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METHODS FOR INDEPENDENT DETERMINATION OF
PROCESS INVENTORY IN NUCLEAR FACILITIES
~ FABRICATION PLANT -

by

J. Larisse, H. Winter

INTRODUCTION

A modern safeguards system for fissionable material has been described
in [Ti, 2, 3, 4;7. Its purpose is to prevent or to detect a diversion
of nuclear fuel from the domain of peaceful use of nuclear energy.

In this system, the measurement of the flow of fissionable material at
strategic points plays a key role (second safeguard measure), This
measuremnent allows the calculation of the nominal value of the process
inventory of a nuclear plant, based on the assumption of mass conser-
vation. The third safeguard measure, the inventory taking, gives the
real value of the process inventory of the plant at a certain time.
This value is compared with the result of the second safeguard measure
and from this comparison result the statements of a control authority

about a diversion of nuclear material.

Methods for the determination of process inventory should be

- nonintrusive

~ accurate

- feasible without any considerable time lag.

In this paper different methods of determining process inventory have been
investigated. Physical inventory taking and process inventory determination during
wash-out~campaigns are not discussed. The first method violates the requirement

of non-intrusivity and the second is not feasible without time lag,



because the time between two wash-outs of a nuclear plant (fabrication

plant and reprocessing plant) can be in the order of a year.

In order to discuss these different methods to apply the third safe-
guard measure, we investigate the flow of fissile material through a
fuel element fabrication plant. Particularly we refer to a plant for

the fabrication of plutonium bearing fuel,

In the first chapter we define the basic notions needed for a description

of the fissile material flow through a fabrication plant. In the second
chapter different possibilities for mathematical model system representa-

tions of a fabrication plant are discussed. In the third chapter different

possibilities for process inventory determination and the use of tracer

methods for this purpose are described. In the fourth chapter we give an

application of the ideas outlined in the preceding chapters to an existing

fabrication plant for plutonium bearing fuel elements.



1. BASIC CONCEPTS

Even if plutonium, which is produced in reactors from U-238, is completely
free of fission products, it has to be handled in glove-boxes to avoid
health hazards by its a-activity and toxicity. Its ?rocessing is there-
fore much more difficult than the processing of the weakly active uranium.
The maximum Pu-content of the glove-boxes is limited by criticality reasons

to few kg.

In a fabrication plant the fuel has to be converted into reactor fuel
elements by changing its chemical and geometrical form and by surrounding
it by a can. In the case of Pu-bearing fuel, this chemical, mechanical
or heat treatment is performed in glove-box lines. We refer to such a

glove-box line as a fabrication unitx). For oxide-type fuel elements the

pressing, sintering and grinding are examples for fabrication umits.

A glove-box can be represented schematically by Fig. 1. It contains a
machine which performs one of the different steps of production. The
"machine" may be a mechanical press, a sintering furnace or simply a set of
instruments for the testing of the pellets. The production rate of the

"machine’ determines the output of the glove-box.

It is always possible to store a certain amount of fuel in the interior
of a glove-box. This was symbolized in Fig. 1 by the introduction of a
"store". Of course a fabrication unit can be schematically represented

by the same Fig. 1. The store of a fabrication unit is then the sum of
the stores of the glove boxesvwhich are contained in the unit, and its
"machine" is the chain of the single machines of the boxes. In general the
output of a fabrication unit is determined by the production rate of the

last machine of the unit.

In order to have a mathematical description of the flow of fuel through a

fabrication unit, we introduce three functions of time t:

- the inventory function, h (t), which gives the mass of fuel

/[ in kg / contained at the time t in the fabrication unit.

- the output function, k (t), which gives the rate of mass flow

/[ in kg/h e.g._/ leaving the fabrication unit at the time t.

x) Of course, the simplest fabrication unit is a glove-box, and the most

complicated one is the whole plant



- the residence time function, T (t), which indicates, how long

the fuel, entering the fabrication unit at the time t, stays in

this unit.

A fabrication plant can be represented as a chain of N fabrication units,

each of which being characterized by a triple of functions hi(t)’ ki(t)

and Ti(t)’ i=1, 2, ..., N. The inventory, htOt(t), of the whole plant
is
N
(1.1) RIS h, (£).
i=1

2. MODEL SYSTEM REPRESENTATION OF A FABRICATION PLANT

In fabrication plants considerable amounts of fuel (U and Pu) accumulate.
Moreover, the fuel is directly accessible, which is a very important fact
for the safeguard problem. As the time variation of the accumulated amount
of fuel in the plant is described by the inventory function htOt(t), intro-
duced in the preceding chapter, it will be highly interesting to study

this function and its relation to the output and residence time functions,

starting from a detailed knowledge of the plant, the fabrication process

etc, This will give us a good insight to what are the important facts
which determine the amount of fuel accumulating in different fabrication

units.

There are two different mathematical approaches to construct a model system:

- Deterministic description. Here the basic functions h, k and T are

deterministic functions of time t.

- Stochastic description. The basic functions are random functions

of time.

In both cases there exists a continuous and a discontinuous description
of the material flow. In a continuous model, the basic functions are

continuous functions of time with the properties of differentiability



and integrability needed for our purposes. In a discontinuous model,
the basic functions are defined for discrete values tn, n=1, 2, ..., M

n+l—/ the

variations of the basic functions have no influence upon the behaviour

of the independent time variable t. In the interval lf%n’ t

of the system.

Nowadays fabrication plants for Pu~fuel elements work batchwise. Thus

a discontinuous description seems to be the right way. But such a
description is often mathematically difficult to handle, so that a
continuous approximation may be justified. Furthermore, if we believe

in the predictions, the market of nuclear energy is considerably expanding
in the next future, so that it may be justified to assume, that the fabri-
cation plants will introduce continuous instead of batch processes with
expanding capacity. Then the continuous one is the correct description.

2.1.1 A deterministic and continuous model

The inventory functions hi(t)’ the output function;ki(t) and the
residence time functions Ti(t) are continuously differentiable and inte-
grable functions of the time t. (We can even admit, that these conditions
are not fulfilled in a finite number of points tn). The fabri-
cation plant consists of N fabrication units. The aim is, to calculate
the 3 N unknown functions hi(t)’ ki(t) and Ti(t)’ i=1, 2, ¢eey N from
a known input X (t) into the system. Fig. 2 shows an example for such a
plant. There is a feed-back in the system. The fraction « of the outcoming
fuel of the second fabrication unit is fed back (after a reprocessing step
in the third unit) to the entrance of the second unit. In general such
feed-backs arise, because a certain fraction of the produced pellets (or
fuel elements) do not correspond to the specifications prescribed by the
operator of the réactor for which the fuel elements are destined. Unfor-
tunately, the fraction x of the fuel, which is fed back, is not always the
same. k can be considered as a random variable, This aspect of the model
system representation is dealt with in detail in the next part of this
chapter. Here we will assume, that x is constant - corresponding to the
mean value of the stochastic variable. This assumption does not affect

the inventory function ht°% of the whole plant as we will see later on.



It only results in a small shift (because of the smallness of x ) of the

inventory of the second, the third and the fourth fabrication unit.

The first step of our model system representation is the calculation of
the 2 N functions hi and ki' In a second step we will show, that there
exists a functional relationship between the residence time function Ti
and the inventory and output functions hi and k.i of each fabrication

unit.

For each fabrication unit, there exist two characteristic values of its

inventory function hi:

min
- 'a minimum value of inventory, hi , which is the amount of fuel,

necessary for the production step performed by the machine. This
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hundred of pellets etc.

max
- a maximum value of inventory, hi , which is the maximal amount of

fuel that can be contained in the fabrication unit. This amount is

kg in-the case of Pu-fuel by criticality reasons-

giis ~i - - - TR e e

for a glove-box.

In general, a fabrication unit can work with different values of the out-
put function. There is only an upper limit, kmax’ for this function which
is attained when the machines work at maximum power. We assume, that the
bperator of the plant has an economical interest to use at maximum the
capacity of his machines. Thus, we can describe the machines by means of

machine characteristics. Fig. 3 shows examples for such characteristics.

The first one describes a machine, which does not work if the inventory

h of the corresponding fabrication unit is smaller than the minimum value

min min . max sos v
h""". When h > h then it works at maximum power, k . By criticality

[

reasons h < h"2~ must hold. The mechanical press, the sintering furnace
and the grinder are machines of this type. The second characteristic of
Fig. 3 describes a machine with variable capacity. In the inventory range
0 <h < hmin of the corresponding fabrication unit, the output k of the

machine is proportional to the inventory h:



(2.1) h =1 k with T = const.

min Lt . .
In the range h < h < h™® the machine works at maximum power Ko,
The mixer, a set of machines of the same type with the first charac-
teristic started in parallel are examples for machines of this second

ax

type. In the case of a set of machines, when < ho¢ W72 all ma-

chines of the set work at maximum power.

Knowing the characteristics of the machines, we are now enabled to cal-
culate the inventory and the output functions. In the case of N fabrication
units, forming the fabrication plant, we have 2 N unknown quantities hi

and ki’ i=1, 2, ..., N. The mass conservation equation will hold for each
fabrication unit, which gives us N equations. The machine characteristics

of the N machines contained in the units complete the set of 2 N equations

‘heeded for the calculation of the 2 N unkn = 1T

o [e]
AL L AV %ile vS|amaneaVa Ve IRaiinea WAL W Sena s

and k

To illustrate our ideas we will now consider some examples.

71§F,EXAMBLE, Fig. 4 shows a plant (or a part of it) consisting of 2 fabri-

cation units with a feed-back. The incoming flow, X(t), crosses the first
and the second unit. The fraction k of the second unit's output kz goes
back to the entrance of the first unit. The rest, (1~K)k2, goes out of

the system. We can think of the combination of a glove-box with a mixer
and a glove-box containing the press. The fraction x of the pellets, formed
by the press does not correspond to the specifications. We assume k to be
constant in agreement with our remark at the beginning of this section.

Let the two machines have the first characteristic, shown in Fig. 3.

Thus we have the four equations

- = X + ¢k, -k

(2.2) e = %1 2



- min
0 h1 < hl
kl=\ for
K Dax hmln~$h Shmax
1 1 1 1
Ve min
§° hy < h,
k, = 4 for
max min max
’kz hy ™ Sy ¢y

The first couple of equations are mass conservation equations, the second

couple of equations describes the characteristics of the machines.

h, e h max hzmln, hzmax’ klmax, kzmax, X (t) and ¥ are known quantities.

Now let
X=0 for t <O
(2.3) X = Xo {(constant) for t 2 0.
. min . . . . .
Then at the time tl = h‘ /Xo the machine of the first fabrication unit
. . m . . .
begins to work with the output k‘ ax_1f Xo > k‘max’ it will continue
hqun
to run and at the time c2 = tl + ‘max the machine of the second
k1
IR T R AU TV I AN, T ML . Len a2 i o D s 1. max T
Ldapricaiion uliltL DERELIIS LU WULK. 1€ 114aCLivin K 016 1iLS OuLp

a
goes back to the first unit. We have the following system of differential

equations:



dhl

EE—- = XO for 0gtc«< t]
dh2

it = () for 0 gt <« tl
dhl max

d—t—-. ”Xo-kl for tl$t<t2
th max

'EE— = k] for tlé t < t2
dhl ’ max max

T = xo + Kkz "k} for t 2 tZ
th max , max

For the initial conditions hl(t=0) = h2(t=0)=0 we find the solutions

h, = Xt for 0 s ¢t <t
i o i
h2 = 0 for 0 g t < tl
- max}{_ } min < + <
h1 {X kl t tl + h1 for tl\ t t:2

- max. ) _ } < < ¢
h2 kl { t:l for tl t tz
- max_ max;{‘_
h{x {xﬁ + qu kl J N tz‘g +

_ , hax - min N
+{Xo k, }[tz tl} +h, for t > ¢,

for

=2
#
_P?‘
;
[
=
B
jo
b
k—*v\.
o,
t
|
ot
[
Y ]
+
=2
[ ]
g
[~
=1
ct
\"J
T
[

(2.5)

Fig. 5 shows the time dependence of the inventory functions hl and h2

for the following set of constants:
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max _ 9 kgdPu sk max _ 8 kg Pu ;

2 d

1.5 10 k8Pu,
K g Xo 10 3 H kl

= 5 kg Pu; hzm“‘ = 4,5 kg Pu; hl“’a

min
1

hzma" = 10 kg Pu.

h * =15 kg Pu and

As we can see at once, this system cannot work for an unlimited time. At
the time t = 5,75 days the inventory of the first fabrication unit reaches
the critical value hl = 15 kg Pu and now the operator of the plant has

to diminue the input Xo into the system, e.g.

There exists a steady state operation of this system, as we can see at once

from the equations (2.4). For t > t,, we have hl = const. and h2 = const.

max max
k = k
1 2
max
2.6 X = 1-c)k
because then dh /dt = dh /dt = 0.

These equations (2.6) indicate the fact, that in a steady state operation
of a plant, all machines work with the same capacity and that the input

(X) into the plant must be equal to its output ( 171 - 57k2 ).

Thus in steady state operation the input into the system cannot be changed

arbitrarily but is a fixed quantity.

. . tot
This steady state can be reached at any inventory h = hl + h2 of the
plant within the following range:
min min tot max max
{(2.7) hl + hz h € hy + h2 .

To show this, let us consider once more our numerical example, this time

in respecting the condition (2.6) of steady state operation.
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Thus

8 kg Pu/d for O g t < t,

7 kg Pu/d  for t, gt

max
k) =k,

X e g KBS and 0, ™" and 0™ (i = 1,2) as before.
Fig., 6 shows how the operator can drive his plant at different inventory
levels. In the first case he starts the machines of the two fabrication
units at once when the minimum inventory himm is reached. Thus he works
in a steady state with the minimum inventory 9,5 kg Pu. (The steady state
condition (2.6) is fulfilled). In the second case he starts the machines
when the inventory of the fabrication units has reached the maximum value
By

ventory 25 kg Pu.

m max . . . .
ax resp. h2 » Thus he works in a steady state with the maximum in-

For economical reasons it can be expected, that industrial fabrication plants
will work with a minimum inventory, but as we have shown, this is by no means
a necessity from the technical point of view.

nd
2

two fabrication units contain two machines with the second characteristic

EXAMPLE. We consider the same system as shown in Fig.4. But now the

shown in Fig. 3.

Thus we have the four equations

dh1
T = X +|ck2 - k1
{2.8) dhz
& - KTk
~ min
h /7 hy <h,
kl = ¢ for
max min max
kl hl L h1 shl
" min
kz =ﬁ for
max min max
kz h2 < h2 < h2
L
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to determine the four unknown quantities h kl’ h, and k,. The first

1° 2 2
. , . s
couple are the mass conservation equations (the same as in the 1 t example),
the second couple of equations describe the machine's characteristics
(see Fig. 3). We have to consider four different cases:

ISt case: hl < hlmln

min
h2 < h2 .

Then the system (2.8) reduces to

(2.9)

o
[}
=]
0
1]
£
e
[aJ
=
-
o
=]
[= 9
-1
[\*]
(2]
[*]
=]
n
8
=
r
7~~~
5
o
o
[}
g
=
(1]
>
[]
b
[«]
(2]
[*]
o]
n
o
o

(2.10)

This is aninhomogeneous system of two first order differential equations

for the inventory functions 'n1 and hz. The homogeneous system is

| K
“—“—"“‘"_"'h e h
dt 1 1 12 2
(2.11)
..ih_z... .__l_h - 1 h
dt 71 1 12 2

and its characteristic equation is

(2.12) (1 + le) (1 + TZA) = ¢,
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As 0 < k < 1 and s T, > 0 hold and «, Tys Ty real, the roots Ai of the

characteristic equation (2.12) are always negativ and real:

Al,kz < 0 and real.

Thus the solutions of the homogeneous system (2.11) tend to zero when

t = «,

There exists a steady state solution of the system (2.10):

T1 Xo

(2.13) hlstead. = 1 =-x
h = ZZ_X_O___.

2stead. 1 -«

which corresponds to the steady state in the first example (2.8), as we

can see by using the last two equations of (2.9).

The general solution of the inhomogeneous system (2.10) is

A]t Azt rlx
(2.14) h, =Ae +Be + =2
i 1=K
T ALt ALt .X
2 1 2 270
h, <Y, %;A 1+ Alr]) e + B (1 + AZT]) e .}+ =

Here A, and ), are the roots of the characteristic equation (2.12) and

I 2

o T1Xo
A=h - T

- B

r 1.X K T.X kK T.h
1 o 170 170
“fl?r,-—rzri(h: To ) AN+ %

with h? and h; as the initial values h](t = 0) resp. hz(t = 0). The out-

put functions k1 and k2 can be calculated by dividing (2.14) by T, resp. T,.

If h? = hg = O, then we have
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h](t =0) =0 3 hz(t = 0) = 0;

dh

dhl 2
d—t-—(t=0)=Xo>0; -a—t—(t=0)=0;

2
d h2 Xo

(2.15) gz (£=0) = >0

as can be seen from (2.10). In this case the inventory function of the
first fabrication unit begins at zero for t = 0, but with a positive slope

(Xo > 0). The inventory function of the second fabricationm unit begins at

zero too, for t = 0, Its slope is zero, but as d2h2
—s= (t = 0) > 0,
2
dt

it tends to positive values for t > O,

Both functions h. and h, tend to the stationary solution (steady state 2,13)

1 2
for t = o if
T,X .
do g, min
1 -« 1
(2.16) ‘
T,X .
2°0 <t nmin
1 -« 2 ¢

Fig. 7 shows the time development of the inventory functions hl and h2
for the initial conditions hl(t = Q) = h2(t = 0) = 0 and with the con-
ditions (2.16) fulfilled.

an case. h, <h mn

—_— {'1 2

Lh min max
2 £ h2 £ h2 .

Then the system (2.8) reduces to
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dh1
gt "%t Kk T Ky
dh
2
T "k Tk
2.17) -
hy =1 Kk
max min
kz = kz ( hz /Tz)o
Hence
dh
1 , max_ 1
ac =% tx k2 T, h,
(2.18)
th - 1 h. - K 23X
dt T3 1 -2 *

This is a very simple type of a system of two coupled differential equa-

tions. Its general solution is

B P max, | /7y
By = Qb= ek ™) [ e

masr
luaA)

+ 'tl(Xo +|<k2

(2.19) -t/T { .}
(o} max i max
h2 {hl - Tl(xo +Kk2 )}e + Xo (1 i<)k2 t +
o o max
+h2+hl—rl(Xo+l<k2 )
with h? and h° as initial values of h1 and hz.

2
The system (2.18) has a steady state solution if
h, (t =) = 1 k.M and

1 172
max
hl (t =—»o) = T {Xo + Kkz
hold. This means that

max
Xo = (1=-k) kz

must be fulfilled, in agreement with our preceding considerations. As can

be seen, in this case the linear part of h2 in (2.19) is vanishing.
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Now we have the following system

dhl
dc "%tk Tk
dh
2
e "k Tk
(2.20)
max min
ky =k =0y T
h2 = T2k2
This leads to
dh1 " nax
dt = T h2 * Xo - kl
2
(2.21)
dh
2 max 1
dt - kl Tz hzo

This is a system analogous to (2.18) with the roles of hl and h2 inter-

changed in a certain semse. The gemeral solution of (2.21) / with initial

values h? and hg_;7 is

y .
It

- - o _ max ] ~ ¢
By "{hz RPLY }e

(o] (o) max
+ h]+K{h2 Tk )z

24 {x - (1m0, "% | ¢

(2.22)

"t/T
- o _ max 2 max
h2 {hz Tzkl .ge + tzkl .
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max

This time h] contains a linear part, which disappears if X0 = (1 --K)kl .

which means steady state operation of the system.

4t case. h] < h, ¢h

In this case, both inventory functions have exceeded the minimum value.

We have the following system of equations.

dh,
dt = Xo tK k2 - kl
dh
2
& "k Tk
(2.23)
: max
k, =k
max
k, =k,

which is identical to the system (2.4) for t > t2.

The general solution is (as indicated in (2.5))

' max max o
hy = %, +xky " e S
(2.24)
max max )
by = " kg foew fiys
with h? and hg as initial values of h, and h,.

The time development of the inventory functions hi and h2 can now be found

in the following way:

The system of two fabrication uniﬁs starts at the zero value of the inventory
functions. For a certain time it works in the proportional part of the
characteristics of both machines with increasing inventory (corresponding

to the considerations of case 1). In general after a cert§in time, one

of the two fabrication units reaches the minimum value h@ln and then
continues toroperate at maximum capacity k™%X corresponding to the case

2 or 3. If both inventories have exceeded the minimum value of their inven—

tory,the system will behave corresponding to the fourth case.
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The system will reach the steady state after an initial period, if the

quantities XO,K . klmax and kzmax fulfil the steady state condition (2.6),
i.e.
max max
ky =k
(2.25)
max
Xo (1 K)k2 .

If these conditions are not fulfilled, the system can reach the steady state,
if

K max Xo
1 1 -«
max Xo

kz > T-x% °

Then the steady state is reached in the linear part of the machine's characte=~

ristic. The system works with the stationary values

, stat _ 4?0 < ;. Max
< T=« I
X

stat [+ I8 max

ky = 1T-x Kk
(2.26)

stat _ stat
b = Tk

stat stat
h, = Tk,

in accordance with (2.13) and (2.9).
3rd EXAMPLE. Fig. 8 shows a fabrication plant, consisting of five fabri-

cation units. We can think of the first one containing the fuel store,

mechanical press, the second one containing the sintering furnace, the
third one the grinder, the washing, drying and final control facilities,
the fourth one the whole canning technology and the final product store

(for the fabricated fuel elements) and the fifth one containing the waste store.
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We will assume that the first, the second and the third fabrication
unit contain machines with the first characteristic (see Fig. 3). As
the fourth and the fifth fabrication unit do not have an output (during

the period of time which we consider), they do not contain a ''machine'.

We have the following system of equations to describe the mass flow through

the plant:

A
dhl
T - <k Tk
dh
2
at ky =k,
dh3 N 7 7 ) )
T B - 'T|=_' Ny E"' . _ e
T (i <2)k2 k3 > mass conservation equations
EE& = (1« )k
dt 3’73
(2.27) dhs X
= K
-— 373
dt )
0 for t g tl \P
k] =
klmax for t > t1
0 for t « t,
k2 = > machine characteristics
max
k2' for t > t2
0 for t g t3
k =
3
.. max
k3 for ¢t > t3 y
where t, is the time when the unit 1 starts to work,Then t2 = tl+h2mm/klmax
min, max
and t3 - t2+h3 /k2 (1 KZ).



20

The general solution of the system (2.27) of differential equations can

be found at once (because the ki are constant):

o]
h] {szkz kl z t + hl

h, = {ki - kz } t +h

) o
(2.28) ={(1—K2)k2 - k3.§ t + b

(o]
4

=2
]

4 (1-K3)k3t + h

o]

hg =+ Xgkst + by,

. o P . .
with h; as initial values of the inventory functions h.. h, and h5 are
linear increasing time-functions, as (1-K35k3 >0 éﬁE'K3k3 > 0. This

corresponds to the physical indentification of the fourth and the fifth
fabrication unit. In chapter four this example will be used as a

rough description of the ALKEM plant. The solutions (2.28) will then be

discussed.

There is only one point of interest here. As we can see immediately from

(2.28) by adding all equations, we have for the total inventory of the

5
plant htt = s hi(t):

im
5
o X)
(2.29) htot = : h, = comst.
i=1

This means, that the nature of K and ¥, - whether these quantities are

3
stochastic variables or constants - does not affect the value of the total

inventory htOt

. Thus our assumption, that K is constant - corresponding
to the mean value of the stochastic variable k, - can be justified. The
only difference between a stochastic approach and the deterministic one
is a small shift of the inventory of the fabrication units. The shift is

small because of the smallness of the mean value of Ki ( =0,05).

x) It can be seen directly from the mass conservation equations (2.27)
that dh*°%/de = 0.
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2.1.2 The residence time function in a continuous model

As defined in the first chapter, the residence time T (t) indicates,

how long the fuel, entering the fabrication unit at the time t, stays

in this unit. We assume that the fuel crosses a fabrication unit in the
form of pellets (or fuel elements). Then two pellets, entering the
fabrication unit at the same time generally will not have the same re-
sidence time, as the pellets are in general mixed in the interior of the

store contained in the fabrication unit.

We have to consider two possibilities:

-~ the pellets do not change their succession in the interior

of the fabrication unit.

- there is a mixing of the pellets, changing their succession

in the fabrication unmit.

The first case will be considered in this section. The second one will

be dealt with in the next chapter.

was

unit with the output function k (t), the pellet entering this unit at
the time t_ has to wait, until all the inventory h (to) of the unit has

left the unit. In mathematical terms

t + T (t)
[o] [o]
(2.30) f k(t)dt = h(to).
t
(o]

Here T(to) gives the residence time of our pellet. As we have shown in the
preceding part of this chapter, k(t) and h(t) can be calculated. Thus
(2.30) enables us, to calculate the residence time function T(to) for a

fabrication unit, the inventory- and output functions of which are known.

The functional relationship (2.30) is in general not easy to handle,
because the unknown quantity appears in the upper limit of an integral.
But when the fabrication unit regarded here works with a constant output -
in the case of a machine with the first characteristic and h (to) >hyin’

or in steady state operation (k and h constant) - the functional
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relationship (2.30) reduces to the very simple equation

(2.31) () = —h—l(c-'iﬁl

This is the well known definition of residence time in fluid dynamiecs.
The residence time of a pellet in two fabrication units can then be

found as the sum of the residence times of each fabrication unit.

2.2.1 A stochastic model

This approach takes account of the fact that at the outputs of the press,

the sintering furnace and the grinding the pellets must fulfil certain
specifications before the next treatment, or before being definitively
accepted. If a pellet has not fulfilled one of these conditions, it is
returned inte the mixer: We are interested in the investigation of stationary
processes, i.e. processes with probability laws independent of time. It
should be noted that this is the most simple case of stable processes, in
which the different functions of time are bounded, but we shall not deal

with this more complicated problem here. The great interest of stationary

. . — .
processes, is that they permit the use of statistical tests easier to handle,

2 LOLT2ITS5 2 2 A

and this is the justification of such a study.

In the following pages we describe two discrete models. Then we shall dis-

cuss the extension of the preceding continuous models to the stochastic case.

2.2.2 Discrete case

General description. It should be remarked at the beginning that time does not

play any particular role in the description of this model. We have to re-
place this continuous variable by a discrete one, n = 1, 2, ..., the parti-
cular value n characterizing the nth "operation' which we have to describe
now. For this purpose, we must first establish the transfer function of
each glove-box. Then we shall write the transfer function of the plant,

define the concept of an operation and deduce the behaviour of the plant.

a) The mixer. We consider a mixer which runs always at full capacity.
This means, that during a certain time v, We fill the mixer with
a fixed quantity h of material coming from the two inputs x and y
(Fig. 9). During the time v, the mixer works and during a third

interval of time vy we fill the press with this quantity h of material.



b)

c)
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The press. The press box transforms the quantity h into the form

of pellets. Each pellet is subjected to a test which decides if the
pellet fulfils, or not, some conditions to be accepted for the sinter-
ing. A suitable assumption is that a pellet is accepted with the proba-
bility p, or rejected with the probability q, = l-pl. P, is constant

on a long period of time and can be estimated with sufficient precision,
for a given press, by the proportion of “géod" pellets in a large
number of pellets manufactured by this press. If the mass h is appro-
ximately required for N pellets, we shall observe, when this total
amount h will be treated in the press box, n, "bad" pellets in the
output u' (Fig. 10) and N-n '"good" pellets in the output u, with the

following binomial probability:

: . N n, N-n]
Pr {u = N—ni } = Pr {u' = n]_f = ql Py

' ny/

vy is the time required for treating the amount h of material.

The sintering furnace. The sintering box receives from the press

(input u) the random number u, = N-n1 of pellets. We can suppose

that under the same conditions as in the case of the press there
exists a probability P, that a pellet, after treatment in this box,
will fulfil the conditions to be accepted in the grinding box. We
have to make another assumption, which is quite acceptable: P,

does not vary with the number of pellets present in the sintering
furnace during this treatment. Consequently, after having treated

u, pellets, we observe in the output v a total number v of "good"
pellets, and in the output v' a number v‘l of "bad" pellets (Fig. 1la)

with the probability:

1Y Y1 Y™
Pr{v=ul-vl}=Pr{v' -vl}= ) 9, P, 3 qz-l-pz.
\Vy/ '

Such a glove-box can run in two different manners:

i) Running at variable capacity. The sintering furnace works

each time with a number ul(not necessarily fixed) of pellets.

In this case we see that the probability law of the output v

depends on the actual value of the input u. This way of running
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includes the case where the pellets are treated one after the
other, or the case where the sintering process begins only when
u, pellets coming from the press are arrived in the sintering

furnace.

ii) Running at constant capacity. In this case the sintering begins

only if a constant number Nz of pellets are available. A storage
facility H, is needed in this case (Fig. 11b). The output v is

then the product v = a.t of two random variables. The first one
follows the binomial law:

. N2 v, N vy
Pr S’a = NZ.VI} - Y q2 p2 s 0 5 acg N2'
\ 1

The second one can take the values O or 1 with the probability

= = Py >
Pr {t 1} Prob {hz NZ}
Pr {c-o} = Prob{f{2<N2§

vhere h2 is the number of pellets in the storage facility H2 just
before the sintering process. The same argumentation is valid for

v = a't, with
N v N,-v

. .2 121
Pr {a vl} q2 P,
Y1

And we denote by 7 the time required for treating the variable

quantity u, of the constant one NZ'

d) The grinding. The running of the grinding box is similar to the

PR 14 Py TT. -t -11 A o oat e marmarl T rm ey sravwe alt ae s
preceding . We shall denote the corresponding variables by
|

n e
Wy W'y H'B’ N3, h39 P3’ Q3 (Fig. 12).

i) When the grinder works at variable capacity, the probability law

is

Vl wl V]-ml
= - = i = =
Pr{w A8 wl} Pr{m wl} 93 Py
“1
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ii) When the grinder works at constant capacity we have

=bt' ; w' =b' t' with

i Ns) “)
had = t = =
Pr{b = N3 w,} Pr{b w& o, 93 Pj

N3~y

Vg is the time needed to treat the quantities Vs OF NB'
e) The storage. The outputs u', v' and w' are collected in a storage
facility (Fig. 13). The state of this storage will be defined by
~-——the number-Z of pellets present in this box before the arrival-of =~ -
the quantities u', v' and w'. Z will denote the state of the storage

when these quantities have been added. So we have:

Z=Z +u' +v' +uw'.
It is clear that Z and Z can denote the equivalent mass of material.
From this storage facility the quantity y is filled into the mixer

according to the following rule:

y= th if Z > ¢

Ny

y = Z if <th ; 0 <& &1, £ constant. .
Thus we have described in a), b), ¢), d), and e) a sequence of elementary
operations. At the first step, we fill the mixer with material coming

from x and y; the quantity y is given by the preceding law and x = h-y.

At the last step we collect in the output of the plant a random number
of the pellets meeting all the required specifications.

The other pellets are collected in a storage facility for a next cycle
of elementary operations. By convention, we shall define this cycle as
an "operation'. The running of the plant from the beginning to the

end of the nth operation is then described by the sequence of the
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th

first, the second, until the n~ operation. We characterize each quantity

by an index n indicating that it corresponds to the nth operation. The

investigation of the functioning of a plant is thus reduced to the study

of the sequence of the random variables u_; u'; v ; v'; w ; w'; Z_;
n’ n’ a’ n’ n® n’ "n

3 h3n' We shall remark that the time necessary for one

Z; %393 h,

n n n

operation, i.e. Vi t vy * Vg + v, + v, can vary arbitrarily. This is the

reason for which the time does not play any particular part here. If by
5
chance I v, follows a particular law (a statistic or deterministic one)
i=1
then we could interpret the running of the plant as a function of time. But

this interpretation is not at all necessary.

In the following pages, we consider two different runnings for a fabrication

plant. The first one, called running with variable capacities, corresponds

to a sintering process and a grinding process with variable capacities as

described above. The second one, the so called running with constant capacities,

corresponds to the running of these glove-boxes with constant capacities.

15% EXAMPLE: A fabrication plant running with variable capacities

In this case the plant is represented by Fig. 13. We have three boxes,

the mixer, the storage facility, and a fabrication unit consisting of the
press, the sintering furnace and the grinding box. Conventionally, all

the variables will be expressed in terms of the corresponding number of
pellets. The probability that a pellet has fulfilled all the required con-
ditions for being definitively accepted is obviously p = P,P,P5- Let

q = 1-p be the probability that at least one condition is not fulfilled. The
outputs w and ¢ = u' + v' + w' of the fabrication unit are the following

random variables:

w = N-k
c =k with
. N
Pr%n = N—-k}= Pr s:c = k%= qkpN k
k

In Fig. 14 we give a diagram of the different notations for the variables

and the sequence of their measurement.
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Equations. The mass conservation equations are

(2.32) X + v, = N for the mixer box
. w = N~k
n n
(2.33) for the fabrication unit
c = k
n n
Zn-l—yn = Zn
(2.34) _ for the storage facility
Z +c¢c =727
n n n

The solution of the system (2.33) is obvious: the ”ﬁ are independent and
identically distributed random variables. Thisis also true for the cn

and we have:

| M)k Nk
Pr {wn = N-kn}= Pr {cn—kn%= AL
n

Consequently, we have:

Zn=Zn_1-5N if Zn_1-£N>/ 0

Z =0 otherwise.
Or equivalently:
Z, = Max {0; Z.-1°" EN}

Z, = Max {0; Zn-l + kn—l - EN} .
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Taking account of the fact that Z, =0 and putting:

F (2) =Pr {~Zn <z },
N’) m N-m

g(k' = m-EN)=( qp

m

it follows from a straight forward calculation that

(2.35) F (k) = I F (k-k') g (x").
n k' <k n~-1

And, following D.V. LINDLEY 177;7, we know that a non degenerate limit

distribution

- = —=F{k)-= Iim - F-(k)— o s o
n=>eo O
exists, if and only if E (k') = E (k) - EN = qN-EN < O3 1fh(y) is the
mean value of y;7; or equivalently plp2p3> 1-€. In this case, the inventory

function of the plant is approximatively, at a long run, a stochastic variable

with a well defined distribution function F(k), solution of the equation
/N\ m N-m
F(k) = z F(k-—m+EN)( ap .
m <k+&N m

Otherwise, lim F (z) = O for all z > O. This means, that it is sure to
n-+eo
observe an inventory greater than all possible values z given in advance,

after a certain time which can be calculated. Now:

Pr {-Z-n=z}= I Prgzn-agPr {cn-c}

atc=z

¢ i C 7 (= 2
Pr jy, =ENj=Prix =N-gNy=Priz , >ENgy

Pr gyn = 2z §- Pr {xn = N"‘Z} = Pr{-z—n_l = z}for z < EN.

The behaviour of the plant for k constant is defined by:
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,/‘
z = (n-1) (k-gN)
Zn = (n-1) (k- EN) + k
4 Yy = EN
xn = N - gN if k-EN > 0.
.
F~Z = 0
n
{ Zn = " eN
x = N-(N for alln > 1, if k-EN < O,

an EXAMPLE: A fabrication plant running with constant capacities

In this case, we have to take account of the two transfer functions
described in c) ii) and d) ii). We shall discuss here only the interest-

ing case where h g N, < N3e The physical meaning of this condition is clear:
the output of each glove-box is less than or equal to the capacity of the
storage facility of the seccessive box. Intuitively, we can think that this
condition is sufficient for leading to an equilibrium state in this storage
facilities. We shall show that this is true and, furthermore, that in this
state the amounts of the storage facilities N2 and N3 are stochastic variab-
les uniformily distributed between O and N2-1, for the first one, O and N3—1
for the second one.

If h2 n is the number of pellets in NZ at the end of the nth operation, we
s

have

(h, =h, +u if h +u <N
2,0+l 2,n n 2,n n 2

+ u =N otherwise.
n n ‘

2
For illustrating these considerations, we give in Fig. 15 a the first six
steps of such a process, with N2 = 5 and un taking the values O, 1, 2 and 3

with positive probabilities. The algebraic operation

h +u modulo N2

h2,n+1 = 2,n n



corresponds to a mapping

the initial state h
g(u) is a random walk on a finite cyclic group. If M is the markov
matrix, the state of the storage facility H

i.e. the number h

2,0

2,n

the probability vector:

%Pr(h2

At the same time, h

2,n

of the N axis on a circle of length N
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2’
as we can see on Fig. 15b. It follows that the random walk defined by

= 0 and by the transition probabilities P (0, h2)=

Pr {(—Hz,n = z}

and the auxiliary stochastic variable t

a 0), .... Pr (hZ,n

is given by

h+n=Z

Pr {hz,n > Nz} -

>

of the pellets present in H

is defined by:

Z < N,
VA

z
Z>N

2

at the end of the nth

2

: Fr {th-l B h:}g ()

h
h+u=z

z
h+u=z

NZ—I)} = {1, 0, ... o} M,

The output of the sintering furnace is then described by:

Pr

Pr %Y
n

f
-
i

v e
0 }=

N

v

1, Prob

)

Ny

o 3%

v Nz-v
9, P, « Prob {tn=1}
{t =1} + Prob{t =0}
n n

. Prob {t =1 %
n
. Nz
0 = p, Prob t =1§+ Prob {t =O}.
2 n n

v N,.-v
1, Py

for v # N2

for y # 0

operation,

at this time, is given by



31

Now, it is well known (see for instance FELLER _/_—8_7), that the limit matrix

Q= lim M® exists and is such that each element Q.. is equal to 1/N,.
ij 2

n -

This fact is a direct consequence of the group structure of the points over

a circle with the usual addition as group operation, this implying that

‘M is bistochastic, i.e., the sum of the elements of a line or a columm

is equal to 1. In Fig. 16 we give the corresponding matrix of the markov

chain described above, and its limit matrix.

boons ' ' L3 . - <
Let hz, hz, t, t , v and v' be the limits of the variables h2,n’ h2,n’ tn’

-Et'l, vy and v'n for n =» g at a long run, the behaviour of the sintering

process 1s approximatively described by:

1 -
Pr {hzth}ﬂ Nz forhco, 1, e 09 Nz 1.

_ 1 N N-n u
§h2-2§= N?_ Z{ . 9, P, /h+u-Z,h-O,1,...,N2—1§

P

a1

2y
L

~ '{ i (/N) N-u u ]
Pr §Lt=0J= v T Z” q. p2 /h+u=2, h=20,1,..., N2-1§

Z< Nz K\u/
s 1 N N-u u
Pr {tulgc — pX z q P, /h+u=2Z, h=0,1,..., N,-1
N 2 2 2
2 >/N2 u

N2 k Nz“k ”
Pr {v=0N-ki= 4, P . Prob{t = 1 for k ¥ N
2 K 2 V2 2

N
\Pr 1 2 « Prob {t = 1}-!- Prob{t = 0}

.o f
rrxv-x J‘k

Pr {v'-o 2(- pzz Prob{t=1}+ Prob{tsO%.

The description of the running of the grinding box follows the same lines.

We have:
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h3,n+1 = h3,:1‘Wn if h3,n+vn < N3
= h3 ’n+vn-N3 otheérwise.

But now, the random variables, v, are no longer identically distributed for
n=0,1, ... . This means, that in the markov chain on the circle of length
N3, each step n is performed following the particular matrix of transitions

M

20 of which the element (i, j) is defined by
H

m3’n (i,j) = Pr gvn = J-l} if 3 > 1

= Pr {vn = N3+J"1?I if 3 < 1.

Thus, at the nthstep the vector of probabilities of the states is:

o n
{Pr gh3’n = O}.tuo. Pr {h3,n = N3_1}} = {1’030 LI O}k : 1 M3’ko

The other variables are defined by:

Prih, =2 } = I Prih = h} P { %

r{ 3,n hv=2Z r{ 3,n-1 r Vn=V

Pr {t' - 1}- Pr%.i‘l- > N3gs L z Pt‘{h3 _1-h§ Pr {v .V}
n o Z >N, htvez . "

Pr {t' =0}=Pr{.ﬁ sN%- z z Pr{h _-thr{v =v}.
n 3,n 3 Z <N heveZ 3,n-1 n

The probability law of the outputs is:

N w N, -w
(Pr{mn=Nq-w=(3>quq3 Pr{t‘:Bl‘;form#N,
= \w / 7 e J -

A -

N
= = 3 t - } ' = %
Pr ?n Og 95 . Prob {t 17+ Pr {tn 0
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- N3 w N3-m
! = = ' =
Pr {“ﬁ m} . a3 P3 . Pr {tn 1} forw ¥ O
N

3 )
' = = ''= ' =
Pr{w Og P3 Py {t 1§+Pr{t O%.

Now, when n — oy we have seen that v = lim vn exists. It follows
u -

that

exists.

Furthermore, it has been shown by J. WOLFOWITZ 1_—9_7, that the infinite
product of stochastic matrices with one ergodic class is a matrix with
identical lines. The histochastic property being invariant under multi-
plication, this result leads to the conclusion that the completely simple-
semi group of the compact semi-group of finite bistochatic matrices is

reduced to the idempotent matrix of which all the elements are equal.

Then
n
. . 1
lim T M = Q, with UQ L, W e
n — oo k=1 3,k 3 31 N3

=3
]
[
o
B
=

lim Pri h = hi = -Pr(h =h}
n -+ oo { 3,n % 3 3 n - o 3,n

The other limits are easily derived:

o

L]
(]

1, ceey N3-15

er-

Pr{ﬁ3=2}= ; E{Pr(v)/h+v=z;'h

(Pr{t'slg- — ) Z{Pr (v)) / h+veZ; h =0,1, ...,N-l%
3 Z;N3 :
Pr{t‘=0}= N z Z:{Pr (v) /h+v=2; h=0,1, ..., N-l}
' 3 Z<N3

And:
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Pr {w

Pr {w= 0 %a q3N3 . Prob {Z' = lg-l- Pr {t' = 0_7]

'N3 k Nyk
- = ' oo

N, k% 9 s . Pr{t 1}fork#N3

Pr {w

Pr {w

Let us consider now the variables defining the stochastic inventory

[}
~
Lo
[
TN
=z
N— -
Na)
W
e
L~
(9%
=
W
P
a-)

L2}
~r
[

#

—

e
Hh
. O
L}
e
b'S
o

N

0 Jepy i prfe =1fsrr{e =0l

function in the storage box, and firstly the input c; = u; + v; + w& .

The random variables u; are obviously independent and identieally

2,n

on h2 n-1 and u ., Oor on h2 n-1 and u; 3 u& depends also on the result of
] H

an independent random experiment obeying to the binomial law (NZ’ pz);

distributed; v; depends on tﬁ, or equivalently on s Or equivalently

similarly o' depends on h, a1’ v’ and on the result of the independent

b4 .
random experiment (N3,p3). Consequently, cg is the sum of three variables
u;, v', w;, each of them depending on the previous one. So the law of c;

n

' .
depends on h2,n-1’ h and u - The c, are thus always independent,

3,n-1
but not more identically distributed. The probability law of .’ for

instance, is

Pr {eﬁ = cf} = Z{?r {u' = u'l% . Pr {&é = v'l/u'- u'l% Pr{@'n -m'l/v'n=v 3
' ' 1 @t
/u RAAREU c } .

This expression can be deduced from the preceding equations, but we do not

give it here, because of the length of the formula.

We have to note that the limit 1lim Pr,{c& = c'%»exists, as a consequence
n -+ 0o b
of the fact that all the summations are finite and each term in these sums

has a limit. This expression seems to be difficult to handle in analytical
form. But the passage to the limit shows that there exists a stochastic variable

¢' = lim c¢', of which the probability law can be calculated. Denoting
n —* 0
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by kn(c') the frequency function of c; and k(c') the one of k(c') we have

again
—pt '
F__, (z-c") kn (e")

k(c') = lim kn (c") .

The stationary conditions in this case are not so easy to formulate as

the previous one. In a forthcoming paper, we shall discuss this case.

2.2.3 Some remarks on continuous stochastic models

Adopting the notations of the section 2.1.1 we want to show how to solve
an equation of the type
(2.36) T+ Q-0 k-X=0
t
when k is not constant but a random variable. The equation (2,36) can be
deduced for the system given in Fig. 4 with the hypothesis
h, = le

1 1

h2 = constant

X = constant.

This stochastic equation can be considered as giving an approximate
description of material flow through a fabrication unit. Here we are

interested uniquely in the solution of (2.36) under various assumptions on «:

Let K be constant in each interval of time {.ny; (n+1)yj§, n=0,1,... .

o

TfK
n
are independent and identically distributed; the common probability law

a tha sralsee ~L o 2 1 e e A crmen? T e )
18 Tae vVaiue Oox K1n tnis inctervai, tne ranaom varliabies -\Knj

is given by
K = a with probability p

K = 8B with probability q = 1 - p
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Let us assume that a# 1 and B# 1. It is clear that if k(n ) = kn is
the value of k(t) at time t=n , there are two possibilities for the solu~

tion of (2.36) in the interval / ny; (n+l)y /:

/ 3 -
1-a l1-a
- = (t-t) < - (e-t)
k (t) = e . kn + -i—_—- l-e
(2.37) _ , _
. ﬁ -u(t-t) ’ ——I—B(t-t)
T n X T n
k (t) = e ..k + T:— l-e .

The first solution is chosen with probability p, the second one with |
probability q. The equations (2.37) and the initial condition k°=0

define the random solutions of (2.36). They consist of a set of curves
compounded of pieces of exponentials (2.37), see Fig. 17. This set of

curves is bounded, when a < 8,

below by: k(t) =

1=
LT

X I
above by: k(t) = =g 1-e .

We can note that a realization of the stochastic process defined by (2.36),
i.e. one of the solutions of this equation, reaches one and only one time

X

a value k(t) in the interval __/_—0, -1—_—_—&__7. This set o‘f values is the

. . . -~ X X =
so called tramsient set. But, in the interval / 7= ; T:E-/ the same
value of k (t) can possibly be reached several times. So, we are led
to the problem of the determination of the probability law of the possible

values k (t). We introduce the following abbreviations:

- izey S e I
T T
a=we ;b=—1?(i 1-e
_l-TBv _1;8\,
= . =-—2(—- —
c=e 5 d -8 1-e .
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Let A be a stochastic variable which takes the value a with probability p
and ¢ with probability q, and B a stochastic variable which takes the
value b with probability p and d with probability q. I1f, furthermore, we

note An’ Bn the random variables corresponding to tn’ (2.37) can be

written:
(2.38) kn+1 = Ankn+Bn.
And we have

kn+1 = Ah (An-lkn—1+$n—l) + Bn

= +
Ah A'n-lkn-l Aan—1+Bn'

But according to the hypothesis of independence, we can take the mean value

of this equation:

ke =45 A1 kn—l * Ah Bt Bn‘
Putting

——c o+ =

An pa qc = M

f; = pb +qd = N for all n,
we have:

kn+1 = Mzkn*l + M+ N,

Generalizing this result we obtain finally:

S o« S
— — M-1
SRR L =l

— M-1
(2.39) k=N 51 because k = O.

A similar calculation can be developed for all the moments E:+1. We note

that

(2.40) 1lim kn+1 = -
n - o0

exists.
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If kn+1 converges towards a random variable k when n goes to infinity,
this limit must be the mean value of k. To prove that k exists, it
needs to note that, considering in (2.39) kn+l defined by the applica-
tion of the random linear transformation Q = (A,B) on kn’ it is justi-
fied to apply the Banach fixed point theorem / 10_/. Consequently,

we know that k = 1lim k exists almost surely, and that if F(z2) is
n -+ o
the distribution function of k, writing that the two variables Z and §

related by the equality { = AnE + Bn’ have the same F(z), we obtain:
P gF -z—”—‘i) + 4 dF(E:—q-)-dF (2).
a a ¢ ¢

From this equation we can for instance deduce the following algebraic

equation for the first moment k:

+00 +00 +00

T = = P z=b q 2z=d

X zdF = B zdF < - )+ g 2dF ( - ) ,or
=00 -00 fad ¢ o

e pbtqd

i = Pb¥dd
1-pa-qc

which is identically equal to (2.40). The same calculation can be performed

for each moment.

We also note that the mean solution of (2.36) differs from the solution of
this same equation written with the mean value k = po + qB. The reason
of that is easy to find. It suffices to remark, that when we take the

mean value of each term in (2.36), we have

Kk * k(t) = x * k(t) only for t = e

1-a 1-
i ST
PX |- 9x_{;-
. e -8 l-e * 15 l-e ) X
Ll _128 1-pa -q8
T T
1-pe -qe

. v
converges towards zero with T
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On the other hand, the preceding argumentation is also valid if x takes
its values in a countable or continuous set between O and 1, 1 being
excluded. If «k takes the value one with a positive probability, the

upper bound of the set of solutions (2.37) is the straight line

k (t) = %- t.

In this case we can again calculate kn’ but the random fixed point theorem

does not hold, and then the preceding asymptotic behaviour is not justified.

Finally we want to underline another way of investigation. We can for in-
stance assume that k changes its value whenever a fixed quantity of material
is available in the box 2 (Fig. 4). If m is this quantity of material, the

sequence {tn 3 is defined recursively by

tn+1

m = { k(t) dt, t =0.

We shall note only that if the value 1

t - ¢ . But if the value 1
n+l n

is permissible, we have with a positive probability the solution

below and above as we have seen and sc vn =

k(t) = %'(P-tn) * kn’

for arbitrary large values of kn. Then the equation

¢ ' 2
n X {t 17t 2 X v
n+ n vn
n Jk(t)dt T 2 +kn(tn+1 ti’x) T 3 tkY
t
n

has always (because of the nature of the physical process) a unique positive

solution with the behaviour v_~ EI:L- for large k_.
n

Thus the interval of time between two discontinuities of k can be as small

as we want with, indeed a probability also small, but always positive.
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3. PROCESS INVENTORY DETERMINATION AND APPLICATION OF TRACER METHODS

The considerations of the preceding chapter are based upon a detailed

knowledge of the fabrication process in the fabrication units.

Statements of a control authority, however, concerning the diversion of
fissile material from the domain of peaceful use of nuclear energy must

be based upon measurable quantities. In the sense of the safeguard system

described in 1?1, 2, 3, 4;7 the controller should be able to measure these
quantities, needed for the detection of a diversion, at strategic points

without penetrating into the fabrication units.

3.1 Measuring the output functions at strategic points

The output functions can directly be measured at strategic points. Look at
the fabrication plant shown in Fig. 4. Assume that there are 4 strategic
points in the plant: one at the entrance (A), one at the exit (B) and

two others (C and D) between the fabrication units. These four strategic
points allow the measurement of X(t), kl(t)’ kz(t) and ¢ (t). The feed~-
back parameter, x, being a measurable quantity, its nature (stochastic
variable or constant) is no longer of importance for the considerati

of this chapter.

The total inventory ht°t= hl+h2 of the plant can be calculated, if X(t) and

(l-K)k2 are known, by integrating the mass conservation equation

(3.1) dnt°t
dat

= X - (l-z)kz.

Thus

tot (t=0).

t
,
n®°f () = ) [x-(1-0)k, 7 dt + h
(¢}
For this, only the measurements of two strategic points (A and B) are
needed. From the flow measurements at the strategic points, C and D, we get a
more detailed information about the inventory function: we are enabled to
calculate the inventory hl(t) and hz(t) of the two fabrication units from
the measured quantities X, x, k1 and k2. The inevitable inaccuracy of the
flow rate measurement leads to an inaccuracy of the calculated inventory
functions. The propagation of this error can be deduced from the mass

conservation equations.
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3.2 Measuring the inventory function at strategic points

The inventory function, h(t), of a fabrication unit or a plant can be
measured for discrete time points, t;, at strategic points in two diffe-

rent ways:

~ the input into the unit (the plant) is stopped at t,. The unit
is emptied and the outcoming flow is measured, which gives h(ti)'
This operation interrupts the fabrication process and thus causes un-

desirable costs.

-~ the input into the unit (the plant) is traced in a suitable way,
beginning at ti' The outcoming untraced amount of material after
ti is measured, which gives h (ti)’ In this way, the fabrication

process has not to be interrupted.

In mathematical terms, this means, that we introduce into the system (fabrication
unit or plant) a signal in form of a step function and analyse thebsystem
response (the outcoming flow). This is represented in Fig. 18. The input

is traced beginning at t . The traced material appears in the output after
a certain time, in general with a very small concentration in the beginning,
as indicated in the part b of Fig. 18. The indicated area then gives the

value h(to) of the inventory function at t.

Both methods of measuring the inventory function at strategic points,
indicated in this section, are affected with an inevitable inaccuracy.
Concerning the tracer method of inventory measuring, great physical and
experimental work has still to be done to determine the nature of tracers
to be utilized (radioactive isotopes, fuel with a significantly shifted
isotopic vector, etc.), their concentration in the input needed for their

detection in the exit stream, and the accuracy of this method.

3.3 Measuring the residence time function at strategic points

The residence time function, T(t), can be measured for discrete time
points, t,, at strategic points by using a tracer method similar to
the preceding section. This is a wellknown procedure in industry and

technics / 5 /.
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Fig. 19 shows the principle of this method:at the time t a delta func-
tion signal is fed into the system. The traced material appears in the
output after a certain time, beginning in general with a very small con-
centration, as indicated in the part b of Fig. 19. Different atoms of

the tracer material have different residence times. They come out of the
system at different times between t, and t,. In the section 2.1.2 we
found a simple relationship between the inventory function, the out-

put function and the residence time function (2.31), for the case of a
fabrication unit in steady state operation and without mixing the fuel in

the interior of the fabrication unit.

The broadening of the tracer singal, as shown in Fig. 19, is due to a

mixing of the particles in the interior of the fabrication unit.

We are now considering the simplified case of a fabrication unit in steady
state operation (see section 2.1.1), as shown in Fig. 20. In order to
find an equation analogous to (2.31), we follow the ideas described in

Lj§;7. Let t be the nominal mean residence time, defined as

(3.2) T = --E—' X

Here h is the inventory-and k the output-function of the fabrication unit
under consideration. (Both are constant in steady state operation.)
Then the time, 6, can be expressed in units of the nominal mean residence

time t :
(3.3) 6 = —t

Let the internal age distribution fumction, I (6), define the fraction

of particles (pellets, fuel elements or atoms in the case of a fabrication
plant) in the fabrication unit having at any instant ages between 6 and
6 + do,to be 1(8)d6 . The age of a particle is the time it has spent in

the fabrication unit. The exit age distribution function, E(6), defines

the fraction of particles with ages between @ and ¢ + d6 at the moment

of leaving the fabrication unit,as E(6)d6. Thus
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00 00
(3.4) Y I(8)d =1 and j E(0)d6 = 1.
0 0

Let F( 6) be the fraction of particles in the exit stream which entered

the fabrication unit after 6 = O. Then at any time 6 > O

6
d B [] ' T o= -
a3t !_h£ I @' de _/ k F (8)k.

Hence with (3.2) and (3.3)
(3.5) I(8)+F(6) = 1.

We also have .

(3.6) F(98) 32) E(e')dé' .

From (3.5) and (3.6)

-~

d1(6)
d .

"

(3.7) E(g) = -

[e2]

Now let us calculate the mean residence time, 6, in reduced time units:

[0, ]
) =J 6 E(o )de
0

(o0}

00 [v0]
-—je%:—de --J d(91)+[1de
(o] o] 0
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The term in paranthesis disappears, if lim L—GI 7 =0,
8- @

which is always fulfilled in physical systems, as I (8) = O for

6 > 8 , with a finite eN.

Thus
(3.8) e = 1,

which proves, that t as defined by (3.2) is the real mean residence time

-of particles in the fabrication unit.

Thus we have the following relationship
(3.9) t =2

between the mean residence time, t, the inventory function, h, and the

output function k.

Now, the exit age distribution, E (8), can directly be measured by

means of a tracer signal in the form of a §-function. The tfacer concen-
tration - vs. - time curve measured at the exit of the fabrication unit
gives the exit age distribution E(g), as indicated in Fig. 20. The mean
residence time, E}can then be obtained as time coordinate of the gravity

center of this tracer—-concentration-vs.-time curve.

Thus we come to the following conclusion: The residence time function T(t),

can be measured for discrete time points ti at strategic points by using

a g§-tracer signal. In general, we obtain an exit age distribution function,

E(s, ti), as indicated in Fig. 19. If the fabrication unit in consideration

works in steady state, then the exit age distribution E(8), is independent

of the time point t,, as indicated in Fig. 20.

i
If there is no mixing of the particles in the interior of the unit,

]
tr
~
<
~
€
e
oy
ot
=3
2
o

then E(6) will be a delta-response. If there is a mixin

a form similar to Fig. 20.

The time coordinate of the gravity center of the exit age distribution
function , E(9), gives us the mean residence time, t. Then (in steady
state operation) the very simple equation (3.9) holds between the mean

residence time, the inventory and the output function.
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3.4 Different methods to determine the inventory function at strategic

points

In the preceding sections we have seen that there are different approaches
to determine the inventory function, L, of a fabrication unit, without

penetration into the unit and only measuring at strategic points:

1. Calculation of the inventory function, h(t), out of the directly

measurable output functions (Section 3.1).

2. Measuring of the inventory function, h(t), for discrete time points
tss by emptying the fabrication unit and measuring the outcoming flow
(Section 3.2).

3. Measuring the inventory function, h(t), for discrete time points t.,

by tracing the input into the unit beginning at t., and measuring

the outcoming amount of untraced material after ti (Section 3.2).

4, Calculation of the inventory function, h(t), for discrete time points,
tes by analysing the system response to a tracer signal in form of a
delta function, as indicated in Sec. 3.3. If the system operates in

steady state, then the simple equation (3.9) can be used to calculate

the inventory out of the measured quantities t and k (mean residence

time and output function).

Each of these methods leads to an inaccuracy in the knowledge of the
inventory function, as the measurements can always be performed only with

a finite accuracy.

Only the first.method allows the calculation of the inventory function for
all time values. The other methods allow the determination of the in-

ventory function for discrete time points t.. But the distance between

[l o

s1me dariads
UsSlng periodqli

r

T ma nAadne + ran ha e
R yv dehd T ‘-i il UCT

¥ sma ¢ tracer signals
e.g., so that this methods give a good picture of the time development of

=t

1
made very smal
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the inventory function.

3.5 Statements of a control authority about the process inventory of a plant

There is a fundamental difference between the values of the process inventory,
determined by the four methods indicated in the preceding section. With the

first method, a nominal value of the inventory is determined, because this
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method is based on the assumption of mass conservation in the fabrication
unit. Thus if there has been a diversion of fuel, this does not appear
in the result of this method. On the contrary, the other three methods
give the real value of the inventory, and thus a diversion of fuel in the

fabrication unit does affect the result of this method.

Statements of a control authority about a diversion of fissile material from
-the domain of peaceful use of nuclear energy, arise from a comparison of

the values of the inventory function, h(t), which he obtains by the second,
third or fourth method indicated in the preceding section, with the nominal

value of the process inventory, determined by the first method.

Imagine that an inspector measures the material flow at the strategic points
and calculates the inventory function by means of the first method (Sec. 3.1).
From time to time he performs a tracer experiment (the third or the fourth
method of the preceding section). The resulting values of the inventory
function can be compared with the result of the first method and thus
statements about a diversion of material can be made, as it has been described
in 171;7.

In this way, the inventory of a plant can be surveyed during the period bet-
ween two natural wash-outs, which are performed from time to time to clean

the fabrication lines.

3.6 A simple example of detection of a diversion without physical entering of

the plant

Now we want to apply the general considerations developed in 2.2.1, to a

simple example of detection of a diversion in a fabrication plant on
the basis of the input X and the output w. The basic idea is to re~-
veal the differences between the behaviours of X when there is diver-

sion and when there is no diversion. To this end, we consider a plant

. This means that from the storage facility we

N =

assume that N = 2, £ =

can take only one pellet for each operation. The stationary condition

[]

1is

gN - EN <0, or

1
(3.10) P=P‘P2P3> 1-¢ =-2_'

Writing Fk’ &, for F(k) and g(m), the equation (2.35) becomes
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g F
Fo = 8 o+goFl

F| = g,F +g,Fi+g F,

<

F = 8 hpve Fve F -

n
- n
Let fn be the frequency function, then from ¥ = g fk’ we obtain
k=0

after normalization:

n
(3.11) fn = p2 pz = Pr‘{i = n~}.

Now assume that a mass A.N is diverted from the storage facility each time
when this is possible. We suppose here that A.N is less than one pellet
for sake of simplicity; but this is not at all necessary. Then, the

running of the plant corresponds to the preceding one but now with

E' = E + A=%+ A .
Consequently, the stationarity condition (3.10) holds for the same
p value. The storage facility instead of containing 0,1,2,...,n,... pellets,
with the respective probabilities fo’ fl’ fz, ey fn’ ... can contain now
0, 1-4, 2-4, ..., n-4, ... corresponding masses of pellets but with the
same probability fo’ fl’ f2, cee fn' This last fact is essentially due

to the preceding assumption: 4.N is less than one pellet. But

N N
Z = z X, - z W,
N oja1* je1 *

For large N, the process is approximatively stationary, and the mean value

Z of the inventory in the storage facility is given by

N
(3.12) 7 = lim %. L% - w)
N - o i=1

If there is no diversion Z must be
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% 2
(3.13) Z = I nf = S
ne=1l n p=q

If there is diversion Z becomes

(.0
2
AR - e 7 -A(l-f)= —9 _Af1- P4
(3.14) | 'z nil (n-4)f =7 -4 (1-£) — A( pz) .

On the basis of the sequence of random variables {wijf, i=1,2,... we
. ] k

can estimate q = 1l-p, because of the equality 1im 1 5 o, = pN.
k — o i=1

The estimation of p by means of (3.13) must be statistically equivalent.

Otherwise the calculation of Z' gives an estimation of 4 by (3.14).
In a forthcoming paper we shall describe how such a detection of diversion

can be rapidly performed by a tracer signal.

4, APPLICATION TO ALKEM - A FABRICATION PLANT FOR PLUTONIUM BEARING FUEL
ELEMENTS

In order to apply the ideas of the preceding chapters, we consider an
existing fabrication plant for plutonium bearing fuel elements, the
ALKEM plant. Inspite of its relatively small annual throughput

( 200 kg Pu/a) ALKEM works under completely industrial conditions.

4,1 Fabrication of fuel elements of the oxide tpye

In the following sections we refer to aspecial production campaign, the
fabrication of fuel elements for the subcritical assembly PLATR, USA.
These were fuel elements of the oxide type with a mixture of uranium

and plutonium. The pellet weight was

19 g before grinding
18,2 g after grinding,

and the plutonium concentration in the pellets was 2,03 7. The total amount

of plutonium for this campaign was 5035,05 gx).

¥y Actually , neither the pellet weight nor the plutonium concentration
or the total amount of plutonium are known exactly because of measuring
errors. For our calculations we take the above values (mean values
given by ALKEM).
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During the production phase of this campaign, the uranium/plutonium

powder was subjected to the following production steps:

The fuel powder was homogenized in the mixer.

- Green compacts were pressed from the powder.

- The green compacts were sintered.

- The sintered pellets were ground, washed and dried.

- After a statistical quality control and pre-stacking of the
pellets colums, these columns were loaded into the can tubes.

The can tubes finally were welded.

The glove-box line of ALKEM, in which this production campaign was carried

out, is devided into 5 fabrication units for our calculations.

The first fabrication unit contains the fuel store, the reprocessing la-
boratory for pellets, the ceramic glove-box line up to the box with the

press.

The second fabrication unit contains the glove-boxes with the sintering
furnaces.
The third fabrication unit contains the grinder, the washing, drying and

quality control facilities and the prestacking of the pellét columms,

The fourth fabrication unit contains the whole part of the plant, con-

cerned with can tube fabrication and final product storage.

The fifth fabrication unit contains the waste store.

This corresponds exactly to the third example which we considered in
section 2.1.1. Fig. 8 shows the flow of fuel through these five fabrication

units. The feed-back parameter, Kos of the system shown in Fig. 8, corres-
£

p-ﬁds to the fraction of sintered pellets, which he specif
cations of the PLATR order. These pellets are returned to the first fabri-
cation unit, where they undergo a reprocessing treatment and then are fed
back into the production process. The parameter Kq in Fig. 8 gives the
fraction of fuel leaving the third fabrication unit, which goes to the
waste store. This waste stream contains the pellets which are not accepted

by the final quality control and the waste from grinding.
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This is a rather simplified scheme of the fuel flow through ALKEM. In
reality there are streams between the different fabrication units and the
analytical laboratories of the plant and many samples were taken

"to determine the isotopic composition, the chemical composition of the fuel
after the different production steps. But all these streams between the
main system, as indicated in Fig. 8, and other parts of ALKEM are an order
of magnitude smaller than the main Stream shown in Fig. 8. Thus we neglect
them in order to simplify the mathematical representation.

nd

4.2 The machine characteristics of the ISt, 2 and 3rd fabrication unit

The flow of fuel through the system of fabrication units shown in Fig. 8
is determined by the output of the first, the second and the third fabri-
cation unit. Thus we have to study the machine characteristics of these

fabrication units.

The first fabrication unit contains the mixer and the press. The mixer of
ALKEM works batchwise and the press in a quasi continuous manner

(80-120 green compacts/hour). The output of the first fabrication unit

is determined by the capacity of the press. The minimum amount of fuel
needed by the press is the mass of one pellet. At the beginning of the
fabrication campaign, all the fuel is contained in the first fabrication
unit. But inspite of this, the press cannot begin to work at once after the
beginning of the production campaign. It has to wait for one batch opera-
tion of the mixer (about 4 h). Thus we have Fig. 21 describing the machine

characteristic of the first fabrication unit.

The second fabrication unit contains two sintering furnaces. Each one can
be loaded for a batch-process with 600 pellets, which are sintered during
16 - 18 h. Assuming that the furnaces are loaded not more than once a day, we
have a maximum production rate of 1200 pellets per day. Thus we have the

machine characteristic shown in Fig. 22 for the second fabrication unit,

The third fabrication unit's output is determined by the speed of pre-
stacking of the pellet colums. Since the capacity of the grinder is
smaller than the speed of pre-stacking, for a steady state operation
with maximum continuous output, we have to take the grinder's throughput
as a limit for ksmax, which is about 600 pellets/day.(The speed of pre-
stacking of the pellets columns is about 20 - 30 columns per day, each

column containing 82 pellets for the PLATR order). Thus we have the
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machine characteristic shown in Fig. 23 for the third fabrication unit.

4,3 The PLATR production campaign

It should be pointed out that the machine characteristics describe how the
machines of the different fabrication units can function. As there is

an economic interest for the operator in running his plant at minimum process
inventory and maximum throughput, the knowledge of the machine characteris-
tics enables us to calculate the mass flow through the fabrication units

and the process inventory.

In order to compare the real values of throughput and process inventory
during the PLATR production campaign with the values expected from a
knowledge of the machine characteristics, we consider the output functions
of the fabrication units during this campaign, as given by the ALKEM

operator:

Fig. 24, 25 and 26 show the integrated flow of pellets from the first
to the second fabrication unit (Fig. 24), from the second to the third
(Fig. 25) and from the third to the fourth fabrication unit (Fig. 26)

during the PLATR campaign.

Assuming that the material flow is as indicated in Fig. 8, we can
calculate the mean values of the system constants Ky and Kg for the
PLATR campaign:

= 0,0844; k, = 0,0769.

) 3

Ks contains the loss of weight of the pellets due to the grinding. From
the figures 24, 25 and 26 can be seen, that the output functions of the
fabrication units were not constant during the PLATR campaign. A

linear interpolation indicates - as shown in these figures - that there
were two different phases during this campaign. The first one with
relative small values of the output functions and the second phase with

higher values of the output functionms.

The slopes of the linear interpolated curves in Fig. 24, 25 and 26 allow
the calculation of the mean values of the output functions for the two

phases of the production campaign. We assume, that t = O is the beginning
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of the production. Then the first fabrication unit's output starts at

t = 4 h. The output of the second and third fabrication unit starts at

t =28 %-h {4 h mixing, 7 %-h pressing and 17 h sintering). The residence

time of the pellets in the third fabrication unit has been neglected.
Thus we obtain the following mean values of the output functions ki’

i=1,2,3 of the different fabrication units:

104,77 g Pu/d 0,167 d ¢ t <16 d
kl(t) -
181,06 g Pu/d l6d < t $34d
(4.1)
['82,89 g Pu/d 1,188d ¢ t <19d
k(t) = i
202,45 g Pu/d 19d s t<36d
28,69 g Pu/d 1,188 d ¢ t < 21 d
{ 196,74 g Pu/d 21 d <« t g 41 d.

This shows, that during the PLATR campaign the mean values of the
output functions varied over a wide range. The variations of the
real values (the variation of the slope of the non-interpolated curves

in Figs. 24, 25 and 26) were even greater.

Thus we can conclude that the flow of fuel through the fabrication units

was determined not by the machine characteristics, but by other

influences.

Now let us calculate the process inventory of the different fabrication
units during the PLATR campaign. As the system equations were solved
already in the second chapter, we only have to insert (4.1) to (2.28)
to find the corresponding inventory functions hl’ hz, h3, h4 and hs as

functions of t:
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104,77
104,77

97,78
21,88
47,21
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2,21

174,07
98,17
47,21
26,48

2,21

163,98
21,38
156,67
26,48
2,21

163,98
21,38
11,38

181,61
15,13

17,08
202,44

(t-0,167)

(t-0,167)

(t-1,188)
(t-1,188)
(t-1,188)
(t-1,188)
(t-1,188)

(t-16)
(t-16)
(t-16)
(t-16)
(t-16)

(t-19)
(t-19)
(t-19)
(t-19)
(t-19)

(t-21)
(t-21)
(t-21)
(t-21)
(t-21)

(t-34)
(t-34)

11,38 (t=34)

2885,55 + 181,61 (t=34)
240,47 + 15,13 (£-34)
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36 ¢ t< 41 d hl = 532,01
h, = 0
h3 = 983,54 - 196,73 (t-36)
h4 = 3248,77 + 181,61 (t-36)
h5 = 270,73 + 15,13 (t-36)
41 < t h1 = 532,01
h2 a 0
h3 = 0
h4 = 4156,82
h5 = 346,38.

We have represented these functionsin Figs. 27, 28, 29 and 30. They are
compared with the real process inventory during the production campaign,
as calculated directly from the ALKEM data.

At the end of the campaign, 532 g of plutonium remained in the
first fabrication unit. About 250 g of this remaining fuel were used

in a later period of the production campaign to produce 550 pellets

(this is indicated in Figs. 24, 25 and 26). Also during the PLATR
campaign, there was an authorized diversion of plutonium (see ITELJB,
as this campaign was safeguarded in order to apply the ideas deve-

loped in /1 [ to /4 /. The quantity of plutonium remaining in the first
fabrication unit was due to the insufficient accuracy of our model re-

presentation of the fuel stream in ALKEM.

Let us compare the output of the fabrication units, as calculated from
the machine characteristics to the real mean values of the output

functions:

i _ —

Output function / g Pu/d_/ K, k, kq
Calculated from the x)

machine characteristics 264 330 158
Real value during the

first phase of PLATR 104 82 28
Real value during the

second phase of PLATR 181 202 196

x) Assuming an 8-hour day and a 5-day week
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This comparison shows that during this campaign the flow of fissile
material through the fabrication plant was not determined only by the

machine characteristics.

4.4 Analysis of the isotopic composition of plutonium during a fabrication

campaign
During the PLATR production campaign fuel samples were taken, in order
to check the isotopic compositionAof the plutonium after different
production steps. The campaign consisted ©of 12 batch operations and from
each batch three samples were taken - one after mixing, one after ﬁress—,
ing and one after sintering. These samples were analysed by means of a

mass spectrometer. The following table shows the result of this analysis:

No. of the: . Sample after Sample after | Sample after

batch ; mixing pressing sintering

| Isotopic composition of the plutonium: Pu 40/Pu 39
§ (Pu 41/Pu 39)

?
1 0,237 (0,0659) | 0,235 (0,0637) | 0,238 (0,0636)
2 not analysed | 0,217 (0,0566) 0,239 (0,0640)
3 0,228 (0,0598) | 0,241 (0,0653) 0,239 (0,0642)
4 0,235 (0,0645) | 0,233 (0,0632) 0,240 (0,0643)
5 0,233 (0,0641) | 0,239 (0,0657) | 0,239 (0,0643)
6 0,234 (0,0647) | 0,239 (0,0636) & 0,239 (0,0645)
7 not analysed |0,238 (0,0638) 0,239 (0,0658)
8 0,233 (0,0632) | 0,235 (0,0639) 0,239 (0,0646)
9 0,239 (0,0645) | 0,236 (0,0634) | 0,237 (0,0644)
10 0,236 (0,0631) | 0,237 (0,0632) | 0,239 (0,0645)
11 0,238 (0,0656) | 0,237 (0,0634) @ 0,238 (0,0635)
12 0,234 (0,0625) | 0,238 (0,0638) | 0,239 (0,0644)

Each one of these values is the mean value of several measurements (6 to 16).
The relative mean quadratic deviation was in the range 0,1 7 to 1 Z. We
have applied a test for homogeneity of variance, devised by Bartlett

(Proc. of Roy.soc., A, 160, 1937).
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This test = was applied to the rows and columns of the above table.
The result was, that there  was no significant difference in the
isotopic composition, neither between different batches nor between three

samples of the same batch.

This is not surprising, because the source material was mixed and
homogenized before starting the fabrication process. But it shows that
there was no artificial shift of the plutonium vector (by adding

another type of Pu e.g.) during the fabrication process.

5. CONCLUSIONS

We have seen that there are different methods of determining the process
inventory of a fuel element fabrication plant. The use of tracer methods

has been discussed. In order to study the efficiency of these different

methods ©Of the detection of a diversion, a model system representation

of a fabrication plant will be very helpful.

The problem of a diversion of fissile material can be studied in two dif-

ferent ways:

- A restricted mathematical model for a fabrication plant is
considered, which is sufficently precise to solve the diversion
problem and then step by step the number of restrictions is di-

minished to approach the model to real plants.

- A real complex representation of a plant is studied and then it is
tried to find out what type of restrictions and modifications
must be applied to increase the efficiency of the safeguards

system and facilitate the detection of a diversionm.

T L -V S P TP
411 DOLI1I €455 4 Siluidiiorn 0L e odel 011 a C

With regard to tracer methods, the physical problems - what to use as
tracers, what concentration of tracers needed for an accurate detection

etc. - should be studied in detail.
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