

KERNFORSCHUNGSZENTRUM

KARLSRUHE

Mai 1968

KFK 794

Institut für Kernverfahrenstechnik

Laufzeitanalyse eines an einem CO₂-Molekularstrahl

gestreuten K-Atomstrahls

J. Gspann, G. Krieg

GESELLSCHAFT FUR KERNFORSCHUNG M. B. H.

KARLSRUHE

ZEITSCHRIFT FÜR NATURFORSCHUNG Band 23a, Heft 5, 1968 Verlag der Zeitschrift für Naturforschung, Tübingen

a service de la service de la configuração de la construição de la construição de la construição de la construi Construição de la cons

Laufzeitanalyse eines an einem CO2-Molekularstrahl gestreuten K-Atomstrahls

J. GSPANN und G. KRIEG

and a star normalized start start of the sta

and the second second second second sequences

Laufzeitanalyse eines an einem CO₂-Molekularstrahl gestreuten K-Atomstrahls J. GSPANN und G. KRIEG

Institut für Kernverfahrenstechnik der Universität und des Kernforschungszentrums Karlsruhe

(Z. Naturforsch. 23 a, 726-730 [1968]; eingegangen am 23. Februar 1968)

A method is described to determine the velocity dependence of scattering processes from timeof-flight measurements with crossed molecular beams. Scattering of a potassium atomic beam by short pulses of a carbon dioxide molecular beam generates attenuation pulses in the intensity of the potassium beam. The time-of-flight broadening of these attenuation pulses is measured employing signal averaging to improve the signal-to-noise ratio from 1 to 100. The experimental results are in accordance with computed time-of-flight distributions based on the additionally measured velocity distributions and geometries of the two molecular beams, and using the known velocity dependence of the K-CO₂ scattering cross section.

Einleitung und Zusammenfassung

Zur Untersuchung der Geschwindigkeitsabhängigkeit von Streuprozessen kann die Methode der gekreuzten Molekularstrahlen mit einem Laufzeitverfahren kombiniert werden. Dazu erzeugt man kurze Schwächungsimpulse in der Intensität des Primärstrahles, indem man den Streustrahl mit Hilfe einer Unterbrecherscheibe nur kurzzeitig freigibt. Die Laufzeitverteilung dieser Schwächungssignale nach Durchlaufen des Weges zwischen Streuzentrum und Primärstrahldetektor wird durch die Geschwindigkeitsverteilungen der Teilchen in den sich kreuzenden Strahlen und die Geschwindigkeitsabhängigkeit des Streuprozesses bestimmt.

Das Verfahren wurde mit einem K-Atomstrahl als Primärstrahl und einem intensitätsschwachen CO_2 -Strahl als Sekundärstrahl erprobt. Unter den in der vorliegenden Arbeit gewählten Bedingungen ergibt sich ein Verhältnis zwischen der Amplitude des Schwächungssignals und der stationären K-Intensität von $10^{-5}-10^{-4}$. Das zugehörige Signal/Rausch-Verhältnis beträgt ungefähr 1. Mit Hilfe eines 100-Kanal-Signalmittlers wird letzteres um etwa 2 Größenordnungen verbessert, wodurch die Laufzeitverteilung bis auf einige Prozent ihrer Amplitude ausgemessen werden kann.

Um einen Vergleich mit der Theorie zu ermöglichen, werden die Geschwindigkeitsverteilungen im K- und im CO₂-Strahl durch Laufzeitanalyse¹ bestimmt und die Geometrie des Streuvolumens, sowie die relative Dichteverteilung innerhalb desselben durch Messung der Intensitätsprofile ermittelt. Aus diesen Daten wird unter Vorgabe der bekannten Geschwindigkeitsabhängigkeit des K-CO₂-Streuquerschnitts die Laufzeitverteilung des Schwächungssignals berechnet. Der Vergleich mit dem experimentellen Ergebnis zeigt Übereinstimmung im Rahmen der Meßgenauigkeit.

Apparativer Aufbau und Signalverarbeitung

Die Anordnung der gekreuzten Strahlsysteme innerhalb der Vakuumkammer ist in Abb. 1 schematisch dargestellt. Das Kaliumstrahlsystem wurde in ² beschrieben. Ofen, Kühlkappe und Kollimator haben

¹ E. W. BECKER U. W. HENKES, Z. Phys. **146**, 320 [1956]. ² H. BURGHOFF U. J. GSPANN, Z. Naturforsch. **22** a, 684 [1967]. Spalte von 0,10 mm, 2,0 mm und 0,41 mm Weite, die Entfernungen der Spalte vom Streuzentrum (x=0) betragen x=-202,0 mm, -187,8 mm und -144,0 mm in der genannten Reihenfolge. Ein magnetischer Schließer dient zum Abblenden des K-Strahls. Das Wolframband des Langmuir-Taylor-Detektors (LT-Detektor) befindet sich in x=+177,5 mm Abstand vom Streuzentrum und ist 1,0 mm breit. Für diese Anordnung ergibt sich der von Kusch³ definierte Auflösungswinkel a_0 zu 36'.

Abb. 1. Anordnung zur Laufzeitanalyse mit gekreuzten Molekularstrahlen. Die umgebende Vakuumkammer ist nicht dargestellt.

Das CO₂-Strahlerzeugungssystem besteht aus einer konvergenten Düse mit 0,18 mm Durchmesser in y = -139,1 mm Entfernung vom Streuzentrum (y=0) und einem Abschäler mit 0,64 mm Durchmesser am Ort y = -138,0 mm. Das abgeschälte CO₂-Gas wird von einer mit flüssigem Stickstoff gekühlten Kondensationsfläche aufgefangen.

Zur Erzeugung der CO_2 -Impulse dient die Unterbrecherscheibe 1 von 0,5 mm Dicke und 97 mm Durchmesser in y = 29,6 mm Entfernung vom Streuzentrum. Sie hat vier radiale, paarweise diametrale Schlitze von 15 mm Länge und 0,5 mm Breite mit schneidenförmigen Kanten und wird von einem Hysterese-Synchron-Motor (McLean Syntorque EF17H71) angetrieben. Im Lauf der Experimente erwies es sich als nötig, den Strahlunterbrecher an Schwingungsdämpfern aufzuhängen, weil die vom Motor ausgehenden mechanischen

³ P. KUSCH, J. Chem. Phys. 40, 1 [1964].

Schwingungen mit dem gesuchten Streusignal phasenstarr gekoppelte Störsignale, die vom Signalmittler aufintegriert werden, verursachen. Zur Wärmeabfuhr ist das Motorgehäuse durch eine flexible Kupferlitze mit der Wasserkühlung der Kühlkappe des Kaliumofens verbunden. Es zeigte sich, daß die Kaliumatome, die zwar in Strahlebene, aber nicht achsenparallel fliegen, an der rotierenden CO_2 -Unterbrecherscheibe zum Auffänger hin reflektiert werden und wegen Scheibenschwingungen zu einer Modulation der Kaliuminensität führen. Dieses Störsignal konnte durch Verdecken der rotierenden Scheibe mit der Abdeckplatte (18) beseitigt werden. Die Platte ist mit einem 5 mm breiten und 20 mm hohen Austrittsspalt für die CO_2 -Impulse versehen.

Zur Messung der Geschwindigkeitsverteilungen in den beiden Strahlen mit Hilfe der Laufzeitanalyse ist es erforderlich, die Anordnung um einen CO₂-Detektor und eine Unterbrecherscheibe im K-Strahl zu erweitern.

Der Elektronenstoßionisator⁴ (ES-Detektor) für den CO_2 -Strahl hat eine schlitzförmige Eintrittsblende von 9 mm Länge. Ihre Weite wird jeweils so gewählt, daß der durch Düse und Eintrittsblende bestimmte Strahl an der Stelle der Unterbrecherscheibe 1 so breit ist wie die Scheibenschlitze, also 0,5 mm.

Die Unterbrecherscheibe 2 im K-Strahl hat die gleichen Abmessungen wie die im CO_2 -Strahl, jedoch ist ein Paar diametraler Schlitze auf 17 mm erweitert. Durch einen der beiden weiten Schlitze tritt der K-Strahl bei den Streuexperimenten, die mit stehendem Unterbrecher 2 durchgeführt werden. Zur Laufzeitanalyse der Geschwindigkeitsverteilung im K-Strahl werden die vom zweiten Schlitzpaar von 0,5 mm Weite bei laufender Scheibe erzeugten K-Strahlimpulse verwendet.

Das Blockschaltbild der verwendeten Meßanordnung ist in Abb. 2 wiedergegeben. Die K-Atome bzw. CO_2 -Moleküle liefern nach Durchfliegen der Laufstrecke und Oberflächenionisation (LT-Detektor) bzw. Elektronenstoßionisation (ES-Detektor) Ionenströme, deren Änderungen als Spannungsimpulse an einem Ableitwiderstand von 1 M Ω gemessen werden. Streusignale werden als Schwächung des kontinuierlichen K-Strahles, also als Impulse mit negativer Amplitude, registriert. Die Gleichstromintensität des K-Strahles wird dabei mit

Abb. 2. Blockschaltbild der Signalverarbeitung. Bei der Messung der CO₂-Laufzeitverteilung wird an Stelle des dargestellten Langmuir-Taylor-Detektors ein Elektronenstoßionisationsdetektor verwendet.

⁴ O. HAGENA u. W. HENKES, Z. Naturforsch. 15 a, 851 [1960].

einem Mikroampèremeter (Kipp & Zonen AL 4) gemessen. Synchron mit der Freigabe des Molekularstrahles durch einen Schlitz der Unterbrecherscheibe erzeugt ein durch den gegenüberliegenden Schlitz fallender Lichtstrahl einen Photoelektronenimpuls, der als Zeitmarke für die Laufzeitmessung dient. Die auf den jeweiligen Detektor folgende Anordnung zur Verarbeitung der Laufzeitsignale ist für beide Molekularstrahlen identisch. Über einen Koppelkondensator von 3,3 nF und einen FET-Emitterfolger gelangen die Spannungsimpulse zum Vorverstärker (Tektronix, Type 132-L), der eine einstellbare Verstärkung bis zu 2.103 liefert, und werden anschließend mit dem Photoimpuls überlagert oszillographiert. Das Signal/Rausch-Verhältnis der Signalamplituden beträgt für die K-Laufzeitverteilung etwa 10, für die CO_2 -Laufzeitverteilung etwa 10^{-1} und für die Laufzeitverteilung des Schwächungssignals ungefähr 1. Das besonders ungünstige Signal/Rausch-Verhältnis der CO2-Laufzeitverteilung rührt daher, daß der Elektronenstoßionisationsdetektor im Gegensatz zum Langmuir-Taylor-Detektor das Untergrundgas nachweist.

Die rauschbehafteten Signale werden vom Y-Verstärker des Oszillographen (Siemens G 60) an den Eingang eines 100-Kanal-Signalmittlers (PAR TDH9 Waveform Eductor) geführt. Der am Ausgang des zweiten Eingangsverstärkers Y_2 gesondert verfügbare, etwa zehnfach verstärkte Photoimpuls wird als Triggersignal für den Waveform Eductor benutzt. Nach einer einstellbaren Verzögerung gegenüber dem Triggersignal werden im Signalmittler 100 Kondensatoren nacheinander für eine wählbare Zeit δt über einen ebenfalls variablen Aufladewiderstand mit dem Eingang verbunden. Liegt an diesem ein zum Triggerimpuls phasenstarres Signal, so erhält der gleiche Kondensator stets die gleiche Signalspannung. Er lädt sich daher proportional zu dieser auf, während die statistischen Rauschsignale einen relativ abnehmenden Beitrag liefern. Eine mit 250 Hz rotierende Unterbrecherscheibe mit vier Schlitzen liefert in 50 sec $N=5\cdot 10^4$ Laufzeitsignale. Bei einer Kanalverweilzeit von $\delta t = 10 \ \mu s$ bedeutet das eine wirkliche Integrationszeit von 5·10⁻¹ sec, d. h. bei einer gewählten Zeitkonstante der RC-Integratoren von $5\cdot 10^{-2}$ sec laden sich die Kondensatoren auf 99% der Signalamplitude auf. Das Signal/Rausch-Verhältnis wird durch die Integration um den Faktor $\sqrt{N} = 10^2 \cdot \sqrt{5}$ verbessert.

Der Signalmittlungsprozeß kann auf einem Oszillographen (Tektronix, Type 545) verfolgt und das Ergebnis mit einem X-Y-Schreiber (Moseley 2DR-2AM) zur Auswertung aufgezeichnet werden. Die Signalfolgefrequenz und die Dauer eines "sweeps", die der hundertfachen Kanalverweilzeit δt entspricht, werden mit einer quarzstabilisierten Uhr (Beckman M 7360) gemessen.

Experimentelle Ergebnisse

Bei Steigerung des CO_2 -Einlaßdruckes p_0 erreicht der Absolutwert der Streusignalamplitude ein Maxi-

mum bei $p_0 = 9$ Torr. Höhere Einlaßdrucke führen bei steigendem Kammerdruck zu zunehmender Schwächung der K-Intensität und der Absolutgröße des Streusignals. Die im folgenden beschriebenen Experimente wurden daher mit einem CO₂-Einlaßdruck von 9 Torr durchgeführt ⁵.

Abb. 3 zeigt die Laufzeitverteilung des im K-Strahl durch den CO_2 -Impuls hervorgerufenen Schwächungssignals, die CO_2 -Laufzeitverteilung und die K-Laufzeitverteilung am Eingang bzw. Ausgang des Waveform Eductors (linke bzw. rechte Seite der Abbildung). Der Inhalt von Abb. 3 b ist zusätzlich als vom X-Y-Schreiber registriertes Histogramm in Abb. 4 wiedergegeben. Die Krümmung der Nullinie

Laufzeitverteilung eines K-Schwächungssignals, hervorgerufen durch einen CO2-Impuls

erzeugt mit der Unterbrecherscheibe 1

Laufzeitverteilung eines K-Impulses, erzeugt mit der Unterbrecherscheibe 2

Abb. 3. Laufzeitverteilungen am Waveform-Eductor-Eingang (a, c, e) und Ausgang (b, d, f). Die Horizontalablenkung beträgt 0,2 ms/Rastereinheit, G ist der Gesamtverstärkungsfaktor. Die Laufwege betragen bei a, b: 29,6 mm CO₂-Laufweg plus 177,5 mm K-Laufweg; bei c, d: 177,5 mm; bei e, f: 318,7 mm.

⁵ Bei diesem Einlaßdruck besteht der CO₂-Strahl praktisch nur aus Einzelmolekülen. Molekülagglomerate werden erst bei wesentlich höherem Einlaßdruck gebildet. kann durch das Ausströmen eines CO_2 -Polsters erklärt werden, das sich zwischen rotierender Scheibe und Abdeckplatte auf Grund der großen Breite des CO_2 -Strahls bildet und teilweise aus dem Spalt der Abdeckplatte austritt⁶.

Abb. 4. Vom X-Y-Schreiber registriertes Histogramm des im K-Strahl vom CO_2 -Impuls hervorgerufenen Schwächungssignals (vgl. Abb. 3 b). Breite eines Kanals: 13,0 μ s. Die ausgezogene Kurve wurde mit Hilfe der bekannten Geschwindigkeitsabhängigkeit des K-CO₂-Streuquerschnitts aus den gemessenen Geschwindigkeitsverteilungen der beiden Strahlen berechnet und unter Berücksichtigung des gestrichelten Untergrundsignals aufgetragen.

Die zeitliche Auflösung der Laufzeitverteilungen wurde durch Messung der Abhängigkeit ihrer Halbwertsbreiten Δt von der Umlaufperiode T der jeweiligen Unterbrecherscheibe untersucht. Über die Beziehung

$$\tau = (b/\pi D) T \tag{1}$$

bestimmt T die Halbwertsbreite τ der wirksamen Öffnungsfunktion, die genügend kurz sein muß. Dabei bedeuten b die Schlitzweite und D den Durchmesser der Scheibe. Zur Auswertung wurden nur vollaufgelöste Messungen herangezogen, für die Δt bei Verringerung von T innerhalb der Meßgenauigkeit konstant blieb⁷.

Um den Vergleich mit der Theorie zu ermöglichen, wurde die Geometrie des Streuvolumens durch Messung der Intensitätsprofile der beiden gekreuzten Strahlen bestimmt. Dabei ergab sich, daß die Ausdehnung des Streuvolumens in x-Richtung 19 mm beträgt und die Intensität des CO_2 -Strahls in diesem gepulsten Bereich konstant ist⁸. Die y- und z-Ausdehnung des Streuvolumens sind gegeben durch den Querschnit des von Ofenschlitz und Wolframband bestimmten K-Strahls am Ort des Streuzentrums und betragen 10,0 mm bzw. 0,57 mm; die K-Intensität ist über diesem Querschnitt ebenfalls konstant.

Vergleich mit der Theorie

Die Berechnung des Schwächungssignals aus den Laufzeitverteilungen der gekreuzten Strahlen besteht in der Ermittlung der Anzahl der K-Atome, die zur Zeit t_0 nach der maximalen Freigabe des CO₂-Strahls am K-Detektor gegenüber der stationären K-Intensität fehlen.

Diese K-Atome hätten für die Flugstrecke zwischen einem Volumenelement des Streuvolumens mit den Ortskoordinaten x, y, z und dem LT-Detektor die Zeit $t_{\rm K}$ benötigt, wurden aber an CO₂-Molekülen gestreut, die dieses Volumenelement zur Zeit $t_{\rm C}$ nach der maximalen Freigabe des CO₂-Strahls durch den Unterbrecher 1 erreicht hatten.

Dann gilt:

$$t_{\mathrm{K}} + t_{\mathrm{C}} = t_0 - t_1, \quad -\tau \leq t_1 \leq +\tau, \quad (2)$$

 t_1 beschreibt die Öffnungszeit des CO₂-Impulses und hängt mit der Umlaufperiode T der Scheibe zusammen:

$$t_1 = (z/\pi D) T, \qquad -b \leq z \leq +b.$$
 (3)

Als Öffnungsfunktion G(z) kann eine Dreiecksfunktion angenommen werden.

Die Wahrscheinlichkeit der Streuung zwischen K-Atom und CO₂-Molekül wird durch den Streuquerschnitt $\sigma(g)$ beschrieben, wobei die Relativgeschwin-

⁶ Diese Erklärung wird durch eine Abhängigkeit des Untergrundsignals von der Drehrichtung der Unterbrecherscheibe bekräftigt. Sie kommt dadurch zustande, daß das Unterbrechersystem unter 85° gegen die Strahlachse geneigt ist, und die Strahlmoleküle von der Abdeckplatte daher entwe der zum Spalt hin oder von ihm fort reflektiert werden. Der Störeffekt sollte sich durch Ausblenden des Strahls vor der Unterbrecherscheibe 1 beseitigen lassen.

⁷ O. HAGENA u. K. VARMA, Rev. Sci. Instrum. **39**, 47 [1968], definieren ein Auflösungsvermögen $R = \Delta t/\tau$ und zeigen, daß für R > 5 die gemessene Halbwertsbreite Δt um weniger als 2,5% größer ist als die ideale bei $\tau \to 0$. Für die hier ausgewerteten Messungen ist die Bedingung R > 5 stets erfüllt.

⁸ Unterhalb des gepulsten Bereiches durchsetzt ein nichtgepulster CO₂-Strahlbereich auf einer Länge von etwa 40 mm den K-Strahl. Diese Streuzone beeinflußt aber die K-Laufzeitverteilung und das Schwächungssignal in gleicher Weise und ist daher für die Auswertung ohne Belang.

digkeit g gegeben ist durch

$$g^{2} = \frac{(l_{\rm K} - x)^{2}}{t_{\rm K}^{2}} + \frac{(l_{\rm C} + y)^{2}}{t_{\rm C}^{2}}.$$
 (4)

Hierin bedeuten $l_{\rm K}$ bzw. $l_{\rm C}$ den Abstand des Streuzentrums vom K-Detektor bzw. von der CO₂-Unterbrecherscheibe.

Im vorliegenden Fall ist die Schwächung $\Delta j_{\rm K}(t_0)$ sehr klein gegenüber der stationären Intensität $j_{\rm K}(t_0)$. Daher gilt

$$\Delta j_{\mathrm{K}}(t_{0}) = -\int_{t_{\mathrm{K}}=0}^{\infty} \int_{\mathrm{Streuvolumen}} \int_{\mathrm{C}} G(z) \ j_{\mathrm{K}}(t_{\mathrm{K}}, x) \ n_{\mathrm{C}}(t_{\mathrm{C}}, y)$$
$$\cdot \sigma(g) \ (g/v_{\mathrm{K}}) \ \mathrm{d}x \ \mathrm{d}y \ \mathrm{d}z \ \mathrm{d}t_{\mathrm{K}} .$$
(5)

Dabei ist $n_{\rm C}(t_{\rm C}, y)$ die Dichte der CO₂-Moleküle unter Berücksichtigung der Stromdichte-Homogenität über den *x*-z-Querschnitt des Streuvolumens. Entsprechend hängt $j_{\rm K}$ nur von *x* ab, weil der K-Strahl über den *y*-z-Querschnitt homogen ist. Der Faktor $g/v_{\rm K} = g t_{\rm K}/(l_{\rm K} - x)$ berücksichtigt die Bewegung der CO₂-Streuteilchen. Da der Langmuir-Taylor-Detektor die Stromdichte mißt, läßt sich $j_{\rm K}(t_{\rm K}, x)$ direkt aus der in der Entfernung $L_{\rm K}$ gemessenen Lauf-

⁹ H. PAULY, Dissertation, Bonn 1958.

zeitverteilung des K-Strahles
$$U(t_{\rm K}, L_{\rm K})$$
 ermitteln:

$$j_{\rm K}(t_{\rm K},x) = \frac{L_{\rm K}}{l_{\rm K}-x} U(t_{\rm K} L_{\rm K}/(l_{\rm K}-x),L_{\rm K}).$$
(6)

Der Elektronenstoßionisator mißt dagegen die Dichteverteilung $V(t_{\rm C}, L_{\rm C})$ des CO₂-Impulses, woraus folgt:

$$n_{\rm C}(t_{\rm C}, y) \sim \frac{L_{\rm C}}{l_{\rm C} + y} V(t_{\rm C} L_{\rm C} / (l_{\rm C} + y), L_{\rm C}).$$
 (7)

Für den Streuquerschnitt $\sigma(g)$ wurde die bei geringer Auflösung der Streuanordnung zu erwartende $g^{-2/3}$ -Abhängigkeit⁹ angenommen und die zu $\Delta j_{\rm K}(t_0)$ führenden Integrationen mit Hilfe eines Rechenprogramms ausgeführt.

Das Ergebnis ist in Abb. 4 unter Berücksichtigung des gestrichelt gezeichneten Untergrundsignals und normiert auf die experimentelle Minimumstiefe als ausgezogene Kurve eingetragen. Man bemerkt, daß die Ergebnisse von Theorie und Experiment innerhalb der Fehlergrenze übereinstimmen.

Wir danken Herrn Professor Dr. E. W. BECKER für die stete Förderung dieser Arbeit. Herrn H. Häss danken wir für die Entwicklung der FET-Emitterfolger. Die Arbeit wurde durch eine Sachbeihilfe der Deutschen Forschungsgemeinschaft unterstützt.

730