KERNFORSCHUNGSZENTRUM

KARLSRUHE

Juli 1968 KFK 843
EUR 3979 ¢

Institut fir Reaktorentwicklung

A Statistical Method for Evaluation of Hot Channel Factors

in Reactor Design

A, Amendola







KERNFORSCHUNGSZENTRUM KARLSRUHE

Juli 1968 KFK 843
EUR 3979 e

Institut fir Reaktorentwicklung

A Statistical Method for Evaluation of Hot Channel Factors

%)

in Reactor Design

A.Amendola xx)

Gesellschaft fiir Kernforschung m.b.H.,Karlsruhe

%) Work performed within the association in the field of fast reactors
between the European Atomic Energy Community and Gesellschart fiir
Kernforschung mbH. ,Karlsruhe

%% ) Euratom,Brussels, delegated to the Karlsruhe Fast Breeder Projeat,
Institut fiir Reaktorentwicklung






-1 -

Abstract

Previous methods of hot channel analysis assumed all the cooling
channels in a core to be independent. Actually we have to distinguish
between two types :of uncertainties, namely: local uncertainties,
Whichﬁmay v;fiifiom ibihtvtaiﬁoihfmﬁifﬁiﬁrawféééfér;"éhdwgioﬁai
uncertainties which do not vary within a reactor, or at least

within parts of a reactor., The global uncertainties introduce
evidently a correlation among the temperatures of the coolant in

the channels they affect in the same way.

This paper gives a quantitative assessment of the different effects
of these two types of uncertainties and proposes a new method of
evaluating the hot channel factor, taking into account this corre-
lation. |

The method was developed with reference to sodium cooled fast
reactors, but is quite general and may readily be applied to

other reactor types.

The paper shows moreover an example for the reactor Na-2 and a comparison
with the previous methods., The actual temperature profile of the

coolant in the reactor is taken into account.
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1. Introduction

In the thermal design of nuclear reactors, the operating temperature
is limited by the requirement that the temperature of the core
components does not exceed critical values., For instance,with
reference to sodium cooled fast reactors, the coolant temperature

at the cooling channel outlet should be sufficiently below the

sodium boiling point, the canning temperature should not exceed

the critical value, which, depending upon the material and applied
stresses, provokes an unacceptable creep rate in the canning;

and the fuel temperature should be lower than the melting point

of the fuel,.

In the reactor thermal design, it is necessary therefore to assume
adequate safety margins, which take into account all the uncer-
tainties affecting the parameters, upon which the core temperature
depends., These uncertainties are of different nature, namely
measurement errors,fabrication tolerances, inexact knowledge of
physical properties of the core materials, calculation imprecision
etc...

On the other hand, the assumption of large safety margins corresponds
to a decrease in the operating temperature, with consequent reduction
of the plant efficiency, and to an increase in the unitary cost of the
delivered power.

Starting from these considerations,the initial deterministic

concept of calculation of these safety coefficients (the so called
hot channel and hot spot factors) was substituted by statistical

anaglysis and several statistical methods were developed in the

These methods assumed all the cooling channels in a core to be
independent and treated all the uncertainties in the same manner.
Actually we have to distinguish between two types of uncertainties,
namely: local uncertainties, which may vary from point to point
within a reactor, and global uncertainties which do not vary
within a reactor, or at least within parts of a reactor. The

global uncertainties introduce evidently a correlation among the




temperatures of the coolant in the channels they affect in the

same way. This paper gives a quantitative assessmentof the different
effects of these two types of uncertainties and proposes a new method
of evaluating the hot channel factor, taking into account this
correlation,

This method was devéloped with reference to sodium cooled fast
reactors,but is quite general. It gives an overall hot channel
factor for flat power reactors, and can be extended to the hot spot
factors when the most critical zone only, in every fuel pin, is
taken into account. A more complete hot spot analysis should be
object of further work,

Moreover, this paper shows a numerical example for the reactor Na-2,
with a comparison with the previous methods and an approach to

take into account the actual temperafure profile of the coolant

in the reactor.

2. Coolant outlet temperature

The coolant temperature ({g) at a cooling channel outlet is

given by the relation:

8% = 5& +ZS€E (1)
with
bg - [
C N
o 3¢ (2)
where:

Jo = coolant temperature at the channel outlet

A9c = coolant temperature span across the channel

LS = thermal power delivered in the channel per unit of length
cp = sgpecific heat of the coolant
Q = coolant mass flow rate through the channel

z = abscissa along the channel axis.,



For sodium cooled reactors, the coolant channel arrangement is
shown in fig.1. The uncertainty on the value of 35arises

from the uncertainties affecting the individual parameters upon
which fﬁ;depends. Namely, 3&‘is known in the limits of a measure-
ment error; 1 depends upon the length of the fuel pellet stack,
which, due to the mechanical tolerances, can be different among
the several fuel pins; the uncertainty on the value of Lg depends
upon calculation imprecisions of the neutron flux distribution,
deformations of the theoretical flux distribution due to the
actual control rod position, fabrication tolerances of the pellet
density and plutonium enrichement, possible eccentricity of the
cladding and measurement errors of the actual total power of the
reactor; °p is assumed to be known exactly; the uncertainty on

the value of Q depends upon the inexact calibration of the orifice
at the inlet of the subassembly to which the channel belongs and
upon the mechanical tolerances of the pitch and outer diameter of

the pins which bound the channel,

%, Definition of hot channel factor.

Let aérit be the critical value, which should not be exceeded
by the coolant temperature at the channel outlet, we define, as
hot channel factor (ic), the safety factor, which takes into

account all the design uncertainties, in such a way that:
17:) = 27:/'L—nom * Fre A27,c--nom = 1Icr:'ub (3)

where éf and A57 are the coolant inlet temperature and
i-nom c.non

the coolant temperature span in the considered channel, when all

the parameters, upon which they depend, assume their nominal values,

This definition can be extended from the individual cooling channels

to the wholé cooling system of the core: the over-azll hot channel

factor will be indicated as F;C and defined as:

] t <
770 = 3:’1-nom+ Fre A‘Tgl-arfom = gcrit (4)




where ‘3£-nom is assumed constant along the core radius and.‘A§2?zom
is the nominal maximum temperature span of the coolant across

the core,

Provided that the most limiting parameter, in the thermal design

of the core, is the coolant critical temperature, relation(4)
permits to determine the maximum sllowable coolant temperature

span, given the inlet temperature and the power profile, if Fﬁc

was previously determined.

4, Deterministic and statistical hot channel factor.

The first approach to evaluate the hot channel factor was the
cumulative or deterministic method [f1_79 This method assumes
that in the channel, which is in the most critical conditions,
that is at maximum nominal temperature and power, all the uncer-
tainties coincide in the most unfavourable way: that is,. for in-
stance, in this channel the maximum possible peak factor of the
flux occurs together with the maximum possible density and en-
richement of the fuel pellets, the minimum flow rate, etc..

Defining a subfactor for each individual parameter:

P o maximum coolant temperature span due to the uncertainty"i®
i~ nominal coolant temperature span

ic is given in this case by

F, (5)

1

ic =,
i

L=

where n is the total number of uncertainties.

This factor is referred to a single channel, namely to the most
critical one; but, for the way, by which it is calculated, it -
assures that no chaﬁnel in the core exceeds the critical temperature.
The same authors / 1_/, however, noted that the probability of the
occurence of all worst deviations at one location is extremely low,

and let the problem open to a statistical analysis.



In statistical concept, the hot channel factor is not an absolute
factor, but is a function of the safety assigned to the reactor
design.
When the funciion

t t

F, = TP (confidence level)

is known,the designer can weigh the cost of the plant against the
safety and consequently choose his safety coefficient: the advantage
of the statistical method lies properly in the possibility to

give a quantitative figure to the safety, avoiding to assume

margins, which increase sensibly the costs, without increasing

significatively the safety of the plant.

5. Literature survey.

lethods, to combine statistically the hot channel subfactors (5),
were proposed by Rude and Nelson [‘2_7 and Parrette [-5_7.
Succesgively Tingey Zfﬁ;jkmd Abernathy Z_S_7introduced a simpler
method derivated from the error propagation theory. The Enrico
Fermi reactor was the first reactor to use hot spot factors
calculated on a statistical basis / 6_/.

These methods limited themselves to the calculation of a statistical
factor for the most critical channel., A semistatistical method

was proposed by Chelemer and Tong [f7_7= this method assumes that
only some parameters, namely the fabrication tolerances, are

actually of statistical nature., Many reactors, among which the
Na-2 /—8_7, assumed a similar concept.

The extension of the statistical analysis to the whole core was
succesively performed by Nelson and Minkler Zf9_7and Judge and
Bohl Zf10'””ﬁ2F31_7 I o -
Businaro and Pozzi [_12_7 introduced the "spot" concept, which
was applied to the Orgel design 1713_72 this method takes into

account the probability of every pellet in a fuel pin to be "hot",

against the previous methods which considered the most critical

pellet only,




The extension of the spot method to the whole core was performed

by Gueron and Fenech 171447 1-15;7.

The various methods under review assume that all the coolant
channels in a core are independent: this paper points out the
importance of the correlation introduced by the uncertainties
which affect the whole core or whole groups of channels, and
proposes a new method of analysis. All the parameters are assumed
to be independent of time: principally, the hot spot analysis

has the scope to determine the performance of the plant during

the design stage; when the reactor is in operation, a new anaiysis
should be performed starting from the data measured by the in core
instrumentation, in order to verify the assumptions and eventually
to remove some precautional limitations [f16_7, 1737_7.

6. Distribution of the uncertainties.

A statistical hot channel analysis requires, as a basis, the
knowledge of the statistical distribution of the uncertainties.

A continuous statistical distribution is characterized by the
probability frequency function p(x): p(x) dx is the probability
that a random variable x assumes & value within X and x + dx. The
probability P(i), that x will not exceed the value i, is given by:

P(x) =j§ p(x) dx

-~
The main parameters of a statistical distribution are the mean(m)

and the standard deviation (&), defined respectively by:

m = /;cl;(x)dx 6= /p(x) (x-m)zdx

- o0 i - 00
The most common distribution is the normal distribution, for.which:

2
o) = o -2 B (6)

Var 6

In the following we will abbreviate this expression by the symbol

(m, &). The valuesof p(x) and P(x) for the normal distribution
are available in mathematical tables 1-18_7. Table n.?1 gives some
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values of the probability that in a normal distribution a value x
will be exceeded, as function of the parameter ).,ratio of the

deviation from the mean to the standard deviation.

Table n.1

coni‘.‘ié;{elf_l_ceran sli*‘v; 1 P(xem >A0) |\ = x-:
84,13 (%) 15,87 (% 1
93,32 6.68 1.5
97.72 2.28 2
99.38 0.62 2e5
99.87 0.13 3
99.996 8 3.241077 4
99.9999999 107" 6

When the uncertainties are known only as tolerance limits (-H, +H)
about the mean m, and the type of distribution is not known, it
is common practice to assume that all the values within these

limits are equally probable, that is the distribution is rectan-

O
al
o
[&)
]
4]
'._l
&1
ot
6]
Q
Hy
{
H
[¢)
Q
ot
oW
v

gular: the fre
range (m-H, m+H), the standard deviation is G’= H/fg

In hot channel analysis, the knowledge of the mean and standard

deviation only, and not of the ftype of distribution, can be
sufficient in most practical cases, provided that the number of
the uncertainties is large (see item 7). When these parameters
are not given as data, they can be estimated through measurements

as follows:
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where n.is the number of measurementsg and X5 is the value assumed
by x at the "i"th measurement. The confidence level of this

"estimation" depends upon the number n of measurements 1—1&;7.

7. Error propagation in hot channel analysis,

A general method, affected by a first order approximation, for
calculating the mean and the standard deviation of the coolant
temperature derives from the statistical error propagation

theory Z~4,i;7. We can assume that, in eq.(1),£§ has actually

its nominal value, and consider the uncertainty on JE as a further
uncertainty in A{Z. Let us write now Aq& as an explicit function

of the several parameters X;» upon which it depends:
Aﬁé: AD; (X1’ xz’.""‘ocxi’xn) (7)

then, we can develop in Taylor's series, about the nominal

value:

A, = AJ(® L )

-nom inom? 2nom n nom

If we neglect the terms of superior order, we cbtain:

A - AT + (31336) axq ... +(3A3'c) ax, (8)

C-1om\ J x; /x4 nom J %y

Now dxi is a statistical variable with mean O and standard

deviation 6. From the statistical theory / 18_/, the linear

Xn nom

function:

a,4X, + 8Fpeeeeeinans +a X (9)

where ai's are constant and Xi's n statistical independent

variables, with mean m. and standard deviation Gi,

has the mean: m = a,m, + a2m22+ ...é.....é..; a, m . (10)
and the standard deviation: ¢“= aj¢j + a, 6 +eeveata "6 " (11)
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In our case we get then for A;Z:
2 2
2 _ g .
no= AV, o T = : (JA c)x & (12)

pR=1

i nom

These expressions were derived without any hypothesis on

the distribution type of X, o If all xi’s have a normal distri-
bution, then also O isnormally distributed / 18_/.

Generally, however, the Central Limit Theorem [~18_7states that the
linear function (9) tends to a normal distribution, with m and ¢
given by (10) and (11) respectively, when n- e, whichever is the
distribution of X When a correlation exists among the Jii's, the

expression (12) becomes:
2

2 _ J AV 2+ N 2 JA, DAD;' .6 @,

) E. (3 X5 ) 3 R zi J x, . Jx, |« 5 !

i /Tinom i /Tinom J

where Fij is the correlation coefficient between the variables

Jjnom

i and J.

In this case the Central Limit Theorem, is still valid over very
- general conditions 1738_7;

In the following it will be assumed that Zkég is normally distri-
buted with m and ¢ given by (12).

8, Hot channel factor for the individual cooling channels,

In order to evaluate the hot channel factor ic, it is more practical
to calculate separately the effects of each parameter an Azb instead
of expliciting the equation (7). BEvaluating the contribution of the

uncertainty on the parameter "i" to the total uncertainty on AQ; as:

Y Ik | g o AS(xy e it %y ) - Ade-pom (13)
Ad, V%1 [¥ijnomAY c-nom AJe nom

we obtain by (12) the total standard deviation of AQ;, referred to

the nominal temperature span:
n . ’
2 142 -
oy =2 (on) ‘ (14)
%A i A

i=1
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The distribution being normal, ic is then given by:

. - 1T+ A OZ% (15)

where A., as function of the confidence level, is given in table

n,1.

9, Totsl hot chamnel factor in the case of independent cooling channels,

The assumption of the previously derived factor (15), referred to

the most critical channel in the core 1—4, 5, 6_7is a very opbti-
nistic one: actually a core can have many channels equally limiting,
moreover the other channels, which are at a lower nominal temperature,
give always a not negligible contribution to the total hot channel
probability of the core.

Let Pic be the probability of the channel "i" to be "hot", 1-PiC
is then the probability that the critical temperature will not be
exceeded in the channel "i", If the total number of channel is N

and the chaunnels are assumed to be 1ndependent the probability, that
no channel in the core is hot, results in AT(1 Pt he ). The total hot
channel probability (probability that in the core at least one channel

is "hot") is given then by:

N
_t 1
= 1 = -
120 ?_L (1-2,) (16)
In "flat" power reactors, all channels have the same P;C:rPh y in
c
this case we get:
P* =1 - (1-2)" (17)
c
he

At ref £_1Q;7 a.practical method is proposed in-order to-evaluate —
the total hot channel factor in these hypotheses; this method, )
reported here for sake of completeness, can be summarized as
follows: let us call PN(g) the probability that at least one
element out of N samples drawn from the normal distribution (0,1)

exceed a certain. deviation ¥ : 2

P (%) = 1-(1 /"%_ e ax )" (1)
¢ VT

+
-7
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Fig n.2 shows the PN(g) distribution for several values of N,

Let us assign, to the total hot channel factor, the confidence
level C, which corresponds to the deviation A¢ in a normal
distribution: drawing, in fig.2, a straight line, parallel

to the abscissa, through the point at *¢in the normal distri-
bution, we obtain the coefficient (%), by which the standard
deviation 9&36 musdt be multiplied, as the abscissa of the
crossing point of this line with the actual P,N,,(j,,) distribution:
the total hot channel factor, for "flai" power reactor results in:

F =1+§o“&,f (19)

he ¢

10,4 . useful approximation of the P, (%) distributions.
¥

From fig.n.2, the PN(E) distributions result to be not normal,

For the further use of these distributions, as well as for a more
practical evaluation of the hot channel factor at item 9, it is
useful to approximate PN(E), for each N, by a more pessimistic

normal distribution - that is, at given confidence level, allowing
larger deviations than the actual PN(g) - in the practical range

of interest, This is a conservative approach with respect to reactor
design,

Teking in fig.2, for each N, the point at 50% probability as mean

of the distribution to evaluate, it is easy to calculate the standard
deviation of the normal distribution, which pessimizes the actual

one up to a desired confidence level, m
Fig.n.3 shows - as function of N - the mean (hN) and the standard
deviation (H%) of the normal distributions which pessimize the
PN(f)'s up to 36 conf.level (99,8%) and 66 conf.level (10—9 proba-

bility of ‘occurence) respectively -

Fig.n.3 being referred to the standardized normal distribution
(0,1), h? and h; indicate actually a ratio of deviations to stand-
ard deviation. £

The total hot channel factor F for "flat" power reactor, with N

he
independent cooling channels, can be evaluated as:
tf

m G
Fo = 1+hy o"Aacabe A %30 (20)
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where A, as function of the confidence level, is given in table

n 1., It is clear however that X must not exceed actually the

value which was used as the basis of approximation at fig.,3,

otherwise the expression (10) gives no longer a conservative
value, The pessimization, involved in the performed approximation,
is practically negligible. For instance if we want to calculate
F;i in the range 26+ 3¢0of confidence level, we shall use hg
corresponding to the 3¢ approximation; the factors given by (20)
and (19) will obviously coincide at 3¢ conf.,level, and will

differ of 1%, as a maximum, at 26 conf.level.
A | ?

11, Assessment of the different effects of the local and global

uncertainties.

With the previous procedure, the outlet temperature of the coolant
of each channel was considered to be statistically independent from
the other ones, and all the uncertainties were treated in the
same way.

Actually, only some uncertainties vary from channel %o channel
within the reactor in a statistically independent manner, while
others affect whole groups of channels or all the channels in a
correlated way.

For instance, the power measurement error affects the whole core
temperature profile, while the fuel density affects the individual
channels in an independent manner ; the uncertainty on the orifice
calibration affects equally the temperature of all the channels

ie temperature of

$2
o
=
Qo
43

the individual channels in the subassembly. It is easy to find

a great number of similar examples,

Moreover from the examination of the production tolerances of the
core components, it results that the tolerances of components
belonging to the same production batch are usually smaller fhan

the tolerancés among components of different batches. It is possible

to consider these mechanical tolerances as a result of two statistical
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distribution: the first one is the distribution of the average
value of the considered parameter among different production
batches, the second one is the distribution of the considered
parameter about the mean within every batch. As a consequence,

in a generation of reactors with the same design, a certain para-
meter can vary among the individual reactors in an independent

way, but among. tne 1nd1v1dua1 channels in each reactor in a corre-
lated way.

Let us assume for instance, that the uncertainty of the coolant
temperature depends only upon the power measurement error and the
pin pitch tolerances; the actual hot channel probability to eva-
luate is, in this case, the probability that the sum of the power
error contribution, drawn once, and of the pitch contribution,
drawn N times, exceeds the critical value, It is intuitively clear
that the previous methods, which consider the statistical sum of .
the two contributions drawn gn equal number of times, is more
conservative than the actual one. In order to assess quantitatively
the difference between the two methods, only two statistical
distribution will be considered, f£(x) and g(y).

Let us call Pa(S) the actual probability that the sum x + y exceeds
a certain value §, when x is once sampled and y a number N of times,

Pa(g) is given by the following integral:

(21)
P(g)‘/f&)z’ -}L@Ody).]dx

In fact:
f(x)dx is the probability that x falls within x and x+ dx

- (/ g(y)dy ) is the probability that y > $-xat least
100 .

in one out of N samples

X and y being independent, the product of the previous terms
gives the probability that when x falls within x and x+ dx , y is

so large that x+ y23 at least in one out of N samples. Since x can
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assume all the values between -wand +o, we get (21).
In the case that f(x) and g(y) are the normal distributions
(o, &) and (0,61 ) respectively, by (6) the expression (21)

becomes:

,1 00 }.x

2 2 N
b ey - [ 4 ‘@—[( [ e )]
% =% e *% /1 - Ly Jy x (22)

- o0 - 00

This relation has been solved an a digital computer for different
values of the parametsrs N,3% , Gé and @l: namely for different
values of the ratio R =G§/6‘,’, with fsf'rcz = 1, The resulting distri-
butions are represented and compared with the PN(S)'S in fig.3
and 4, for N = 100 and 10 000 respectively. It appears that the
results of the two methods are actually very different, and a

not negligible reduction of the total hot channel factor can be
expected, especially when N and R are large, by considering the
exact distributions (22).

It appears moreover that the more limiting uncertainties are the
local ones: these, in fact, are sampled many times, and have,
therefore, a greater probability to exceed large deviations, than

the global uncertainties, which are sampled once or few times only.

12, Proposed method for "flat" power reactors,

Since the evaluation of the hot chahnel probability, starting from
the Pa(f) distributions, would involve the resolution of a large
number of integrals of the type (21), a practical method will be
proposed, using the approximation introduced at item 10,

With reference to sodium cooled reactors, the core is assumed %o
consist of a number NS of subassembly, each subassembly having

a number N, of channels, We assume, for th&fﬁgment’ a "flat"

power distribution. In order to calculate ic in these hypotheses,

the uncertainties must be divided into three groups, namely:

1. uncertainties affecting the individual Nc channels in a
subassembly

2, uncertainties affecting individually the whole subassemblies
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3, uncertainties affecting the whole core temperature,
iJ
The standard deviations Q&gbof the uncertainty i belonging to
the same group "j"(j=1,2,5 respectively) can be statistically

added as usually:

Let us now introduce a practical graphical convention: a block
{fig+6) indicates a normal distribution (m, 6-)3 the series of two

or more blocks indicates the sum of the corresponding distributions;
and the parallel of N blocks indicates that the corresponding

normal distributions are drawn N times.

We can substitute, then, a block ( é;nﬁ, VESE% ) to the series of n
blocks (mi, Wi), and, according to item 10, a block(m+h§0’,h§ &)

to the parallel of N identical blocks (m, o), (fig.6).

With these conventions, the actual representation of the uncertainties
in the reactor is shown in fig.7. As shown in fig.7, exeguting the
operations indicated by the block diagram, we are able fte substitute
a simpli normal distribution (MR’ Gﬁ) to the complex actual distri-
bution.

The total hot channel factor for a "flat" power distridbution results
now ins «

tf
Fpo =1+ +)\ch (23)

where A depends upon the desired confidence level as in table n.1.
It is useful to remember, that this confidence level expresses the
probability that no channels in the core exceed the factor (23):

its complement, the probability that at least one out the N:NsoNC

channels exceed the factor (23).

* Evaluating numerically the exact sum of a P._(%) distribution and
a normal distribution, and comparing with tHe sum of the corresponding
approximate distribution and the normal one, it has been proved that
the pessimization of the introduced approximation is still held.
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1%, Numerical example for the reacior Na-2

The principal data for the reactor Na-2 are given

N, 2

Table

in table n.Z2

Parameter

Nominal value

standard deviation

Core - power
Sodium inlet temperat.
Maximum temperature span

in the most limiting

channels
Hunber of subassemblies

Nunmber of
channels

cooling
in a subassemb.

Number of pellet in

a pin

Length of the active
zone of a fuel pin

Fuel pellet density

Pu - enrichment

Pin outer diameter

Canning eccentricity

Pin pitch

Number of pin spacer
‘ grids

| Flow rate calibration

in a subassembly

Neutron flux uncertainty

1+ due to calculation

2. due to the control
rod position

=

L = 7BOOMW“Eh
54 = 380°C
max o~ 208°
c-nom
N = 150
N, = 336
N = + 1
o 95
1 = 950 mm
5 = 80% of the
theoretical
value
a = 21.14% (I zone)
a = 31,14% (II zone)
= 6 mn
)
e = 0
b = 7.9 mn
= 10
&
| = wvaries along the

core radius
according to the
power profile

o, = 3.5%
o = 1%
1

Gi = % mm

o' = 2,2%

O = 1.7%

o’dO-M: = 0,008 mnm

’ (among diff,

batches)

o’dO-B’ = 0.005 mm
(in the same batch)

g = 0.1% mm
P
1 = o,

O'F 2.2,0

Gp = 2%
.= 3.9%
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The partial contributions to the coolant outlet temperature

are reported in table n 3,

Table n 3

Channel i1 Subassembly iz Core i3
UAﬁc GZWC Gz,
. ) o F L
Pellet density Gs; 0,002 |Orifice qw= 0,023 Power G = 0,035
avg calibration e Ay,
a

Pellet enrichment G’ = 0,001
A%

Neutron flux GA&: 0.039
(control rod posi-
tion)

Inlet coolant %‘=0.006
temp. e

. ¥ o-B * do=M
Pin outer dia- 0 = 0,001 Pin outer o6 _ = 0,008
meter in the same 2% diameter e
batch (in different
batches)
. p
Pin pitch (£$= 0,012 Neutron flux ¢ = 0.020
e (calculation Ve
imprecision)
e
Canning . =0
eccentricity A%c
Active length  G1= 0,002
Yo
m:\/i(crij )2 0 = '0.012 0” = 0,045 6" = 0.043
J A 1 2 30

* The reactor is assumed to be constructed with pins deriving from the
same batch, No dlfflculty exists to take 1nto account the actual

number--of batches,




- 21 -

The Ghig% were calculated according to(13) from the well known
relations among A:L and the several parameter "i", For the

- channel uncertainties, the procedure indicated at 1_12;7 and
1—14;7‘was adopted., Namely, it was assumed that the density, the
enrichment and the dismeter are constant along the pellet length,
and they vary statistically among the several pellets in a channel:
the corresponding GB%;S , derived by (13), were then divided by

the square root of the total number of pellets in a channel, namely

by Vgﬁ;, in order to evaluate their average contributions to Aﬁ;*
The pitch was assumed to be constant between two pin spacer grids,
and vary statistically along the channel axisj; the pitch contribution
given by (13) was then divided by V3Ng. For the active length of a
channel, the number of pins (namely 3) was taken into account.

Table n 4. summarizes then the calculation of F;i according to

. tf _ _
fig.7. ¥, (conf.level 97,7%) = T+ 2 0= 1,26

* The mean of n statistical values, assumed by a variable with
the normal distribution (m, o), has the normal distribution

(my o/fm) [ 187
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Table n. 4
Channel Subassembly Core
0? = 0,012 oy = 0.045 Gé= 0,043
N = 336 mo N_ =150 h,T = 2,63
c h336 = 2,9 s 150
* 6~ * o
h356 = 0.53 h150 = 0.55
*(30’ approximation)
m
Mg = h336(§ = 0.035 Mty =M, = 0.035
[+ 4 ! y _
o-'c = h356 (3'.’1 = 0.006 G"s.—: \/022.'. 6..02 = 00045
m v
Ms=M's+h150 0y = 0.5 Mp = M= 0.15
[
0’s=h150 G’S, = 00025 OVR =V0'52+052=O.05

F;i (97,7% conf.lev.) =

1 + MR + 2 Gh
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14, Comparison among the different methods,

Table n.5 presents a comparison among the different methods,
For the deterministic method each subfactor is given at the
same confidence level as the statistical ones (97,7 %), in order

to allow a comparison,

The channel uncertainties were assumed to be constant along

the axis of the channel for the deterministic method and the
first simple statistical approach, which considered only one
channel: in the first case,because this is the assumption of
the determinstic concept; in the second, because the more com-
plete analysis, which allows smaller channel subfactors, was
developed simultaneously to the concept of the plurality of the

statistical occurences in the several channels and pellets,

From table n.5, the conservatism of the deterministic method

and the optimism of the first statistical approach become evident,
Moreo%ér, in this case, the proposed method allows, at equal
confidence level (97,7%), a total hot channel factor (1.26) ~ 5%
lower than the factor evaluated assuming all channels to be
independent (1.31). (The factor 1.31 would occur at a confidence

level of 99.9 %, according to the proposed method).




- -

‘ |
Uncertainties ‘ subfactors Deterministic Statistical Subfactors,| N *N = 50,400 proposed
Ipre 140 61! # nethod method - one | F, = 1+201 i{ﬁde%endef’lt tn
171 “ VA channel  only 2%  channels method
|
Pin pitch 1,14 1,024
Pin outer diameter ; |
(in one batch) 1,04 1,002
Pellet density | 1.04 ' # 1.002
Pellet enrichment ; 1.04 . 1,002
Channel active lenght 1,01 1.004
| el
Orifice calibration 1.046 —
+
. . . i - ]
Flaxn 33837308t e o ts- 1.078 =5 N i
Flux distribution | 1,040 “w + +
-calculation- - -
i P L} [}
Core power 1.070 " ] "
foolant inlet temp. | 1.012 2 & ¥ 3 Hy
‘ : = fey By By
Pin outer diameter | 1.016
(from batch to batch)
Hot channel factors ‘ ic 1,68 1.18 Conf.lev, Fﬁi 31.31Conf.1‘eV. 1.26 Conf.%ev.
‘ (97,7%) ; (97.7%) (97.7%)

* The "channel"subfactors, in the first two methods, were not averaged over the number n oﬁ their independent occurences
in a ichannel (see item 13 and 14)
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15. Hot channel factor for the actual temperature distribution.

The assumption that all the channels have the same nominal
temperature span is conservative, and some reduction of the’
hot channel factor can be expected, when the actual temperatufe

distribution is taken into account.

- In the case of the reactor Na-2, this reduction is not expected

to be very large: in fact, the calibration of the flow rate has
been designed in such a way, that the maximum coolant temperature
span is constant in each subassembly, namely it is 208°¢ 173_7;

the minimum temperature span is, however, a function of the
distance of. the subassembly from the core center. Therefore the
temperature profile concerns more the channels within a subassem-
bly, rather than the several subassemblies, Due to the actual ratio
of the uncertainties affecting the individual channels to those
affecting the subassemblies, the minimum value, which can be
expected for the hot channel factor taking into account the

actual temperature profile, is 1,23 (at 97.7% conf,level), which
corresponds to the limit case where the channel contributions

are neglected (see table n.4). The exact consideration of the
temperaturé profile cannot, therefore, reduce the total hot channel
factor more than ~ 3%, The expected number of "hot" channels is,
however, very different: in fact, in the case that the whole
coolant temperature in a subassembly exceeds a large deviation,

the total number of channels would be "hot" at a "flat"™ temperature
profile, while at the actual temperature profile, the number of
"hot"channels would be much smaller, The difference does not

appear to be important in'the total hot channel probability,

because we have calculated the probability that at least one

.channel is "hot'", and each subassembly has a_certain number of
channels at the same maximum temperature span. It is clear that
for different importance of ~the channels uncertainties in respect

to the subassembly ones, a larger reduction might be expected.

In order to cover the most general cases, it is, therefore,

worth while +to show how the actual temperature profile can be
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taken into account,

Let us define as "form” factor the factor ff = 1+h, where

Ae-nom -Ag c-nom

h = \ e , thA c—nom the nominal average
c~-nom

temperature span in a subassembly; h is defined over the interval

max

Ajcnwx' Ajcrmm

(—H1¢H2), where H2 = ,
[&Q;Q:ngm

T ANorav a9 minm
and H. = Aﬁc nom _ A c-nom
1 .

Azynom

Let us evaluate the probability that for no one out of Nc¢ channels

in a subassembly, the product ff =1 + h, and fhc = 1 + x, where
x has the normal distribution ( O, 31), exceeds a certain value,

Assuming in accordance to parT;
(1+h)* (1 +x)=1+h+x, (24)

we must evaluate the probability that the sum h + x, does not

exceed a certain deviation z for any channel in a subassembly.

If Nc(h) Ah is the number of channels which have a nominal deviation
from Asz?Xom’ within h and h + Ah, the probability that no one out

of Nc(h) Ah channels exceeds a total deviation z is:

2
where + e - 1_:;2.
N 1 2

P(x#z*h) = — € 1 dx
2" 0
z=h

Aind the total vrobability P { -\ tlhnd A alimrmal dem o meiho o cmen e T
Ll VLT bV VG piUvaviLLi Ly p\a/, uvilca v 1V CLGIUICL Ll &4 SUuaSoellvlLly
exceeds a deviation z is:

No(h)Ah

Tr [ apesaew) (29

where n is the number of the intervals Ah, into which the range

(-H,, + H,) has been divided.

1’




By (25)
log PP(Z) = §1Nc(h) log ['1 = P(x»z-h)_/Ah
and for Ah =+ 0
+H12
log Pp(z) ="/,N (h) log Z—1 - P(X z- h)_7 dh (26)
[ - ) e

In our case the temperature profile in each subassembly can be
assumed to be approximatively linear Zf8_7, therefore H =H =H3
in this case N (h) has a rectangular distribution 1n the range

(-H, +H), of helght ?“ . By (26) we have:

+H .
N 1 :
log Pp(z) = -—-2—Cﬁ I log /1 - P(x>32-hn)_/ dn (27)
-H

By (27) the Pp(z) distribution can be evaluated. In order to
give a practical method to take into account the temperature

profile, a different approach will be followed.

/ * ' ‘
According to 1711_7, let us define as Neq, the equivalent number
of channels, which would give the same probability P ( ), if all

channels have the maximum nominal deviation +H:

Neq

P(z) = [‘I -P(xaz-H)J

Y

¥ In ref.11, the author evaluates the "equivalent" number of
equally limiting channels in the case of a cosine distribution
of the power, for N independent cooling channels. In his paper,
however, the equivalence is evaluated at the same expected number
of hot channels rather than at the same hot channel probability
noreover no attempt is performed to take into account that the
number of channels having a certain nominal temperature is itself a
function of the core radius . Applicating a procedure similar to
that given above, with the remark that in this case the linear
approximation (24) cannot be held, we*should obtain:

2 oy _ 4 ly-cosd) J
N ‘[ sin2d log(1- [ Foam © e 4)au
eq = o .
N log(1- [ L. et 4
roVawe d
where r = Aﬁ; (allowable)

max
A 9/ C=nomnm




- 28 =

and
log Pp(z) = Neq log [ 1 - P(x»2z-H)_/ (28)

By (27) and (28), we get:

+H .
Ny —ae 1 /nlog[‘!-P(xa z-h)_/ dh (29)
e N e 2H R I

< rog [1-2(cs 21T

By (29), we get the important result that 4, ratio of Neq to N,
does not depend upon Nc’ it depends however upon z,<71, and H,
Fig.8, shows d as function of H, for different values of Gq,

when z = H, that is when the equivalence is evaluated at the
probability to exceed the maximum nominal temperature span in the
subassembly. For larger values of z, d decreases very rapidly
(Fig.9).

Fig.8 gives therefore the more conservative values of & and is
assumed as basis of the further calculations. The two limit cases
in the reactor Na~2 are the subassemblies at the core center, for
which H = 0,015 and at the core boundary for which H = 0,245 in

the first case we obtain &= 23%%, in the second d= 2%; that is

Neq = 78 and T respectively. Assuming all the subassemblies equal
to the central ones, F Y would result 1.25 (at 97,7% conf.level);

he
while, assuming all the subassemblies equal to the peripherical ones,

Fh: would result 1.24, according to the procedure indicated at
item 13, In this case, it is evidently not necessary to evaluate
more exactly the hot channel factor FEC s, which is well defined

by these limit wvalues. v

In a more general case, @owever, a core can be divided in Nz zones,
each one with a number Ng of identical subassemblies, with Neg

channels. The proposed procedure allows to evaluate then an equi-
valent normal distribution (Mg,(rg)for each zone, as indicated in
fig.10. Mg,-c'g being not equal in each zone, it is not possible

to apply the method derived in item 12 and illustrated by fig.6.
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It is necessary therefore to evaluate numerically the final

distribution:

/1'00 NZ . l
J
E(z) = | (%) {1_:]1’11,_/'1.-9(3,; 2=x) 7) dx

- 00
where
'%;fz)'E"is*thé'probabiiify*fhéfwéf'Iéggf'éﬁé'Eﬁéﬁﬁéi
¢ exceeds the deviaE}on Z
_ 1 x=
1 2 o7
p(x) = =0 ° = 3 j 2
Vo 03 veo_ 1 (7M7)
J 1 2 [ .2 4
Py = e ( @9 2 ay
(v 2 z-x) 2T o 2 )
R 2 gzx
Then F o= 1+z, where z depends upon the conf,level as in the P (z)
distrigution. ‘ he
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17. Symbol list

(m, 6')

s M

.ll'LC , it ,

J
Mﬁ’Mz
N

N
c

N _(h)

form factor, which takes into account the temperature
profile in a subassembly (ff =1+ h).

uncertainty factor, which takes into account the statlstlcal
uncertainties of the channels in a subassembl -j+x
where x has the normal distribution (O ¢, )

hot channel factor for the individual channels.
total hot channel factor for the whole core.

F b , when a "flat" power distribution in the core is
assSumed.,

hot channel subfactor referred to the uncertainty "iv.

nominal deviation from the mean of the temperature at a
cooling channel outlet, referred to the nominal temperature.

limit value in a rectangular distribution, in particular
maximum value of h,

coefficients by which the standard deviation has to be
multiplied, in order to obtain, the mean and the standard
deviation, respectively, of the normal distribution
approximating the PN(E) one.

megn of a statistical distribution, generally referred
to normal distributions.

normal distribution with mean m, and standard deviation 6

means of the equivalent normal distribution of the un-
certainties of the channels, subassembly, core and zone
"y" respectively

total number of channels in the core
total number of channels in a subassembly

number of channels in a subassembly having a nominal
temperature deviation within h and h + dh
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equivalent number of channels at the maximum deviation H,
which would give the same probability to exceed a
deviation z, than the Nc(h) distribution.

number of subassembly in the zone "j"

number of zone, . in which the core can be divided,
probability frequency distribution, generally referred
probability to exceed a deviation K, generally referred

actual probability that the sum of two normal distribution
exceeds a value 3, when the first is once sampled and

probability of the channel "i" to be "hot"
total hot channel probability of the core

probability that at least one out of N samples, drawn
from a normal distribution, exceeds a value $

probability that the sum of the deviation h due to the
temperature profile in a subassembly and the channel
uncertainties (O, €1) exceeds a value z

N =
eq
j } |
N referred to the zone "j".
eq e .
Ns = total number of subassenmbly in a core.
v -
Nz =
having N equal subassemblies.
p(x) =
to normal distributions.
P =
(xa-K) t0o normal distributions.
(%) -
the second N times.
i
Phe =
t
Phc -
P (3) =
P Z =
,(2)
d' =

(ib
A9;3--'?(1.01'11

max,av

Cc-nom

{ycrit

,min

ratio of the equivalent number of channels(Neq)to N

coolant temperature span.

radious

respectively the maximum, average and minimum Aﬁf

-nom
in a subassembly.

critical value which must not be exceed by the coolant
temperature
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coolant outlet temperature
coolant inlet temperature

ratio of a deviation from the mean, to the standard
deviation in a normal distribution.

coefficient corresponding tod, in a PN(S) distribution,

J——

referred to normal distributions.

standard deviation of the equivalent normal distribution
corresponding to the uncertainties of the channel,
subassembly, core and zone "j" respectively

total standard deviation of AJ, for the individual channels

referred to AY ¢
c-nonm

>

contribution of the uncertainties "i" to Oh%, referred
to Aa/c-nom

contribution of the uncertainties "i" to 03

(j=1,2,3) contribution of the uncertainties which affect
the individual channels, the whole subassemblies, and
the whole core, respectively, to the total 639&’ referred

to Ag’;-nom'
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B Prob of dev
_ o

2.4, P (E} ﬁisﬁrvhatlaﬁs

far'§:$fﬁﬁéfv :

60

Rlgz4)
0.32_ 102
0.31 102
0.23 102 -
0.85 1073
0.25 10-3
0.32 10°*

40T

20 1

{E) = probability that the sum of the nermal ﬁzstrzhuizoﬁs (0, og) &
{0,0.) exceeds a deviation $, when the first is drawn once aaé
the Second ¥ times

PE(S} = the same probability when both are drawn I times

? (%)= normal distribution (0,1)
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Prob.of dev §

(59

:71 {‘5} Distri-

" .

i
{

0 1 2 3

or B = 10 000

RIs=5)

035 102

030 107

- 0.4 107

0.16 103

0.15 10*

§ |~ |~olol = |

0.35 10

4

R=G4/G,
Gy 6" =1

£

P {%) = probability that the sum of the normel distributions (0, 0g)

8 and (0, 6°,) exceeds a deviation §, when the first is drawn once

and the sécond ¥ ftimes.

Py($) = the same orobability when both are drawn N times

P (¢) = normsl distribution (C,1)
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— m, 6 6a) normal distribution (m,G)
— m,,G, m2,6'2 — - m,',@'. -~ ] mn,6,,— =_MS) 65_
Ms= 54 m,
6b) sum of n normal distributions 6_;’=_Z1 67
1=

m, G —
m, G |—
} M~p=m+hz,6'
{ Gp :hz G
|
L__._ m, 6 _—

Pig.6. Operations upon Hormal Distributions Represented as Block Diasranms
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core subassembly channel
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|
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—1 0% [~ Ms, Os I 7d
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Mg =Mg
Pig,7. Beduction of the Actual Distribution

Gr= 62+ 02 of the Uncertainties to an iporo-
zimated Normal Bisitribution.
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S0

80

60+

n
h
T

max

He Ad¥cnom-Adenom
T A

c-nom
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Piz, 8, Bouivalent Fraction of Chonnels as ?aﬁa%i;a of H
max
g-nom?®

d= fraction of channels which, assumed at the same fempsrature A
have the same probability to exceed this temperature, as the
actual number of channels with the rectangular disiribution (-H, +H).
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401

301

201

H= AY :gf}m - Al"gynom
AI’ av

c-nom

10

. r ; ' o
2. 25 3 A= Z-H
Gy

Fi’, 9, Bauivalent Fraction of Channsls as Function of X H=0.06 -

o
o
o
—
o

d= froction of channels which, assumed at the same temperature Aaiiom’
have the same probability to exceed a deviation z=H+) 67, ’
?s ‘the §ctu$1 number of channels with the recitangulsr disiribution
"’ﬁ’ 'Fg =
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core subassembly channel
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