
April 1969

Zyk1otron- Laboratorium

KFK 1009

Intensity Fluctuations of Cyclotron Microstructure Beam Pulses

w. Linder. M. E. Lösei. G. Schatz. H. Schweickert

B. H.





NUCLEAR INSTRUMENTS AND METHODS 70 (1969) 151-156; © NORTH-HOLLAND PUBLISHING co.

INTENSITY FLUCTUATIONS OF CYCLOTRON MICROSTRUCTURE BEAM PULSES

W. LINDER, M. E. LÖSEL, G. SCHATZ and H. SCHWEICKERT

Zyklotron-Laboratorium, Kernjorschungszentrum Karlsruhe

Received 26 November 1968

Measurements of the intensity distribution of microstructure beam pulses from an isochronous cycIotron are described. Typical in
tensity distributions resuIt in an increase ofthe chance coincidence rate ofcoincidence experiments by a factor of 2 over the ideal case

of equally sized bursts. Among other factors stray frequencies in the rf may contribute to these intensity fluctuations.
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For a normalized intensity distribution h(l) the
chance coincidences are given by

(5)

(4)

(6)

h(l) = (j(I-Io),

N chO = clczI~.

1 = J~ h(l)IdI,

If all pulSes have the same intensity 10 ,

This corresponds to the well known expression of
chance coincidences far a beam without structure in
which the partieles are spaced randomly in time.

For a given mean current

chance coincidences attain a minimum when all pulses
have the same intensity, i.e. when h(I)= (j(I - I). This
results in a minimum of machine time required for an
experiment if the mean current is limited by the rate of
accidental coincidences.

For measuring the intensity of single microstructure
bursts fast targets for current measurement are re
quired (time constants of the order of a few nsec).
Several such targets have been built. Two targets which
may be used for measurements on the internal beam at
different current levels have been described in detail in
a previous publicationZ

). The Faraday cups normally
used for measurements on the external beam were not
suited for this application as they have a capacity of a
few nF with respect to ground. Therefore a special
beam stop was developed which is shown in fig. 1. The
capacity is about 20 pF, and with a 50 Q terminator a
time constant of 1 nsec is obtained. It should be men
tioned, that there is no secondary electron shield around
this probe. This results in an increase of 20% of the
measured current as compared with the incident par
tiele current.

3. Measurement of the intensity distribution

3.1. TARGETS

(3)

(1)

n

N ch = CI·CZ L I~.
k= I

1. Introduction

In all experiments involving the measurement oftime
coincident events a knowledge of the rate of accidentIll
eVents ls fequiieo. Th6lnherent bunchingof acyclotron
beam by the accelerating rf complicates coincidence
measurements with resolving times in the range of the
burst length. If the assumption is made that all single
microstructure beam pulses have the same shape in
time and comprise the same number ofparticles therate
ofchance coincidences can be calculatedI). In the Karls
ruhe Isochronous Cyclotron, however, we observed an
appreciable variation of intensity in the single beam
pulses. The purpose of this paper is to describe mea
suring methods of the intensity spectrum and to esti
mate their influence on chance coincidences and the
time required for an experiment.

2. Accidental coincidences in the case of intensity
fluctuations of microstructure beam pulses
Let I k be the intensity of the klh pulse arriving at the

target, and let the coincidence resolving time be larger
than the pulse length and smaller than the pulse distance.
The mean number of counts in each of two detectors
due to a pulse of intensity I k wilI be

Nlk = cllk ,

N Zk = czlk>

where Ci and Cz are constants involving parameters of
the detectors and of the nuclear experiment to be
studied. Then the mean number of chance coincidences
Nch can be expressed in the form

N chk = Cl czIf. (2)

The total number of chance coincidence for n cyclo
tron pulses is
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Fig. 1. A schematicdrawingoJ' the Faradaycup-with a timeconstant oJ' I-nsec.-

3.2. ELECTRONIC SYSTEMS AND RESULTS

The fast pulses from the targets occur at a rate of
33 MHz. Fig. 2 shows the electronic system used to
process these pulses with a conventional pulse height
analyser. First of all the repetition rate of the target
pulses is decreased to 3.3 kHz using a frequency divider
and a fast linear gate. The output of the linear gate is
fed through a pulse stretcher to a multichannel pulse
height analyser.

In some measurements the signal to noise ratio was
improved without increasing the thermal load of the

target by pulsing the ion source. It is then necessary to
introduce an additional gating condition to avoid pro
cessing pulses during the rise and decay times of the
current pulse. This is achieved by the circuit shown in
the lower part of fig. 2. This part of the circuit is not
used when the ion source is operated in steady state
condition.

Measurements were performed at different current
levels for deuterons and alpha partic1es on the internal
and external beams. In all measurements the width of
the intensity distribution was comparable to the mean

pulsesfrom
fast targets

33MHz
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fit ter

.1 sealer

500}J sec-.,
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_______________..--J
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33MHzfrom
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Fig. 2. Block diagram of electronics for analysing single beam pulses.
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Fig. 3. Typical distribution of the single microstructure beam
pulses obtained with the fast Faraday cup and a-particles at a

pulse current of 30 pA.

due to the observed intensity distribution by means of
the formulae derived in section 2 the measured distribu
tion was approximated by an analytical expression. The
best fits were obtained by curves which represent a
truncated exponential folded with a Gaussian distribu
tion

h(I) = {a(2n)tr 1f: 00 (Nil e I)exp {(x-I1)le}·

·exp[ --t(I -x)2ja2Jdx, I ~.I1'

h(l) = {(J(2n)tr 1foo

(Nllel)exp{(x-I1)le}'
I,

·exp[ --t(I -x)2Ia2Jdx, I"?;, 11 •

(This type of function",as tri~4 a.s al~a.st-§qJUlresfitting

prögram existea. afthis laboratory for the analysis of
Ge(Li) y ray spectra). In fig. 4 the measured and fitted
distributions are shown. At the same mean intensity the
chance coincidence rate is higher by a factor of 2.04 for
the measured intensity distribution as compared with a
(j-function distribution.

value. A typical intensity distribution is shown in fig. 3.
It was obtained with the external alpha particle beam
with the ion source pulsed at a pulse current of 30 JlA.

3.3. INCREASE OF CHANCE COINCIDENCE RATE DUE TO

THE OBSERVED INTENSITY DISTRIBUTION

In order to calculate the rate of chance coincidences

4. Measurements on thetime correlation of the intensity
Time correlations of the intensity fiuctuations are im

portant if chance coincidences are measured by delaying
one of the pulses by an integral number of rf periods.
As will be shown they can also give information on the
processes which cause the intensity fluctuations.
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Fig. 4. Measured and fitted pulse height distributions.
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Fig. 5. Block diagram of electronics for time correlation measurements.

4.2. MEASUREMENT OF RADIOFREQUENCY DISTRIBUTION

IN THE CENTRAL REGION

While the 1.1 MHz modulation of the beam intensity
can be attributed to plasma oscillations in the ion

________ , .. __ .. _·__ c . . . ._ .. .._. .._ . __. .'._.. .. __ __. .. _

Fig. 5 represents theblock diagram of the electronics
used to measure the distribution of time distances. The
threshold is~defined by:a:fas(discriminator. The time to
amplitude converter has the feature to be internally
gated by the start input circuit to accept only stop
pulses following a valid start signal. The start pulse is
delayed by a fraction of a rf period such that one pulse
can only trigger either the start or. the· stop input. In
order to reduce the rate of start signals tue start pulses
are gated at a suitable pulse rate produced by a fre
quency divider from the cyc1otton rf.

Some results of these measurements are shown in
figs. 6 and 7. As expected the output spectrum ofthe time
to amplitude converter consists of equally spaced lines
with a distance corresponding to 30 nsec. The results of
fig. 6 were obtained with the plastic target2

) on the in
ternal beam at a current of 1 nA. The straight line in the
lower part of fig. 6 represents the decrease of the
maxima expected from eq. (7) using the independently
measured value of P. The excellent agreement of the
slopes indicates that the intensities of different micro=
structure bursts are uncorrelated.

An entirely different situation is displayed by the
measurements of fig. 7. Here the fast high current
target2

) \vas used at an internal deuteron current of
10 JiA. The spectrum shows periodic intensity fluctua
tions at approximately 11 and 1.1 MHz. Similar time
correlations habe been measured at quite different levels
of current. It was unfortunately not possible to corre1ate
the presence or absence of these correlations with the
operating conditions of the ion source or other compo
nents of the machine.

nnel number

threshold 600 mV

~
P=0,036

r::;:: threshold 100 mV

P=O,454

-............

~
~

~

eha

I eounts/channel

Wn =P(l-Pt-\ (n~1). (7)
Any time correlation, as rnight be caused, e.g., by a

periodic change of the intensity, would result in a
deviation from this dependence.

4.L TIME INTERVALS BETWEEN SUCCESSlVE BEAMPULSES

ABOVE A GIVEN THRESHOLD

One method of investigating time correlations of the
intensity of single pulses is to measure the distance in
time of pulses which are large enough to overcome a
certain threshold. This distance is, of course, always an
integer multiple of the rf period '"C. Let P be the fraction
of all pulses which exceed the threshold. If the intensi
ties of different rfbursts are uncorrelated the probabili
ty of measuring a distance of n- '"C is given by

10° o 50 100 150 200 250

Fig. 6. Spectrum of time intervals between two successive pulses
above a given threshold. The data were taken at a mean deuter

on current of I nA.
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Fig. 7. Spectrum of time intervals between two successive pulses above a given threshold. The data were taken at a mean deuteron
current of 10 pA.

source the observed frequency of 11 MHz appears to be
too high for such oscillations. On the other hand, in
tensity modulations at this frequency were observed
frequently. As a possib1e explanation it was proposed
that tbis might be due to a 11 MHz component super
imposed on the accelerating 33 MHz rf. As the first one
and a half orbits of the Karlsruhe Isochronous Cyclo
tron are defined by a large number of slits3

) the inten
sity of the beam depends very sensitivelyon the rf
amplitude. This might result in an intensity modulation
of the observed structure if a 11 MHz component were
present in the rf field. To test this conjecture the radio
frequency distribution near machine center was mea
sured. In order to avoid any change ofthe centre geom
etrya dummy ion source was built with a small pick up
e1ectrode at the position of the centre of the ion source
extraction slit. Fig. 8 shows a photograph of this dum
my source. The voltage from the pick up electrode was
analysed using a selective microvoltmeter (Rhode und

Schwarz type USVH-BN-1521) in the frequency range
from 10 kHz to 10 MHz and a spectrum ana1yser
(Tektronix type 1 L 20) in the frequency range from
10 MHz to 200 MHz. In order to avoid sparking it was
necessary to reduce the rf amplitude by a factor of ap
proximate1y 2.5 with respect to the va1ue in normal
machine operation. The results of these measurements
are shown in fig. 9. Besides the basic frequency of
33 MHz and its harmonics at least 9 different fre
quencies can be detected, including a small contribution
at 11 MHz. It should be pointed out, though, that the
capacitive type of coup1ing employed tends to enhance
the higher freqencies. It is known that the rf system of
the cyclotron has a second characteristic frequency at
38 MHz which might also explain the presence of the
71 MHz oscillation. The origin ofthe other frequencies
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Fig. 8. Dummy ion source with pick up electrode. Fig. 9. Measured harmonics in the central region.
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(excepting the harmonics) is unknown. In spite of the
low level of the 11 MHz rf field present it is proposed as
a tentative explanation of the intensity modulation ob
served at this frequency. Of course, the infIuence of
these stray frequencies upon the acceleration process
does not only depend on the amplitude, but also on the
phase with respect to the main frequency which was
not measured.

5. Discussion
The measurements reported in this paper have shown

that the intensity of single microstructure bursts may
fIuctuate considerably more than the average current
from a.cyclotron. These fIuctuations may have an ap
preciable infIuence on chance coincidences in coinci
-dence- experiments~ Amongthecausesknowntobe pres~

ent are jnstabilities of the ion source power supplies
and oscillations in the ion source plasma. An additional
factor is given by stray frequencies in the accelerating rf.

The latter which may be a special feature of the Karls
ruhe Isochronous Cyclotron due to its special centre
design results in time correlations in the intensity fIuc"
tuations. These correlations become important ifchance
coincidences are measured simultaneously with real
coincidences by delaying one of the signals by a fixed
number of rf periods.

We are indebted to H. Müller for his assistance in
setting up and preparing the measurements.

Thanks are also due to the operating staff under F.
Schulz for their efficient cooperation.
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