sind die zu ermittelnden Funktionen $\frac{d\,9T}{d\,(\Delta T)}$ und $\frac{d\,9TG}{d\,(\Delta T)}$ in Abhängigkeit der Lage der Fixierebenen für jede Aufheizspanne im wesentlichen gleich und können im gesamten Bereich T = 0-300 [°C] durch die bereits in Abschnitt 3.2 diskutierte Abb. 11 wiedergegeben werden. Die Kurven der Abb. 12 a und b wären exakte Geraden, wenn die Stoffgrößen während der Rechnungen konstant über die Temperatur gehalten worden wären. Die maximalen Ausbiegungen und Spannungen würden als Funktion der Aufheizspanne - wie die Rechenergebnisse zeigen - ebenfalls geradenähnliche, nur schwach gekrümmte Kurven ergeben. Da

die Ausbiegungen und Biegespannungen sich für $\Delta T = 0$ einen Wert 0 ergeben, können die in den Abb. 9 und 10 für $\Delta T = 150$ [°C] angegebenen Werte dazu benutzt werden, die Ausbiegungs- und Spannungswerte für verschiedene ΔT zwischen 0 [°C] und 300 [°C] linear zu interpolieren bzw. zu extrapolieren.

Es zeigt sich aus diesen Ergebnissen, daß die optimale Lage der Fixierebenen (1 Fixierung) zwischen den XI. und XIII. Axialstellen zu finden ist. Entsprechend können auch die Ergebnisse aus Abschnitt 3.3 mit 2 Fixierstellenebenen auf diese Untersuchung übertragen werden. 4. Verschiedene Subassembly-Schlüsselweiten

Alle bisher in Kapitel 3 beschriebenen Berechnungen wurden außer für die Subassembly-Schlüsselweite 18 cm (Na 1-Reaktor) auch für die 2 weiteren Subassembly-Schlüsselweiten 12 cm und 9 cm durchgeführt und die Ergebnisse nach den in Abschnitt 3.2 aufgestellten Kriterien ausgewertet. (Abb. 13 bis. 15).

4.1 Veränderliche Lage der Fixierstellenebene

(1 Fixierebene)

a) Verbiegungskennwerte (Abb. 13)

Für die maximale Ausbiegung, die maximale Ausfächerung und die erforderlichen Mindestabstände erzielt man geringfügige Verbesserungen, wenn man auf kleinere Subassembly-Schlüsselweiten übergeht.

b) Maximale Biegespannung (Abb. 14)

Die maximalen Biegespannungen werden stark herabgedrückt. Eine Halbierung der Subassembly-Schlüsselweite ergibt z.B. eine um 60 - 65 % geringere maximale Biegespannung.

c) Reaktivitätskoeffizienten (Abb. 15)

Die auf die Anderung der Kühlmittelaufheizspanne bezogenen Reaktivitätskoeffizienten ändern sich, wie zu erwarten war, kaum.

4.2 Veränderliche Lage der Fixierstellenebenen

(2 Fixierebenen)

Auch hier gilt, wie in Abschnitt 4.1, daß sich sowohl die Reaktivitätskoeffizienten als auch die Verbiegungskennwerte in Abhängigkeit von der Subassembly-Schlüsselweite nur geringfügig ändern. Diese Ergebnisse werden daher nicht alle mitgeteilt. Dagegen ändert sich die maximale Biegespannung, wie auch in Abschnitt 4.1, beträchtlich. (bei $\Delta T = 150$ °C).

Abb. 14: Maximale Biegespannung im äußersten Core- bzw. innersten Blanket-Subassembly in Abhängigkeit der Lage der Fixierebene für verschiedene Subassemblyschlüsselweiten

- 32 -

Abb. 15: Reaktivitätskoeffizient bezogen auf die Änderung der Kühlmittelaufheizspanne $\triangle T$ in der Abhängigkeit der Lage der Fixierebene für verschiedene Subassemblyschlüsselweiten

Nennschlüsselweite

- 34 -

А. -		Dimen- sion	Schlüs-	Lage der	der Fixierebenen		
			selweite	8/18	10/18	14/18	
M/d 3 4 - 5 - 4 - 5			18	2,3	1,4		
	6anu	HAND	9	1,7	1,1		
	Cana		18	135	449	1224	
Biege-	0016	kp/cm ²	9	72	218	466	
spannung	Blan-		18	1898	2788	4862	
	ket		9	772	1178	1649	

Tabelle 6

Eine Halbierung der Subassembly-Schlüsselweite vermindert die maximale Biegespannung um 60 - 65 %.

5. Zusammenfassung

Es wurde zunächst gezeigt, daß die Core-Konstruktion des Na 1-Reaktors eines starken positiven Bowing-Reaktivitätskoeffizienten ergibt, der den großen negativen Ausdehnungseffekt fast aufzehrt. Man erhält außerdem einen zu großen "erforderlichen Mindestabstand" von 6 mm, während die maximalen Biegespannungen und die maximale Ausbiegung und Ausfächerung in erträglichen Grenzen bleiben. Die inneren Wärmespannungen in der Kastenwand übersteigen dabei jedoch die zulässigen Grenzwerte. (Die genauen Zahlen wurden nicht angegeben).

Einen sehr kleinen positiven Bowing-Reaktivitätskoeffizienten erhält man, wenn die Fixierstellenebene zwischen den Ebenen der Axialstellen XI und XIV gelegt wird.

Die maximalen Biegespannungen und die Verbiegungskennwerte wie maximale Ausbiegung usw. bleiben dabei in zulässigen Grenzen. Will man sowohl den Bowing-Reaktivitätskoeffizienten als auch die Verbiegungskennwerte weiter verbessern, so muß man zu 2 Fixierebenen übergehen. Allerdings werden nun die maximalen Biegespannungen sehr hoch.

Diesen Nachteil kann man jedoch ausgleichen, indem man zu kleineren Schlüsselweiten der Subassemblies und vor allem im radialen Blanket zu kleineren Aufheizspannen übergeht. Dadurch (sowohl kleinere Schlüsselweite als auch kleinere Aufheizspanne) werden gleichzeitig auch die inneren Wärmespannungen vermindert.

Drei Operationsmöglichkeiten:

- a) der Übergang zu zwei und mehreren Fixierebenen
- b) verschiedene Schlüsselweiten
- c) verschiedene Aufheizspannen

sind voneinander unabhängig.

Literaturverzeichnis:

/17 Yong-Su, HOANG: Strukturausdehnungs- und Verbiegungseffekte im Schnellen Reaktor, Teil I, Theoretische Überlegungen KFK-Bericht , Jan. 1967 / 2 7 Yong-Su, HOANG: Strukturausdehnungs- und Verbiegungseffekte im Schnellen Reaktor, Teil II, Programmbeschreibungen KFK-Bericht / 3 7 D. Smidt et al.: Referenzstudie für den natriumgekühlten schnellen Brutreaktor (Na 1) KFK-Bericht Nr. 299 (PSB-Bericht Nr. 122), 1964 / 4 7 Tobias and Fowler: Twenty Grand Program for the numerical solution of few-group neutron diffusion equations in two dimensions, ORNL 3200, Feb. 1962 / 5 7 F. Storrer: Courbes d'influence pour le calcul de l'effet des distorsions de la structure sur la reactivite, Physics of fast and intermediate Reactors, Proceedings of the Seminar on the physics of fast and intermediate reactors, IAEA-Conference, Vienna 1961 / 67 Chaumont and Koerner: 2 D-Pert (A two-dimensional perturbation code), ANL 6555, May 1962 /77 Timischenko and Coodier: Theory of Elasticity, 1951 Second Edition, International student edition New York, Toronto, London/Mc Graw-Hill Book Company, Inc. TOKYO, Kogakusha Company, Ltd.

<u>/</u> -8_7	Szabo': Einführung in die Technische Mechanik, 4. Aufl., 1959 Springer-Verlag, Berlin/Göttingen/Heidelberg
<u>/</u> "9_7	Szabo': Höhere Technische Mechanik, 2. Aufl., 1958 Springer-Verlag, Berlin/Göttingen/Heidelberg
/107	Hütte I, 28. Aufl., 1955 Verlag Wilhelm Ernst u. Sohn, Berlin
<u>/ī1</u> 7	Dubbel I, Aufl., 19 Springer-Verlag, Berlin/Göttingen/Heidelberg
/127	H. Wolf: Ausgleichsrechnung nach der Methode der kleinsten Quadrate Hanseatische Verlagsanstalt GmbH., Hamburg
<u>/</u> ī <u>3</u> 7	Programming System, IBM 7070, 270562-0 Gesellschaft für Kernforschung mbH., Karlsruhe
<u>/14</u> 7	Sammlung von Programmbeschreibungen für IBM 7074 Gesellschaft für Kernforschung mbH., Karlsruhe

:

т

-

•

- 37 -