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Abstract

In a review of recent work at Karlsruhe results from three fields of

investigations are reported:

(1) The theory of neutron noise in a reactor with prompt and delayed

neutrons wvas extended to inelude an external control loop.

(2) For two weakly, symmetrically coupled cores, with equal generation
times and delayed neutron parameters, the kinetics equations for a
step change in reactivity could be solved in terms of familiar pointe
reactor expressions, Measurements on a two=-slab Argonaut reactor cone
firmed the model and were used to determine reactivity and coupling

coefficients.

__(3) The analysis of fast reactor dynamics with digital and analog
computing methods has been improved, especially for steam cooled systems
including the primary circuit. Several coolant channels can be treated
in parallel with appropriate equations of state for the coolant, - In
large power excursions with core disassembly the autocatalytic effect

in tvo-zoned cylindrical reactors is discussed in detail, showing the

inadequacy of the normslly used theoretical model.
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1, Neutron noise in a reactor with feedback,

the influence of an external control loop | 2|+ The results can be used to
compute fluctuations occurring in critical zero-power assemblies during
long=time, automatically controlled experiments, Also, they aid in under-

standing the role of feedback in power reactor noise,

In fig. 1 the reactor is pertﬁrbed by an uncorrelated reactivity input
po(t) with zero average and a PSD (= power spectral density)

wo] T
Po(m) = J<Do(t) Oo(t+'r)> et at, (1.1)

-

< > denotes an expectation value; here and in (1.15) this is also a time

aversage.

p=p_ =0 is the net reactivity, and

ae (1.2)

oc(t) =

7 N(t=6)=N
[ g(8) = 2
o (o]

is the control reactivity (feedback) with N = neutron population,

NO = constant demand value. As usual,
] << <<
|NhJo| N, and Ipol 8 . (1.3)

is postulated. For the Fourier~transform G(w) of the controller response

function g(t) we assume a form

J  a. ‘
Glw) = )} = J (Re p.< 0), (1.4)
=t PRy



In fig. 1 we have two neutron detectors of the absorber type, with
séngitivities W_ and W (pﬁlses/fission). We are interested in the PSD
S(w) of the noise in the signal of the detector outside the control loop.
For S(w) we derived an expression

s(w) = ) 8.(w) . (145)
k=1 :

witthhe contributions

5y(w) = W, F xy, ) | (1.6)
3'2(9{)' =2 72 P (o) |H(u)|?, (1.7)
%@eﬁFﬁmﬂ/fuym% (1,6)
sh(m =2 ¥ (r M) [e(w)]? [Hw) ]2 (1,9)
v v-1-/52 z ,80, F = mean fission rate, H(w) = frequency response function

feedback, . In conventional notation

H(w) = B (w) / [146(0) E ()], | (1,10)
. 6 Bkiw ) 6 Bkiw
Ho(u?) = (1= k£1 Ak+iw) / (ieg+ k; W). §1.11)

For each detector, the parameter |3|

r= <% [/ <5251 | - (1.12)
is detérmined by the distribution of detector pulse amplitudes &.

The contribution 5, is white detector noises To obtain S, we regard
approxiﬁately the system of re&gfor, control loop &nd detector as a linear
element responding to the reactivity input po(t). For such elements an
¢ften—u§éd relation exists between the PSD's of input and output, which
leads directly to (1.7), when fhé normalizations of S, and S, are made

1
consistént.,
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Fission reactions, the dominant source  of fluctuastions in suberitical
assemblies, can tentatively be treated as an independent driving reactivity
with a white spectrum. When we insert Pé(w) = const into (1.7) to get S3,

we deduce the correct normalization versus S1 by extrapolating w » » ,

Then H(w) *H_(v) and the formulas for zero-power noise |3, 4| are applicable,

yielding (1.8) for S3.

The last source of noise to be considered are spurious detector signals
in the control loop. If their overall PSD is Rs(w) » We will get a spurious

feedback reactivity ps(t) with a PSD
P (u) = |Glw)]Z R (0) / (W.F)2 (1.13)
s s a

The detector signal in the econtrol loop is contaminated by white detector

noise with

R{w) =const =W Fr 1.14
s{w) o F T (1414)
cfs (1.6), Vhen in the com o h

we may insert (1.14) and (1,13

In ref, 2 this partly phenomenological development is supplemented by a

rigorous stochastic treatment, of which a few important features shall be

reported.

The PSD S(w) is defined as the Fourier-trensform of the autocorrelation

function Rb(r) of the detector signal, TFor 1>0

R (1) =W, Fr 6(1)+ We <n(t) N*(t.r)-N2> / (32)2. (1415)
b b b e}

§ = Dirac's function, N(t) = expected number of neutron (unconditionsal) at

time t, N'(t,T) = expected number of neutrons (conditional) at time t+1>t

after one detector pulse at time t. For t<o this definition is supplemented .

by demending symmetry,

Rb(r) = Rb(-T)s (1416)
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On account of (1.,2) and (1.4) the feedback reactivity becomes a sum

J
p (t) = } ps(t) (1.17)

J=1

of partial contributions, which obey equations

a.
d RN ] PIRY IR
ety . 2 e X + D. - . .
% °;(t) W R{t) + pso:(t) - a; (1.18)

R(t) = WaN(t)/(GE) is for the control detector the expected pulse rate at
time t, The actual behaviour of each term pj(t) is composed of step changes

of an average amplitude aj/(WaF) and of slow changes according to

(e}
Wt .t = . .t - 8. 1.1
= pJ( ) pJoJ( ) 3 (1419)
Let p(n,g,g,t) be the probability density, at time t, for a state with
n neutrons, e = (c1,...,c6) for the precursor populations and o = (91..0050J)
for the state of the reactivity feedback., Define a generating functien

o v B¢y
L' * s L w
(n’ci’009c6)

(1.20)

. . > >
x ff.. Sexp 1(p1x1+..+prJ) p(n,cyep,t) dp,eedoy

with the obvious normalization

£(u=v,=s,=v =1, =0, t) =1, (1.21)

1
Expressions for ap(n,g.g;t)fat can be derived from elementary considerations
taking into account transitions by (1) precursor decays, (2) fission,

(3) neutron leakage or capture undetected by the control detector, (4) neutron
detection by the control detector with a step change in each term pj

(3 = 140e09J)y (5) slow changes in the pj's according to (1.19).
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If no other perturbations in the feedback loop (e.ge. electronic noise) are

present, we get in terms of the generating function (1.20) an exact

equation
J 6
af 2 af af
R, ix, (p, === wa, £) + § A (uev, ) ==
o j=1 J J laxj B k=1 k k avk
14 _(t)
+ -;—-a-é [1-u+ — e (lb(u.;;)"T)
v
; (1.22)
Wa J ix.a.f
+’;’.'_"‘ ([ wa(E) exp .z W _F<> d£'1)]
J=1 'a
o
J
1 Bzf -

Herein wa(E) gives, for the contrcl detector, the distribution of pulse
amplitudes £,
mq

¢(u;;) = ) Z q(mag..gm6) o v, u.v6m6 (1.23)

- (mo".m6)
is the probability generating function formed from the probabilities
q(mo...,m6) to obtain in one fission m_ prompt neutrons, m, precursors of

group 1 etcs Other symbols have been explained or are used conventionally.,

We need two solutions of (1,22). The first, fo(u,;.§,t), must be free of
all transients, in order to describe a controlled reactor responding to a
reactivity perturbation oo(t), but otherwise stationary. For insertion into
(1415) one gets from £

of ,
N(t) = g2 (umv =, =vg=1, x=0, t). (1.24)

* + .+ - - 3
The second solution, fﬁ(u,v.x,t;to), is defined for arbitrary to and all
>t and describes the same reactor under the condition, that at t_ one
neutron was detected. For (1.15) we, thus, get

¥ (t,7) = %-f;'(uw =...=v6=1, §=o, t+1; 1), (1425)

1
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The actual neutron population n at to determines the probability of de-
tecting a neutron at that time, Detection by the detector outside the
control loop removes one neutron and leaves other parameters unchanged.
These considerations, the normalization (1.21) and (1.24) impose an
initial condition

-> > 3fc, > >
fﬁ(u,v,xgtogto) = 5= (ugvgx,to)/N(to). (1.26)
Unfortunately, the second order derivatiwves in (1.22), which describe
feedback, make this equation almost untractable. Therefore, in ref, 2
two assumptions were made: (1) The demand value No is sufficienty high;
(2) deviations of the actual neutron population n from No have small

relative amplitudes Then, one may approximate

32g _  af
Buaxj LS ij ¢ (1.27)

After this substitution, we may, in principle, expand f near
u=v1=;.=v6=1, §=o, and calculate from (1.,22) recursively the time dependent
expansion coefficients to the desired order., In practicey a labour=-saving

procedure can be used,

With N(t) and N™(t,T) computed in this way, the autocorrelation function
(1415) yielded after its Fourier=-transformation an almost perfect verifi-
cation of the formulas for S(w) as given by (1.5) to (1.9)s Only the
term S3(w) had to be cqrrected by a factor, which can, however, be neg-

lected in practice; as its maximum deviation from wnity is * 8/2.

In fast zero-power assemblies the assumptions leading to (1.27) are not
always valid. -But recent (unpnﬁlished)rinvestigations have led to a veri-
ffipation.df the fb;dﬁlas giveﬁ_pnder relaxed conditions, which are almost
wiversally fulfiiléd: (1) High precursor populations, (2) slow changes

in inpﬁt and feedback reactivity, i.e. many prompt neutron chains elapse,

before such changes become significant,
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2. Kineties and reactivity determinsation in & system of twoloosely coupled cores,

Reactivity determinations in a reactor by observation of the time-behaviour of

the neutron population, e.gs in pulsed neutron-, period=- or rod drop-measurements,
are mostly evaluated on the basis of the point reactor-model., In a system composed
of two loosely coupled cores each core tends to behave independently. In the frame

of the two-point reactor-model |5-8|, we theoretically analyzed for a coupled two=
core system the time=-behaviour following step changes in reaectivity. The main ime
portance was laidon rod drop-measurements, where the time behaviour is predominently
determined by the delayed neutron precursors and the neutron transition time between
core zones can be neglected |9|+ The theoretical and experimental results | 10| ine
dicate that the reactivity and the coupling coefficients can be obtained from simple

measurements.,

Theory. In the case of equal prompt neutron generation times A and precursor para=

meters (Bi, Ai) the kineties equations for two coupled point reactors, A and B, are

given as

P (t)-
Sng(6) =& ng(t) + 2 A Cy (6) + 2 0 (v, | (241)
,,d,, ST o L
= XJL(t) —--n (t) =N Cys (%) (X,Y = A,B), (2.2)

where nX(t)=neutron population in reactor X, Cxi(t) = precursor population of
group i=1;.44,6 in reactor X, Py = reactivity of the isolated reactor X,

€vx = coupling coefficient for neutron exchange from Y to X#Y. For this exchange

no time lag is assumed.

For an initially critical system (py =% for t<0) we want tc compute nx(t) with

t>0 after a step change Apy at t=0,

One easily verifies the critical condition

Pao PRo ~ €aB éBA (243)
- and for the raﬁio of neutron populations at eritical
(nA/nB)o = nAo/nBQ = = epga/op, = - pBo/EAB' (244)

In matrix form (2.1), (2.2) can be written

d
& M) = li(e) (2.5)
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with a colum vector ﬁ(t), which has the components nA(t). CA1(t)..... nB(t).
CBl(t),eae. CBé(t)' The constant doefficients of the matrix M can easily be
constructed from (2.1), (2.2). Specific solutions of (2.5) have the form

t
f(s) = ffk ewk (2.6)
vhere ﬁ£ and W _ere eigenvectors and eigenvalues obeying the eigenvalue equation
> >
g N =MN (247)

The eigenvalues W are solutions of a characteristie or inhour equation, which

for a system described by (2.1), (2.2) can be written |5|

(0 F(w)=p,) (o F(w)-pB) - € gy = O (2.8)
(o) ? s

with F = A+ o

1 w 121 Ai+w

As this expression is quadratic in w F(w), it leads to |10]

w Flw) = ; or lw) = P, with (2.9)
p,+p &o —o)
Pr,2 =3 £ 7T * e (2.10)

The equations (2.,9) have the form of point reactor inhour equations. Therefore, we
have for each parameter, Py and Pos T real roots, mk(1) and wk(2) (k=0y4s44,6), and
we may split the roots of the inhour equation (2.8) for the two-point reactor

accordingly. Thus, the general solution of (245) becomes

6 (2),

(1)
- (1) 3 (1) t, (2) ¢ (2) _w
N(t) + N . (2,11)
kz " lo Tk x °
Herein T (3) (3=1,2; k=0442446) are the eigenvectors of (2.7) with components
L@ @ (3) () e coetficients g (3) .
Ak v Cpqxe seeep an cB1k pees e coefficlents &y can be determined as
ak(J) - ﬁk(a)+ ﬁ(o)] [ﬁk(jh I3}{(.}')] (2.12)

vhere Ny( )+ are the eigenvectors of the equation adjoint to (2.7) and H(o) is the
state vector (2.11) for t=0. In (2.12) we exploit the fact that the two sets of

eigenvectors are biorthogonal,



A significant property |10| of the eigenvectors is that in each set one can find

ratios

(3) (3)
" Caix . —BA _ (2.13)
ny (3) o . ) N i *

34 Bik

(5)+ (3)+
Phe Sk _Sa _ im (20 1)
W F T T T By TR | o
k Bik

(i=1,000463 J=1,23 k=054444,6), which are independent of k. With the help of
(2.8) and (2.10) we can also verify

e
Rg-“-';B-A‘ . .%.. (2,15)
AB 1

As the asymptotic behaviour of the coupled system is determined by the most positive

root, called w°(1), we deduce from (2.11) that

(1)

n n (t)
! n, 1 (t) [t A ®
Bo nB
‘This is & measursble guantity.

(3)

(2,16) and eliminate all precursor components using (2.2). This leads to

To compute the a from (2.12) in practice, we use the relations (2,13) to

n_(t) (ny/ny)_ + (n,/n.) ey /e
nX = Y X0 XY XY’ "YX P(Q.l’ t) +
Xo (nY/nX)°° + (nX/nY)°° eXY/eYX
( ) (nfo) (2417)
\n../n - ™ n./n
(ny/ny), + (ng/ny), eyyleyy
with X,Y = A,B, X#Y and
p 6 By
6 1 +-K:LZ1 uﬁ{:jjﬂu wk(J)t
P(pj. t) = 2 TR = e ) (2.18)
=0 1 i1
1 +=
A 121 (mkz')jmz.‘)2

P(pj, t) describes precisely the response of a point resctor to a step change F
in reactivity starting from criticals Thus, (2.17) expresss the time behaviour of

each seperate core as & sum of two terms deseribing point reactors.



As the root mo(1) determines the asymptotic behaviour, we may identify p, as the
reactivity of the coupled system, The term P(pg, t) in (2.17) contributes only,
vhen (nA/nB)m #(nA/nB)o. i.es if the spatial distribution of the population changes

with time, Py therefore characterizes this change.
From (2.17) we get
n,(t)/n (t)/
A Ao . g nBo ;
P(p1, t) = + (2.19)

T+(ng/ny) g (ng/ny), epplepy  Hmp/ng), (ny/ng), epp/eg,

Combining (2.4) and (2.13) we get also an expression for the coupling coefficient, viz.

pq = bp
= ! L ® (2020)

(ny/ny), =(ny/ny)

Exy

If ‘ApY=O, ise. if the reactivity is changed only in zone X, this becomes & ratio

of measursable quantities,

On the other hand, (2.19) and the corresponding expression for P(oz, t) suggest a
method to weight the time behaviour of the individual zones A and B, to isolate the
terms P(p.; t). As these functions describe point reactors, they can be analyzed by

R T e
the knowvn methods of point reactor kineties.

Measurements: A series of measurements were performed at the so-called two=-slab

loading of the Argonaut=-Reactor Karlsruhe (ARK) to observe the time behgviour
following step changes of reactivity. The reactor consists of a central graphite
column (5644 cm osds), an annular tank (92,3 cm o.ds) containing the two core zones

3-filled ionization chambers were placed in the

and an outer graphite reflector. Two He
outer reflector behind each zone, Their signals were amplified, converted into a

pulse sequence and recorded with two synchronized 256-channel time analyzers,

Period measurements which allow to determine the reactivity o4 directly were per=
formed to derive the coupling coefficients according to eq. (2.20). The coupling
turned out to be symmetrical (i.e. €ap = €pa =€) within the limits of error. The
coupling coefficient of e¢/B = 3.08 + 0,05 @ is in good agreement with the value

3.07 ¢ obtained by a cross correlation method |11].

Step changes of reactivity were produced by dropping one or several control and
safety plates located at the interface between core and outer reflector. To de=~

monstrate the applicability of the two-point reactor model, the results of a




measurement, where one plate at zone B was droppedy is plotted in fig. 2. Also
shown is a curve, calculated on the basis of the model assuming a coupling coe
efficient of ¢/8 = 3,0 g and using the reactivity change Apy @S & fitting para=-
meter. For the best fit (ApB/8= =1.,90 ¢) we obtained the reactivity value

01/8 = «0,794 ¢ with the help of eqs. (2.4) and (2.10),

To evaluate the time behaviour, a FORTRAN=-programme was written which used the
inverse kinetics method |12| to convert the time behaviour into reactivit;
values. This method is based on the point reactor model and is very sensitive
ageinst deviations from this model. The applicability to rod drop measurements
has been previously shown |13|, Figs 3 gives the results of this evaluation using
(1) the data measured with each detector alone, viz. (01/B)A and (91/6)}3 and

(2) the data weighted as given by eqs (2.19). As can be seen from fig. 3, the
weighted data yield reactivity values approximately constant over the obser=-
vation time, The mean reactivity value of 01/8 = =0,801 ¢ is in good agreement

with the value cobtained by the above fitting procedure.

3. ngamic behaviour of fast reactors and excursion ana;xsis.

In the frame of the German Fast Breeder Project the dynamic behaviour of both
sodium and steam cooled fast reactors is studied. Programmes for digital and
analog computers are extensively used. Only a short review of this work can

be given here.

%)

perturbations of a system provides information about its stability. In two

Small perturbations of steady state conditions, The investigation of small

digital codes |14| linearized neutron kinetics equations are used. The stability
is derived from Nyquist diagrams or from Hurwitz—Routh criteria for linear
systems with feedback (Doppler=-, structural, can=-, and coolant=coefficients).
The thermodynamic analysis treats an average channel or, alternatively, the

peak power channel, which may be subdivided into 30 segments.

To describe the time behaviour of numerous sodium cooled fast power reactor
systems |15| a flexible analog computer programme has been established i1h|.
The core and total primary circuit (including the heat exchanger) can be
simulated, The main non-linearities are inecluded, so that major perturbations
can be studied. For instance, flow coast down in the main coolant pumps,
time delays and coolant mixing processes in the reactor inlet and outlet

plenum can be simulated.

).

~‘Investigations performed in the Institut fiir Reaktorentwicklung and
Institut fiir Reaktorbauvelemente,



In parallel, an analog programme has been set wp for the simulation of direct
cycle steam cooled fast reactors |16|. Two essential features included are:

(1) Steam density is taken as temperature and pressure dependent; (2) two
circuits can be treated in parallel, so that one circuit can be perturbed,

the other remaining intact. Results obtained with these programmes are given

in [17]

For more accurate investigations, including super prompt critical excursions,

a digital computer model is presently developed |18|. This code will use highly
sophisticated equations of state for the coolant and treat several coolant
channels in parallel., This will improve the averaging of the temperature across
the core. The treatment of core and blanket channels with different coolant

flow directions is included,

Large excursions with core disassembly. Large power excursions with subsequent
disassembly of core material are analyzed using an improved Bethe-~Tait model,

including Doppler feedback and delayed neutrons. The originally used spherical
model |19]| has been abandoned, and the formalism now is applied to eylindrical

cores IQO!. The fundamental approximations are:

(1) One energy group. (2) Separation of neutron flux in a space=-dependent shape
and a time=dependent amplitude function, leading to point reactor kineties
equations. (3) Use of perturbation theory to calculate feedbacks, which is ade
missible only for comparatively small core density changes during the nuclear
part of an excursion. As shown below, these assumptions do not hold for two-zoned
fast reactor cores, with no restraints to fuel motion. If flux shape is preserved
and if heat transfer can be neglected during a very fast neutronic excursion,

the elevated power profile, with its discontinuity at the two-zone interface,
produces & corresponding pressure step at the interface. This will induce dis=-
placement of more highly enriched material of the outer core zone into the

inner zone, yielding positive reactivity. This so=called autocatalytic effect

has been investigated for cylindrical cores |21[. As one important result, this
autocatalytic feedback proved to be always smaller in magnitude than the

negative radial disassembly feedback. Thus, an overall negative expansion feed=

back results in the radial direction.

In fig. 4 the time dependence of some reactivity contributions is shown for a
case with a ramp reactivity insertion at 59 ¢/sec and a Doppler constant of
Tdk/dT = =.0035. These parameters have been chosen as typical values for a
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second excursion in the actual sodium cooled design. The excess energy, here
defined as the energy stored in vaporized core material, has been calculated
with and without autocatalytic effects. Results for various Doppler constants
are shown in fig. 5. The rather large increases in the excursion energy release,
due to the autocatalytic effect (e.ge T0% for Tdk/dT = =,004), raises the
question, whether this model with its non-vanishing power=-step at the interface

correctly represents the physieal situation.

To get a qualitative piecture of the true situstion at the two-zone interface,
the time-dependent density p near this boundary has been calculated. We start
from the equation of the ideal liquid (r = radial position, p = pressure

obtained from the Bethe=Tait model)

p§+ Vp =0 (341)

and the equation of continuity
o + Y(pT¥) = 0, (3.2)

assuming that density changes are comparatively small before nuclear shutedown.

The further assumption of a separable density function (3.3) then leads to (3.4),
p(;;t) s OO(;) M E(t). (303)
E(t) = E2/¢ + sp/o, (3.4)

po(;) = initial density. For the description of the initial radial gradient in
core-enrichment near the interface a continuous function like tanh (A(r-rz))

is chosen, where r, = radius of inner zone.

Calculations show that the density near the interface changes much faster than
anyvhere else in the core, Only 10 usec after the begin of the disassembly we
get |8o/p] = 0.1, a value obtained after about 4000 usec in the core center, As
one can clearly see from fig. 6, this density change at the interface immee
diately yields a substantial change in the power distribution, thus decreasing
the power in the more highly enriched zone and increasing the power in the
neighbouring zone. The observed equalization of the power near the interface,
which is not taken into account in the Bethe-Tait model used, tends to reduce

both the positive autoeatalytic and also the negative radial expansion feedback,



It is now quite clear that in two=-zone cores density changes of the core material
are important for the proper description of an excursion. This has been demon
strated for the case with wrestricted radial fuel motion. Corresponding calcu=
lations show that density changes can be neglected, if only axial displacements
are possible. Results for this case, given in fig. 7, show the actual density

at a time, at which the density changes already have lost their influence on

the development of the nuclear part of the excursion, because in this stage

the energy production is almost completely due to delayed neutrons.

But, since the accidents which lead to large power excursions are in nearly all
cases connected with high initial coolant temperatureéﬂ we have to assume that
the cans cannot produce radial restraint to fuel displacement. Then one must
investigate properly the complicated situation at the interface between zones

of .different enrichment.

In order to deseribe relisably large power excursions in fast reactors, it is,
therefore, necessary to overcome the simplifying assumptions mentioned at the
beginning of this section. In addition, it is felt that strong perturbations
near the zone interfaces (where normally control rods are located) will result
in flux and power tilting, so that point kineties calculations are no more

applicable;

A description of the accident in every time step as quantitatively as possible

then also forces us to abandon the one-group model.

The treatment of this complex space-time dynamic problem has started, using

the quasistatic approximation. Another approach, not including material dise
locations, uses synthesis techniques |22|. Here two-dimensional few-groups trial
functions are used, which may be recaleulated at several time=steps during an

excursion.

The real benefit we expect from such work, for reactor designers and operators,
is a better understanding of what may happen to a fast reactor. Cbviously,
this will have direct consequences for the layout of large fast power plants

and their containment.

m)In those cases, where the sodium flow in most parts of the core is imperturbed
during the beginning of a reactivity insertion, the cans will burst under the
pressure rise within the pins and then a mixing of hot fuel and coolant with
relatively low temperatures may lead to & very fast sodium vaporization.
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Iist of Figgres

Figs 1: Reactor with control loop and PSD measuring equipment,

Fige 2: Ratio n,(t)/n_(t) as a function of time t for & rod drop
neasurement.

Figse 3: Reactivity as a function of time t calculated from experimental
data by an inverse kineties programme,

Figs 4: Time behaviour of reactivities (Na2-Reactor), all disassembly
effects included.
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Fig. 6: Density and power distribution at the zone-interface before
and after the beginning of the disassembly.

Fig. T: Demnsity distribution in the core in a moment, in which the
density change has lost its influence on the energy release
of the excursion (Time: 27+16 ms). Radial displacements are
suppressed.
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Fig. 1 Reactor with control loop and PSD measuring equipment
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Fig. 3 Reactivity as a function of time t calculated from experimental data by an

inverse kinetics programme
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Fig. 7 Density distribution in the core in a moment, in which the density change has lost
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Radial displacements are suppressed.






