

# KERNFORSCHUNGSZENTRUM

# KARLSRUHE

Oktober 1968

KFK 864 EUR 4155 d

Institut für Neutronenphysik und Reaktortechnik

Nukleare Eigenschaften heliumgekühlter schneller Brutreaktoren

E. Eisemann



#### KERNFORSCHUNGSZENTRUM KARLSRUHE

Oktober 1968

KFK-864 EUR-4155a

Institut für Neutronenphysik und Reaktortechnik

Nukleare Eigenschaften

heliungekühlter schneller Brutreaktoren\*)

E. Eisemann

Gesellschaft für Kernforschung m.b.H., Karlsruhe

Diese Arbeit wurde im Rahmen der Assoziation zwischen der Europäischen Atomgemeinschaft und der Gesellschaft für Kernforschung m.b.H., Karlsruhe, auf dem Gebiet der schnellen Reaktoren durchgeführt.

#### Kurzfassung

Der vorliegende Bericht enthält eine Zusammenfassung der nuklearen Eigenschaften von neun heliumgekühlten schnellen Brutreaktoren mit einer Coreleistung von 2500 MW<sub>th</sub>, die im Kernforschungszentrum Karlsruhe, Inst itut für Neutronenphysik und Reaktortechnik, untersucht wurden. Die Reaktoren unterscheiden sich hauptsächlich in der Art der verwendeten Brennstoffhüllmaterialien. So wurden Reaktoren mit Brennstoffstäben aus Vanadinlegierungen, Reaktoren mit Chrom-Cermet-Core und Reaktoren mit Graphite-coated-particles betrachtet.

Den nuklearen Rechnungen wurde der russische ABN-Gruppensatz zugrunde gelegt, doch bleiben die Ergebnisse dieser vergleichenden Betrachtung auch beim Übergang auf andere, verbesserte Gruppensätze im wesentlichen gültig.

# Inhaltsverzeichnis

|      |                                                  | Seite |
|------|--------------------------------------------------|-------|
| I.   | Einleitung                                       | 1     |
| II.  | Die verwendeten Rechenprogramme                  | 2     |
| III. | Konstruktionsmerkmale der betrachteten Reaktoren | 2     |
| IV.  | Die nuklearen Daten                              | 5     |
| v.   | Diskussion der berechneten Größen                | 10    |
| VI.  | Zusammenfassung                                  | 15    |
|      | Literaturhinweise                                | 16    |
|      | Abbildungen                                      |       |

# I. Einleitung

Der vorliegende Bericht wurde im Rahmen der im Institut für Neutronenphysik und Reaktortechnik laufenden Untersuchungen über die Eigenschaften gasgekühlter schneller Brutreaktoren angefertigt. Derartige Reaktoren mit Helium als Kühlmittel haben mit fortschreitender Entwicklung von Reaktorkomponenten an Interesse gewonnen. In diesem Zusammenhang sind einmal neue Brennstoffhüllmaterialien aus Vanadinlegierungen zu nennen, die gegenüber den herkönmlichen Legierungen, wie z.B. Inconel 625, weniger Neutronen absorbieren und darüber hinaus höhere Kühlmitteltemperaturen zulassen. Diese Hüllmaterialien können, da sie korrosionsanfällig sind, nur im Zusammenhang mit einem inerten Gas, wie z.B. Helium, verwendet werden. Die gleichen Vorteile eines Edelgases als Kühlmittel ergeben sich auch bei schnellen Brutreaktoren mit Graphit-coated-particles. Weiter wird der Bau von Gasturbinen großer Leistung diskutiert. Diese erlauben eine kostensparende Verwendung im direkten Kühlkreislauf. Und schließlich läßt sich im Hinblick auf Druckgefäße aus Spannbeton, die ein großes Entwicklungspotential besitzen, die Värmeisolation des Betons bei gasgekühlten Reaktoren leichter durchführen als etwa bei Reaktoren mit Dampfkühlung, da das Problem des Abführens der Kondensationswärme entfällt. Eine ausführliche Beschreibung dieser Punkte findet sich in [1].

Die angeführten Vorteile, zusammen mit den relativ guten thermodynamischen und nuklearen Eigenschaften eines Reaktors mit Heliumkühlung, haben die vorliegende Untersuchung veranlaßt.

- 1 -

#### II. Die verwendeten Rechenprogramme

Die nuklearen Rechnungen wurden mit Hilfe des Karlsruher MUSYS-Programmsystems durchgeführt. Der Programmablauf war im vesentlichen immer derselbe. Ausgegangen wurde von nulldimensionalen Rechnungen (fundamental mode calculations). Sie dienten einmal zur näherungsweisen Bestimmung der kritischen Spaltstoffmasse (Iteration der Brennstoffanreicherung), zum anderen zur Untersuchung von Reaktivftätsänderungen bei Variation der Kühlmitteldichte. Außerdem ergaben sich daraus noch die Wanderfläche M<sup>2</sup> und die Neutronengenerationszeit &. Die sich anschließenden eindimensionalen Rechnungen (Diffusionsnäherung) in axialer und radialer Richtung die Coregeometrie war immer zylindrisch - lieferten Brutraten, Dopplerkoeffizienten usw. Gleichzeitig wurde durch Vergleich von nulldimensionaler und eindimensionaler, axialer Rechnung die energieunabhängige Reflektorersparnis (Savings) bestimmt. Aus den eindimensionalen Daten ließen sich dann die eigentlich interessierenden Größen für die reale (zweidimensionale) Konfiguration des vorgegebenen Reaktors mit genügender Genauigkeit gewinnen. Dadurch wurde im allgemeinen eine zeitraubende zweidimensionale Rechnung vermieden.

## III. Konstruktionsmerkmale der betrachteten Reaktoren

Im Laufe der Untersuchungen wurden insgesamt neun Reaktoren betrachtet. Diese unterscheiden sich im Hüllmaterial (Inconel 625, Vanadinlegierung usw.), im Kühlmitteldruck (100 bzw. 175 atm), in der Art des Brennstoffs ( Dicarbid bzw. Oxid ) und im Coreaufbau ( Brennstoffstäbe, Coated Particles). Dadurch sollte ein Überblick über die nuklearen Eigenschaften dieser recht verschiedenartigen Reaktoren gewonnen werden, um das vom wirtschaftlichen Standpunkt aus interessanteste Konzept zu ermitteln.

Den erwähnten Unterschieden entsprechend sind die Konstruktionsmerkmale der betrachteten Reaktoren in drei Tabellen zusammengefaßt. Tabellen I und II enthalten die Daten der Reaktoren mit oxidischem Brennstoff.

In Tabelle I sind die Reaktoren angeführt, bei denen der Brennstoff in Brennstoffstäben enthalten ist.

- 2 -

| [l]          | $\begin{bmatrix} p_c \\ at \end{bmatrix}$              | [cm]                                                                                                                                                                                | D <sub>e</sub><br>[cm]                                                                                              | H <sub>c</sub><br>D <sub>c</sub>                                                                                                                  | α[%]                                                                                                                                                      | Hüll-<br>material                                                                                                                                                                                                                                                                                                                                          | β1<br>[7]                                                                                                                                                                                                                                                             | ω<br>[7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12830        | 100                                                    | 160,0                                                                                                                                                                               | 320,0                                                                                                               | 0,5                                                                                                                                               | 47,27                                                                                                                                                     | Inconel 625                                                                                                                                                                                                                                                                                                                                                | 14,79                                                                                                                                                                                                                                                                 | 30,94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>11283</u> | 100                                                    | 131,6                                                                                                                                                                               | 330,4                                                                                                               | 0,4                                                                                                                                               | <u>54,89</u>                                                                                                                                              | Inconel 625                                                                                                                                                                                                                                                                                                                                                | <u>7,78</u>                                                                                                                                                                                                                                                           | 30,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11283        | 100                                                    | 131,6                                                                                                                                                                               | <u>330,4</u>                                                                                                        | 0,4                                                                                                                                               | 54,89                                                                                                                                                     | 7.0<br>(*)<br>6.0                                                                                                                                                                                                                                                                                                                                          | 7,78                                                                                                                                                                                                                                                                  | 30,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>7160</u>  | <u>175</u>                                             | 131,6                                                                                                                                                                               | <u>263,2</u>                                                                                                        | 0,5                                                                                                                                               | 54,89                                                                                                                                                     | <u>85</u>                                                                                                                                                                                                                                                                                                                                                  | 7,78                                                                                                                                                                                                                                                                  | 30,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | Vc<br>[12830<br>11283<br>11283<br>11283<br><u>7160</u> | Vc         pc           [l]         [at]           12830         100           11283         100           11283         100           11283         100           7160         175 | $V_c$<br>[ $\ell$ ] $P_c$<br>[ $at$ ] $H_c$<br>[ $cm$ ]12830100160,011283100131,611283100131,6 <u>7160</u> 175131,6 | $V_c$<br>[ $\ell$ ] $P_c$<br>[ $at$ ] $H_c$<br>[ $cm$ ] $D_c$<br>[ $cm$ ]12830100160,0320,011283100131,6330,411283100131,6330,411283100131,6263,2 | Vc<br>[ $\ell$ ]Pc<br>[at]Hc<br>[cm]Dc<br>[cm]Hc<br>$\overline{D_c}$ 12830100160,0320,00,511283100131,6330,40,411283100131,6330,40,411283100131,6263,20,5 | $V_c$<br>[ $\ell$ ] $P_c$<br>[ $at$ ] $H_c$<br>[ $cm$ ] $D_c$<br>[ $cm$ ] $H_c$<br>$\overline{D_c}$ $\alpha$<br>$\alpha$ 12830100160,0320,00,5 $\frac{147,27}{54,89}$ 11283100131,6330,40,4 $\frac{54,89}{54,89}$ 11283100131,6 $\underline{330,4}$ 0,4 $54,89$ 11283100131,6 $\underline{330,4}$ 0,4 $54,89$ 1160175131,6 $\underline{263,2}$ 0,5 $54,89$ | $V_c$<br>[ $\ell$ ] $P_c$<br>[ $at$ ] $H_c$<br>[ $cm$ ] $D_c$<br>$D_c$ $H_c$<br>$D_c$ $H\ddot{u}ll-material$ 12830100160,0320,00,5 $47,27$ Inconel 62511283100131,6330,40,454,89Inconel 62511283100131,6330,40,454,89Inconel 62511283100131,6263,20,554,89Inconel 625 | $V_c$<br>[ $\ell$ ] $P_c$<br>[ $\epsilon$ ] $H_c$<br>[ $\epsilon$ ] $D_c$<br>$D_c$ $H_c$<br>$D_c$ $H\ddot{u}ll-material$ $\beta_1$<br>material12830100160,0320,00,5 $47,27$ Inconel 625 $1h,79$ 11283100131,6330,40,4 $54,89$ Inconel 625 $7,78$ 11283100131,6 $330,4$ 0,4 $54,89$ Inconel 625 $7,78$ 11283100131,6 $263,2$ 0,5 $54,89$ Inconel 625 $7,78$ 7160175131,6 $263,2$ 0,5 $54,89$ Image: Total state |

Vanadinlegierung der Dichte 5,869 g/cn<sup>3</sup>. Die Gewichtsanteile der Materialien sind Mb 10%, V 86%, Si 1%, Ti 3%.

Tabelle I: Konstruktionsmerkmale der Reaktoren mit oxidischem Brennstoff in Brennstoffstäben,

> Die wesentlichen Unterschiede in den Daten der Reaktoren sind durch Unterstreichen hervorgehoben. In dieser und den folgenden Tabellen bedeutet:  $V_c$  das Corevolumen,  $p_c$  den Kühlmitteldruck beim Eintritt in den Reaktor,  $H_c$ ,  $D_c$  die Corehöhe bzw. den Coredurchmesser,  $\alpha$  den Volumenanteil des Kühlmittels (gegebenenfalls mit Folloveranteil),  $\beta_1$  den Volumenanteil des Hüllmaterials und  $\omega$  den Volumenanteil des Brennstoffs.

Tabelle II zeigt die Konstruktionsmerkmale der Reaktoren mit (Metall-) Cermet-Core (in Stabform gepreßte Metall-coated-particles von ca. 0,1 mm Durchmesser).

| Kurzbez.<br>d.Reaktors | v<br>[l]    | [at]       | [cm]  | D <sub>c</sub><br>[cm] | Hc<br>Dc     | α[%]  | Küll-<br>mat. | β <sub>1</sub><br>[%] | ω<br>[%] |
|------------------------|-------------|------------|-------|------------------------|--------------|-------|---------------|-----------------------|----------|
| G 44                   | 11283       | 100        | 131,6 | 330,4                  | 0,4          | 54,89 | Zr            | 20,58                 | 17,53    |
| G 88                   | 11283       | 100        | 131,6 | <u>330,4</u>           | 0 <b>,</b> 4 | 54,89 | Cr            | 7,62                  | 30,49    |
| G 99                   | <u>7160</u> | <u>175</u> | 131,6 | <u>263,2</u>           | 0,5          | 54,89 | Cr            | 7,62                  | 30,49    |

Tabelle II: Konstruktionsmerkmale der Reaktoren mit oxidischem Brennstoff und Cermet-Core.

> Die wesentlichen Unterschiede in den Daten der Reaktoren sind durch Unterstreichen hervorgehoben.

**3** -

Das Strukturmaterial der Reaktoren in den Tabellen I und II besteht aus 16/13 Stahl. Sein Volumenanteil ( $\beta_0$ ) beträgt 7%. Der Brennstoff besitzt eine Dichte von 9.57 g/cm<sup>3</sup>, das sind 87% der theoretischen Dichte.

In Tabelle III sind schließlich die Konstruktionsmerkmale der Reaktoren mit carbidischem Brennstoff aufgeführt. Der Brennstoff liegt hier ebenfalls in Form von coated-particles von ca. 1,4 mm Durchmesser vor, die

| Kurzbez.  | Vc           | Dc         | <sup>H</sup> c | Dc           | Hc  | α [%] | Hüll- und | <sup>β</sup> ο+β1 | ω     |
|-----------|--------------|------------|----------------|--------------|-----|-------|-----------|-------------------|-------|
| d. Reakt. | [l]          | [at]       | [cm]           | [cm]         | Pc  |       | StruktMat | [%]               | [%]   |
| G 55      | <u>11283</u> | <u>100</u> | 131,6          | <u>330,4</u> | 0,4 | 55,0  | C,Si (#)  | 24,28             | 20,72 |
| G 77      | <u>7160</u>  | 175        | 131,6          | 236,2        | 0,5 | 55,0  | C,Si (#)  | 24,28             | 20,72 |
|           |              |            |                |              |     |       |           |                   |       |

Dichte des Struktur- und Hüllmaterials: 2,08 g/cm<sup>3</sup>, Gewichtsanteile der Elemente: C 87,1%, Si 12,9%.

Tabelle III:Konstruktionsmerkmale der Reaktoren mit carbidischemBrennstoff (Dicarbid) und coated particles.Die wesentlichen Unterschiede in den Daten der Reaktorensind durch Unterstreichen hervorgehoben.

in eine Matrix aus Graphit eingelagert sind. Die mehrschichtige Umhüllung der Partikel besteht aus Graphit und Siliziumcarbid. Es handelt sich hier um dieselbe Art von Brennstoffpartikel, wie sie schon in thermischen Reak toren erfolgreich erprobt wurden, jedoch mit wesentlich größerem Durchmesser. Die Brennstoffdichte beträgt 12,25 g/cm<sup>3</sup>, das sind 90% der theoretischen Dichte. Der Volumenanteil des carbidischen Brennstoffs am Brennstoff-Kohlenstoff-Gemisch im Core beläuft sich auf ca. 50%.

Bei allen Reaktoren aus Tab. I-III besitzen die Blankets eine Dicke von 40 cm. Die Verhältnisse in den axialen Blankets entsprechen bis auf die Brennstoffzusammensetzung denen des Cores. Das radiale Blanket enthält immer oxidischen Brennstoff (Dichte 9.57 g/cm<sup>3</sup>) mit einem Volumenanteil von 57,6%. Das Hüll- und Strukturmaterial (Vol.-Anteil 18,3%) besteht aus Incoloy 800. Der Volumenanteil des Kühlmittels beträgt 24,1%, seine Dichte 0,5674·10<sup>-2</sup> g/cm<sup>3</sup>.

- 4 -

#### IV. Die nuklearen Daten

Für die Rechnungen, über die hier berichtet wird, war das Core in axialer Richtung in fünf, in radialer Richtung in zwei volumenmäßig gleiche Zonen unterteilt. Die 5 Zonen in axialer Richtung unterschieden sich lediglich in der Teilchenzahldichte des Kühlmittels (Berücksichtigung der Aufheizung und des Druckabfalls). Bei der Rechnung in radialer Richtung wurde, um eine günstige Leistungsverteilung zu erreichen, die Spaltstoffmasse auf beide Zonen derart aufgeteilt, daß das Verhältnis der maximalen Leistungsdichte in Zone 1 und Zone 2 gleich eins war. Weiter wurde als Gruppenkonstantensatz der russische ABN-Satz vervendet. Da es sich hier um vergleichende Betrachtungen handelt, bleiben die Ergebnisse der vorliegenden Untersuchung jedoch auch beim Übergang auf andere, verbesserte Gruppensätze im wesentlichen gültig. Der Brennstoff im Core bestand aus U<sup>238</sup>, Pu<sup>239</sup>, Pu<sup>240</sup>, Pu<sup>241</sup> und Pu<sup>242</sup>. Das Verhältnis der Teilchenzahlen der Plutoniumisotope war fest vorgegeben (Pu<sup>239</sup>:Pu<sup>240</sup>:Pu<sup>241</sup>:Pu<sup>242</sup> = 0,74:0,227:0,023:0,01) und entsprach dem in der Dampfstudie D1 2 verwendeten. Dies trifft auch auf den in den Rechnungen verwendeten mittleren Abbrand von 27.500 MWd/t zu. Die Blankets enthielten nur U<sup>238</sup>, Pu<sup>239</sup> und U<sup>235</sup>, letzteres mit einem Anteil von 0,4% des gesamten Uraneinsatzes. Das Verhältnis von Brutstoff zu Spaltstoff betrug 45. Auch diese Werte stimmen mit den in der Dampfstudie D1 angenommenen überein.

Der Gliederung des vorangegangenen Abschnitts entsprechend enthalten die Tabellen IV-VI die berechneten nuklearen Größen. Sie sind nach der Art der Rechnung eingeteilt, aus der sie gewonnen wurden. Für die Untersuchung von Reaktivitätsänderungen bei Kühlmitteldichtevariation, Neutronengenerationszeit und Wanderfläche genügt die Genauigkeit einer nulldimensionalen Rechnung. Die eindimensionale Rechnung in radialer Richtung liefert die wirkliche Spaltstoffmasse, da diese mit der einer zweidimensionalen Rechnung nahezu übereinstimmt. Dies gilt auch für die Konversionsrate des Cores. Ferner liefert sie die Dopplerkonstante -Tdk/dT (für T=900<sup>°</sup>K). Die angegebenen zweidimensionalen Daten wurden aus den eindimensionalen ermittelt, und zwar wie folgt:

Die Brutrate BR nach einer Näherungsformel von E. Kiefhaber [3]. Die Gesamtleistung L als Summe der Leistungsanteile der axialen Blankets (aus axialer Rechnung), des radialen Blankets (aus radialer Rechnung) und des Cores. Die Coreleistung var dabei vorgegeben. Die Spaltstoffbelastung R in den radialen Corezonen 1 und 2 mit Hilfe der Leistungsanteile und Spaltstoffmassen dieser Zonen, wie sie sich aus der eindimensionalen Rechnung in radialer Richtung ergaben.

Schließlich wurde die Verdopplungszeit D.T. nach folgender Formel berechnet [4]:

$$D.T. = \frac{0,69 \cdot 10^3 \cdot \frac{0.95}{1+\bar{\alpha}}}{(BR-1) \cdot b_0 \cdot K} (1+BR \frac{t_w}{t_{st}})$$
(1)

Wobei b<sub>o</sub> die Spaltstoffbelastung in  $MW_{th}/kg$  Spaltstoff, K den Lastfaktor (0,8) und t<sub>st</sub>, t<sub>w</sub> die Stand- bzw. Wartezeit des Brennstoffs in und außerhalb des Reaktors bedeutet (t<sub>w</sub>/t<sub>st</sub>=1/3). 1/(1+a) ist das Verhältnis von Verbrauch von Spaltstoff durch Spaltung zu Verbrauch von Spaltstoff durch Spaltung und Einfang.

|            | Größen                           | aus nullo                        | dim, Rechnum                         | ngen                                           |                                      |                |                          | Gröf             | 3en ai        | us eindin      | nensions           | len Rech    | nungen       |                |  |
|------------|----------------------------------|----------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------|----------------|--------------------------|------------------|---------------|----------------|--------------------|-------------|--------------|----------------|--|
|            |                                  |                                  |                                      |                                                |                                      | Axial          | Axial Radial             |                  |               |                |                    |             |              |                |  |
|            |                                  |                                  | and the grad                         | tan ing sa |                                      |                | _T <sup>dk</sup>         |                  |               |                |                    |             | m [kg]       |                |  |
|            | ۵K <sub>F</sub> •10 <sup>2</sup> | ۵ <sup>K</sup> L•10 <sup>2</sup> | $\frac{dK/K}{d\rho/\rho} \cdot 10^2$ | l[usec]                                        | <sub>M</sub> 2<br>[cm <sup>2</sup> ] | ρ<br>ax        | -d⊤<br>#10 <sup>+2</sup> | ρ <sub>rad</sub> | A [%]         | CR             | °1 <sup>/°</sup> 2 | Zone 1      | Zone 2       | Core           |  |
| G11        | -2,47                            | +0,32                            | -0,31                                | 0,42                                           | 343                                  | 0,768          | 0,679                    | 0,833            | 11,6          | 0,955          | 1,006              | 1780        | 2187         | 3967           |  |
| G33        | +2,13                            | +0,33                            | -0,33                                | 0,41                                           | 439                                  | 0,799          | 0,614                    | 0,828            | 11,5          | 0,940          | 1,02               | 1488        | 1884         | · <b>3</b> 372 |  |
| G22<br>G66 | +3,92                            | +0,32                            | -0,32<br>-0,49                       | 0,42                                           | 442<br>435                           | 0,794<br>0,798 | 0 <b>,699</b><br>0,678   | 0,841<br>0,841   | 11 <b>,</b> 2 | 0,961<br>0,905 | 1,00<br>1,002      | 1451<br>947 | 1858<br>1259 | 3309<br>2206   |  |
|            |                                  |                                  |                                      | -                                              |                                      |                |                          |                  |               |                |                    |             |              |                |  |

|     |                                      |                          |                |           |             |         | R MW   | h/kg]  |      |          |
|-----|--------------------------------------|--------------------------|----------------|-----------|-------------|---------|--------|--------|------|----------|
|     | <sup>L</sup> core <sup>[MW</sup> th] | Lges [MW <sub>th</sub> ] | B.R.core       | B.R.Bl.ax | B.R. Bl.rad | B.R.ges | Zone 1 | Zone 2 | Core | D.T. [a] |
| G11 | 2700                                 | 2932                     | 0,900          | 0,125     | 0,224       | 1,249   | 0,84   | 0,55   | 0,68 | 15,3     |
| G33 | 2500                                 | 2759                     | 0,881          | 0,182     | 0,237       | 1,300   | 0,92   | 0,60   | 0,74 | 12,0     |
| G22 | 2500                                 | 2787                     | 0,896          | 0,185     | 0,243       | 1,324   | 0,93   | 0,62   | 0,76 | 10,9     |
| G66 | 2500                                 | 2829 and a               | 0 <b>,</b> 836 | 0,171     | 0,311       | 1,318   | 1,41   | 0,93   | 1,13 | 7,4      |

Tabelle IV: Nukleare Daten der Reaktoren mit oxidischem Brennstoff in Brennstoffstäben

Die Erklärung der verwendeten Symbole ist auf Seite 10 angegeben. Die in den Tabellen IV-VI angeführten Daten können geringfügig von früher veröffentlichten Werten abweichen, Soweit dies der Fall ist, sind die hier angegebenen als genauer zu betrachten. -1

|     | Größen aus nulläimensionalen Rechnungen |                                  |                                        |         |                    |          | Größen aus eindimensionalen Rechnungen |                  |       |        |                                |        |        |      |
|-----|-----------------------------------------|----------------------------------|----------------------------------------|---------|--------------------|----------|----------------------------------------|------------------|-------|--------|--------------------------------|--------|--------|------|
|     |                                         |                                  |                                        |         |                    | Axial    |                                        |                  | Radia | 1      | الندري والداري ومؤاسرا فترزر   |        |        |      |
| 1.1 |                                         |                                  | arly 2                                 |         | ,2                 |          | Tan                                    |                  |       |        |                                | m      | [kg]   |      |
|     | $\Delta K_{\rm F} \cdot 10^2$           | ΔK <sub>L</sub> •10 <sup>2</sup> | $\frac{dR/R}{d\rho/\rho} \cdot 10^{2}$ | l[usec] | [cm <sup>2</sup> ] | ρ<br>a,x | •10 <sup>-2</sup>                      | <sup>p</sup> rad | A [%] | CRcore | ρ <sub>1</sub> /ρ <sub>2</sub> | Zone 1 | Zone 2 | Core |
| G44 | +9,84                                   | +0,175                           | -0,17                                  | 0,56    | 701                | 0,813    | 0,455                                  | 0,821            | 16,0  | 0,668  | 1,02                           | 1175   | 1555   | 2730 |
| G88 | +4,15                                   | +0,31                            | <b>-</b> 0 <b>,</b> 31                 | 0,42    | 493                | 0,805    | 0,675                                  | 0,840            | 10,9  | 0,986  | 1,005                          | 1402   | 1801   | 3203 |
| G99 | +4,,53                                  | +0,46                            | -0,45                                  | 0,40    | 484                | 0,803    | 0,650                                  | 0,844            | 11,6  | 0,922  | 1,00                           | 927    | 1236   | 2163 |

|     |                                       |                          |           |                |             |          | F      | MWth/kg |      |          |
|-----|---------------------------------------|--------------------------|-----------|----------------|-------------|----------|--------|---------|------|----------|
|     | L <sub>core</sub> [MW <sub>th</sub> ] | L <sub>ges [MWth</sub> ] | B.R. core | B.R.Bl.ax      | B.R. Bl.rad | B.R. ges | Zone 1 | Zone 2  | Core | D.T. [a] |
| G44 | 2500                                  | 2690                     | 0,622     | 0,147          | 0,300       | 1,069    | 1,14   | 0,74    | 0,92 | 40,7     |
| G88 | 2500                                  | 2797                     | 0,916     | 0,196          | 0,256       | 1,368    | 0,96   | 0,64    | 0,78 | 9,4      |
| G99 | 2500                                  | 2840                     | 0,849     | 0 <b>,</b> 180 | 0,326       | 1,355    | 1,43   | 0,95    | 1,16 | 6,6      |

1 00

Tabelle V: Reaktoren mit Metal-Cermet-Core und oxidischem Brennstoff.

.

Die Erklärung der verwendeten Symbole ist auf Seite 10 angegeben.

|     | Größen                           | Größen aus nulldimensionalen Rechnungen |                              |          |                    |         |                    | Größen aus eindimensionalen Rechnungen |      |        |                                |        |        |      |
|-----|----------------------------------|-----------------------------------------|------------------------------|----------|--------------------|---------|--------------------|----------------------------------------|------|--------|--------------------------------|--------|--------|------|
|     |                                  |                                         |                              |          |                    | Axial   | Axial Radial       |                                        |      |        |                                |        |        |      |
|     | -                                |                                         | ak/k 2                       |          | <sub>м</sub> 2     |         | -T <mark>dK</mark> |                                        |      |        |                                | mJ     | g      |      |
|     | ∆K <sub>F</sub> •10 <sup>2</sup> | ∆ <sup>K</sup> L•10 <sup>2</sup>        | <u>dρ/ρ</u> •10 <sup>-</sup> | l [usec] | [cm <sup>2</sup> ] | ₽<br>ax | •10 <sup>2</sup>   | <sup>p</sup> rad                       | A[%] | CRcore | ρ <sub>1</sub> /ρ <sub>2</sub> | Zone 1 | Zone 2 | Core |
| G55 | +8,08                            | +0,31                                   | -0 <sub>1</sub> 31           | 0,73     | 401                | 0,801   | 2,00               | 0,834                                  | 11,5 | 0,964  | 0,989                          | 1328   | 1728   | 3056 |
| G77 | +8,22                            | +0 <b>,</b> 44                          | -0,43                        | 0,68     | 392                | 0,799   | 1,90               | 0 <b>,</b> 8 <b>3</b> 4                | 12,3 | 0,911  | 0,985                          | 875    | 1190   | 2065 |

|     |                                       |                                      |           |            |            |          | Ē      | MWth/kg       |      |         |
|-----|---------------------------------------|--------------------------------------|-----------|------------|------------|----------|--------|---------------|------|---------|
|     | L <sub>core</sub> [MW <sub>th</sub> ] | L <sub>ges</sub> [MW <sub>th</sub> ] | B.R. core | B.R. BL.ax | B.R.Bl.rad | B.R. ges | Zone 1 | Zone 2        | Core | D.T.[a] |
| G55 | 2500                                  | 2801                                 | 0,898     | 0,178      | 0,209      | 1,285    | 1,02   | 0,66          | 0,82 | 10,4    |
| G77 | 2500                                  | 2842                                 | 0,842     | 0,165      | 0,269      | 1,276    | 1,52   | 0 <b>,</b> 98 | 1,21 | 7,7     |

Tabelle VI: Reaktoren mit carbidischem Brennstoff.

Die Erklärung der verwendeten Symbole ist auf Seite 10 angegeben.

**I** 0

### Anmerkung: In den Tabellen IV-VI bedeutet:

| $\Delta K_{F}$            | die Reaktivitätsänderung beim Fluten des<br>Reaktors mit Wasser                                       |
|---------------------------|-------------------------------------------------------------------------------------------------------|
| ∆K <sup>L</sup>           | die Reaktivitätsänderung beim Übergang von nor-<br>malen Kühlmitteldruck zu totalem Kühlmittelverlust |
| $\frac{dK/K}{d\rho/\rho}$ | die relative Reaktivitätsänderung bei Kühl-<br>mitteldichtevariation                                  |
| 1                         | die Neutronengenerationszeit                                                                          |
| -Tak/at                   | die Dopplerkonstante des Reaktors<br>(für T=900 <sup>0</sup> K)                                       |
| 11 <sup>2</sup>           | die Wanderfläche                                                                                      |
| Pax.rad                   | den axialen bzw. radialen Formfaktor                                                                  |
| A                         | die mittlere Volumenanreicherung des<br>Spaltstoffs                                                   |
| CR                        | die Konversionsrate                                                                                   |
| p1/p2                     | das Verhältnis der Leistungsdichtemaxima<br>in den beiden radialen Corezonen                          |
| m                         | die Spaltstoffmasse (Metall)                                                                          |
| L                         | die Leistung                                                                                          |
| BR                        | die Brutrate                                                                                          |
| R                         | die Spaltstoffbelastung (Rating)                                                                      |
| D.T.                      | die Verdopplungszeit                                                                                  |

### V. Diskussion der berechneten Größen

Viele Unterschiede in den nuklearen Eigenschaften der Reaktoren lassen sich mit Hilfe des Spektrums

$$\phi_{\text{norm}}(u) = \frac{\phi(u)}{\int_{0}^{\infty} \phi(u) du} \qquad u \text{ Lethargie} \qquad (2)$$

$$\phi \text{ skalarer Fluß}$$

in einfacher Weise erklären. Deshalb sind in den Abbildungen 1-4 die aus nulldimensionalen Rechnungen gewonnenen Spektren der untersuchten Reaktoren G11-G99 dargestellt. Die Abb. 5 zeigt den Einfluß von Änderungen des Corevolumens und der Kühlmitteldichte auf das Spektrum. Man erkennt, daß dieser Einfluß, selbst bei Volumenverminderung um ca. 30%, verhältnismäßig gering ist. Dies entspricht den Erwartungen, da in den Multigruppengleichungen der Term  $D^{1}B^{2}$  (D Diffusionskonstante,  $B^{2}$  geometrische Flußwölbung oder Buckling) zumindest für die betrachteten Verhältnisse klein ist im Vergleich zu den anderen Größen,wie z.B. Absorptions- oder Streuquerschnitt  $\Sigma_a^i$  bzw.  $\Sigma_s^i$ . Der Einfluß der Kühlmitteldichte auf das Spektrum ist noch geringer als der des Corevolumens auf Grund der kleinen Wirkungsquerschnitte des Heliums und seiner geringen Teilchenzahldichte im Reaktor.

Da sich die Reaktorpaare G22 und G66, G55 und G77 bzw. G88 und G99 lediglich im Corevolumen und im Kühlmitteldruck unterscheiden, weichen ihre Spektren nur geringfügig voneinander ab. Außerdem ist beim Reaktor mit dem kleineren Corevolumen der Anteil an niederenergetischen Neutronen im Spektrum kleiner, d.h. sein Spektrum ist härter. Dies ist einmal bedingt durch den größeren Wert des Bucklings B<sup>2</sup>, zum anderen durch die höhere Anreicherung im kleineren Core auf Grund der größeren Neutronenverluste durch Leckage. Dieser Sachverhalt kommt in den Abb. 1-4 deutlich zum Ausdruck. Von den untersuchten Reaktoren besitzen diejenigen mit carbidischem Brennstoff (G55 und G77) ein verhältnismäßig weiches Spektrum als Folge der hohen Teilchenzahldichte von gut moderierendem Kohlenstoff. Die Spektren der übrigen Reaktoren sind wesentlich härter. Unter ihnen ist das des Reaktors G44 wegen der hohen Anreicherung und des großen Anteils an wenig moderierendem Zirkonium am härtesten. Das im Vergleich zum Reaktor G33 deutlich weichere Spektrum des Reaktors G11 (Abb. 1) ist hauptsächlich bedingt durch den größeren Anteil an Hüllmaterial (der Streuquerschnitt der Mischung wird stärker erhöht als der Absorptionsquerschnitt). Der Volumenanteil des Hüllmaterials beim Reaktor G11 ist nahezu doppelt so hoch wie beim Reaktor G33. Zum Ausgleich dafür differieren die Kühlmittelvolumenanteile um den entsprechenden Betrag.

Wie aus den Tabellen IV-VI hervorgeht, sind alle Reaktoren nach dem Verlust des Kühlmittels (Lossfall) etwas überkritisch

 $\Delta K_{L} = K_{eff}(Loss) - K_{eff}(Normal) > 0$ ,

denn durch den Kühlmittelverlust wird das Spektrum etwas härter (Abb. 5). Dies hat einerseits einen höheren Ausfluß von Neutronen aus dem Core und, wegen der Energieabhängigkeit der Wirkungsquerschnitte, eine geringere Zahl von Spaltungen im Spaltstoff zur Folge. Andererseits vergrößert sich jedoch die mittlere Zahl der Spaltneutronen sowie die Zahl der Schnellspaltungen im Uran, und die Neutronenverluste durch Einfangprozesse werden geringer. Die letzten drei Effekte überwiegen und bewirken den Anstieg der Reaktivität. Verglichen mit den für dampf- bzw. natriumgekühlten Brütern gültigen  $\Delta K_L$ -Verten sind die hier angegebenen jedoch sehr klein wegen des, wie schon erwähnt, geringen Einflusses des Heliums auf die nuklearen Vorgänge im Reaktor. Da die Spektrumsänderung bei Kühlmittelverlust mit dem Mormaldruck des Kühlmittels zunimmt, wirken sich im Falle einander entsprechender Reaktoren die beschriebenen Vorgänge beim Reaktor mit höherem Kühlmitteldruck stärker aus, und damit besitzt dieser auch einen höheren  $\Delta K_L$ -Vert. Das im ersten Augenblick überraschend kleine  $\Delta K_L$  des Reaktors G44 hat im vesentlichen zwei Ursachen. Einmal die geringe Teilchenzahldichte des Urans im Core, von der die Zahl der Schnellspaltungen abhängt, und zum anderen den im Vergleich mit den übrigen Reaktoren relativ großen Unterschied der Leckagen im Normal- und Lossfall.

Der Reaktivitätsunterschied zwischen Normalzustand und (mit Wasser) geflutetem Zustand

 $\Delta K_F = K_{eff}(Flut) - K_{eff}(Normal)$ 

ist bei allen Reaktoren mit Ausnahme von G11 positiv. Dies liegt daran, daß der Gewinn an Meutronen durch Verminderung der Leckage im gefluteten Zustand auf nahezu O den Verlust an Meutronen durch erhöhte Absorption überwiegt. Nur beim Reaktor G11 sind die Verhältnisse umgekehrt. Im Gegensatz zu dampfgekühlten schnellen Brütern wäre daher, selbst bei Struktur- und Hüllmaterialien, die gegen Korrosion widerstandsfähig sind, ein Be- und Entladen unter Wasser nicht möglich. Zu beachten ist allerdings, daß die angegebenen  $\Delta K_{\rm F}$ -Werte nur für einen Abbrand von 27.500 MWd/t gültig sind. Bei höheren Abbränden wird, ähnlich wie bei dampfgekühlten schnellen Brütern,  $\Delta K_{\rm F}$  negativ. Bei einander entsprechenden Reaktoren ist  $\Delta K_{\rm F}$  beim Reaktor mit dem größeren Core kleiner. Denn wegen der vernachlässigbar kleinen Leckage im gefluteten Zustand ist

 $\Delta K_{\rm F} \gtrsim K_{\infty}({\rm Flut})-1$ 

- 12 -

und  $K_{\infty}$  ist für das kleinere Core wegen der höheren Anreicherung größer. Die hohe Anreicherung im Core des Reaktors G44 bedingt den hohen Wert für  $K_{\infty}$  und  $\Delta K_{\rm F}$ .

Der Absolutbetrag des Heliumdichtekoeffizienten  $\frac{dK/K}{d\rho/\rho}$  ist bei allen Reaktoren praktisch gleich  $\Delta K_L$ . Daraus folgt, daß im Bereich zwischen normalem Kühlmitteldruck und Kühlmitteldruck gleich 0 mit abnehmender Kühlmitteldichte  $K_{eff}$  linear zunimmt.

Die Neutronengenerationszeit ist definiert als

$$\ell = \frac{\circ}{\int_{\circ}^{\circ} (\nu \Sigma_{f}) \phi \, du}$$
(3)

Es bedeutet: v die Geschwindigkeit der Neutronen,  $\Sigma_{f}$  den makroskopischen Spaltquerschnitt, v die mittlere Zahl der Spaltneutronen. (Normierung des Flusses und adjungierten Flusses:  $\int (v\Sigma_{f})\phi du = \int \phi^{+} \chi du = K_{eff} = 1$ ,  $\chi$  Spaltspektrum.)

und zeigt ebenfalls systematische Änderungen beim Übergang vom größeren zum kleineren Reaktor. Sie ist im Falle des kleineren Cores, wegen der höheren Anreicherung und dem damit verbundenen größeren Verhältnis von makroskopischem Spaltquerschnitt zu totalem Querschnitt kleiner. Beim Reaktor G44 ist trotz hoher Anreicherung wegen der kleinen Teilchenzahldichte des Spaltstoffs im Core der makroskopische Spaltquerschnitt kleiner als z.B. beim Reaktor G88, und daher erklärt sich seine größere Neutronengenerationszeit. Der große Wert für & bei den Reaktoren mit carbidischem Brennstoff rührt zusätzlich noch von dem hohen Anteil an niederenergetischen Neutronen im Spektrum her (geringere mittlere Neutronengeschwindigkeit).

Für die Wanderfläche gilt:«

$$M^{2} = \bigotimes_{o}^{\phi_{o}} D \phi_{o} du$$

$$M^{2} = \bigotimes_{o}^{(\nu \Sigma_{f})\phi_{o}} du$$

$$(4)$$

Auch hier wird beim Übergang vom größeren zum entsprechend kleineren Reaktor der Wert von  $\mathbb{M}^2$  kleiner. Das große  $\mathbb{M}^2$  des Reaktors G44 ist im wesentlichen eine Folge der großen Diffusionskonstanten (kleine Teilchenzahldichte des Brennstoffs und Struktur- bzw. Hüllmaterials).

Weiter nimmt im allgemeinen die Dopplerkonstante -TdK/dT mit höherer Anreicherung bzw. härterem Spektrum ab. Auch dieser Effekt ist bei den Reaktorpaaren G22, G66 usw. vorhanden, wie aus den Tabellen hervorgeht. Außerdem besitzt der Reaktor G44 mit der höchsten Anreicherung auch die kleinste Dopplerkonstante. Umgekehrt ist die Dopplerkonstante bei Reaktoren mit carbidischem Brennstoff auf Grund des weichen Spektrums am größten.

Auch die Brut- und Konversionsraten des Cores werden beim Übergang vom größeren zum kleineren Core und damit von der geringeren zur höheren Anreicherung kleiner. Dafür nimmt die Leckage aus dem Core (in radialer Richtung) zu, wodurch sich eine wesentlich größere Brutrate im (radialen) Blanket ergibt. Dieser Anstieg der Blanketbrutrate kann den Rückgang der Corebrutrate unter Umständen sogar überkompensieren, z.B. bei Verwendung eines dickeren Blankets. Vergleicht man die Brutrate in den axialen Blankets der Reaktoren G44 und G88, so ist die des Reaktors G44 trotz höheren Ausflusses von Neutronen aus dem Core kleiner als die des Reaktors G88. Dies liegt an der im ersten Fall größeren Transparenz der axialen Blankets (großes  $M^2$ ). Hier könnte durch ein dickeres Blanket die Brutrate noch wesentlich gesteigert werden.

- 14 -

## VI. Zusammenfassung

Für die in diesem Bericht betrachteten gasgekühlten schnellen Brutreaktoren von 1000 MW<sub>e</sub> Leistung ergeben sich die folgenden wesentlichen Kennzahlen<sup>1)</sup>:

Das Core enthält bei einem Volumen von ca. 11300 (7200) Litern etwa 3100 (2100) kg Spaltstoff (Pu239 und Pu241). Die Spaltstoffbelastung beträgt ungefähr 0,79 (1,15) $MW_{+b}/kg$ .

Die Konversionsraten des Cores liegen zwischen 0,9 und 1. Dies hat eine geringe Reaktivitätsänderung mit der Zeit bzw. lange und damit ökonomisch günstige Verweilzeiten des Brennstoffs im Core zur Folge.

Die Brutrate beträgt im Mittel 1,3. Auf Grund des harten Spektrums und der dadurch bedingten großen Leckage könnte sie mit dickeren Blankets noch wesentlich - bis auf ca. 1,5 - erhöht werden.

Die (exponentiellen) Verdopplungszeiten sind relativ kurz und liegen zwischen 7 und 12 Jahren.

Die Reaktivitätsänderung bei Kühlmittelverlust beläuft sich auf ungefähr 0,4 %  $\hat{z}$  1%. Sie ist somit wesentlich kleiner als bei dampf- bzw. natriumgekühlten schnellen Brütern.

Die Dopplerkonstante beträgt bei Reaktoren mit oxidischem Brennstoff etwa 0,66.10<sup>-2</sup> und bei Reaktoren mit carbidischem Brennstoff 2,0.10<sup>-2</sup>.

Der Verfasser möchte den Herren Dr. M. Dalle-Donne und Dr. E. Kiefhaber für hilfreiche Diskussionen und Hinweise danken.

<sup>1)</sup> Die Daten der Reaktoren G11 und G44 sind in dieser Zusammenfassung nicht berücksichtigt, da sie für einen gasgekühlten schnellen Brüter nicht charakteristisch sind.

### Literaturverzeichnis

- N. Dalle-Donne, E. Eisemann, K. Wirtz, Some Considerations on Gas-Cooling for Fast Breeders, KFK-595, Nai 1967. sowie:
   N. Dalle-Donne, K. Wirtz, Gas Cooling for Fast Breeders, KFK-689, November 1967. und:
   N. Dalle-Donne, E.Eisemann, F. Thümmler, K. Wirtz, High Temperature Gas Cooling for Fast Breeders, KFK-841, Oktober 1968.
   A. Nüller et al., Referenzstudie für den 1000 MWe dampfgekühlten schnellen Brutreaktor (D1), KFK-392, 1966.
   E. Kiefhaber, Gesellschaft für Kernforschung Karlsruhe, Institut für Neutronenphysik und Reaktortebhnik, private Mitteilung.
- [4] W. Häfele, Gesellschaft für Kernforschung Karlsruhe, Institut für angewandte Reaktorphysik, private Mitteilung.



.









.