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The time dspendent behav1our of two reactors, one uncontrolled
and the other controllied by means of a speclfled automatic .con-
trol system, are analysed and compared. Conditions are estab-
lished to rule out overshoots over the final stationary values

. of power and temperature, and upper limits of the overshoots are
calculated (in the Appendix) when these conditions are not sa-
tisfied. Finally some attentlon is given to the 1nfluenc° of the
delayed neutrons. . :

List of symbols

kX = multiplication factor

é = ac¢tual reactivity = k-1

d k* = actual reactivity increased by the amount which is
suppressed by the negative temperature effect due 46
the heating up of the U rods ( k¥ = 8k+1T )

£ = mean life of the neutrons in the reactor

m ‘= heat capacity of the whole reactor fuel (uranium speci-

_ fic heat x fuel mass) ' '

Q = reactor power :

T = mean fuel temperaturs referred to the room e ennarature

o = heat iransmission coefficient

Bi fraction of delayed neutrons of the ith group (/3 {’-ﬁ)

& = negative temperature coefficient due to the heating up
of the fuel - .

li = §ecay constani corrésponding to the 1tn groups of de-

1“Jea qeutvons.

Cne of the main problews in operation of nuclear reachors is to
increase tue_n ”er 1eve1 fron a steady vel ue to a higher Qne
without any oversnoou over the final statlonarj valuss of power

and temperature (Fig.1).
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In this peper the conditions for this will be estabslished in
two different cases. The first is the case.of a.reactor with-
out any'aﬁtomatic control sysﬁem, in which the reactivity is
suddenly increased to a positive value by.pﬁlling out a con-

trol rod and which becomes stabilized only by the negative
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reactivity arising from the increasing tempefature. And the
second -is the case of a reactor controlled by means of a spe-
cified cbntrol system 1n whlch the power demand ‘is suddenly
incre@séd—to a'highe* level Under. certaln assumptlons the

equations which rule both cases are the same.

'1..React0r.without automatic control-sysfem.

We étart from the Well Known equatlons'1}i
1 de _ 6k
(1) a dt
(2)  Sk=Ske)-[(T-Tto) = 8k~

S

(3) @=cl + m5- dT , (newtbnian cooling)
dt

supposing at the ﬁoment, a unigue mean life time f of the neu}

trons in the reactor, and further assuming that the reactor has

) Been operated up to t=0 in a steady state charactérized-by

1) Only the temperature effect due to the fuel has been con-
sidered here. This generally is admissible, as ‘the heating
up of the moderator occurs with a much larger time constant
than that which corresponds to the fuel. Hence the tempera-
ture effect due to the moderator, like the poisoning effect,
- must be compensated later by pulling out gradually a control
or shim rod. '
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Sk, = Sk~ T'T, - 0

At the time t=0 the reactivity is increased suddenly to the
value: ék@)and the variation of Gand T will now be analysed.'

As initial conditions we have now:

Qo) = Qo
(5) Ty =T |
B _5Mﬂ;5ktrn>0_}
Combining (1) and (2) we. obtain
) SN FORICION
 which on differentiation gives.
(7) _CLZ.-. =-£M)
dt T qtt -

Combining (6), (7) and (3) and introducing the coefficients

mt . 4
(8) r -
Lé._'=3
r ®
and the function
(9) a.
, 3”’@,,. s

we obtain the equation
(10) _ e
Cs+8s = Q (1~-¢€)
This is the equation which describes the motioen of a unlt nass

under the 1nfluence of g force




_ k-

(11) f: %ﬁ(l-es).-.-%g_

against a frictional resistance proportional to its velocity [51:

(12) re 4§

The force f is the gradient of a pdteﬁtial U, and therefora

when B=0 the unit mass would oscillate with a constant ampli~

tude dependimg only on the initiai conditions. As B> 0 the-mo-

tion is damped and approaches gradually the equilibrium point

=0, 8=0 for t—»o0. According to the way in which this equi~-

librium point is reached we may distinguish three different ca-

ses: | ST/\ ﬁ

1. Damped oscillations &round s=0 (Fig.2a) a) O// <

2. Aperiodic motion with overshoot over s=0

3, Aperiodic motion without any overshoot b) il

over s=0 (Fig.2¢). /// t

The stable equilibrium point s=0, §=0 cor- ¢) ol

responds to the firal steady state %%;=1 } ’(’f”—’——_ t

Q@ =1 . Fig.2

A condition which rules out the cases 1. and 2. will now be

established. For this purpose we shall introduce a function

v(t) which is a solution of

(13) Cy + By =-Quy ' - €

and satisfies the initial conditions

(14) y(0) = s() |
y(o) =3(0) .

This function, like s(ﬁ), also approaches thée final stationary

value O when t becomes infinite. liow considering that
s
(15) e -1 235

for-00 &S L+00
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and owing to the continuify of the functions y{(t) and s(t),
it can be shown that

(16) Smax € Ymax |.

Therefore the well known conditions:

o 2 .
(17) (Aperiodicity condition) B _ > 1
4C Qe ©

| y (0) 8
(18) - 575) < 3¢

which rule out any overshoot of y over its endvalue 0O are al-

so sufficient for s(t) to have no overshoot over O.

Replacing the coefficients in (17) by their values given
in (8) we get: )

178 af
(17e) mdke ?

and after some calculations the condition (18) becomes:

(19) 1~ ékoZJk' <. € 5
ﬂm(éko) ZMJK * -7 '

oK*
Now it is easy to show that: _
0 f ¢ 7
(20) for

and therefore equation (19) is always fulfilled whenfﬁ%$%?§ >1.
It follows from this that the condition (17a) alone is suffi-
gigag to insure the function s(t) = 1n §/Qe to have no overe
shoot over O and therefore also sufficient to insure the power
Q to rise from Q, to Qe without any overshoot. That (172} is
also a necessary condition can be realized from the fact that
for very small values of y and s, equations (10) and (13) are
equivalent (considering only the first term of the Taylor-se-
rie of l-e°),
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S0 far we have dealt only with the reactor power level,
When the condition (17a) is satisfied this level will rise con-
tinously approaching the final stationary value Qoo aéymptoti;
cally. Then, owing to (1) and (2) the temperatufre can also not
surpass its new stationary valué T e =5K;?' . But when (17a) is
not fulfilléd % will reach a maxirum Qmax larger thaﬁ Qe and
therefore also T will surpass Too o+ Formulae for calculating up-
ver 1imits of Qmax-and Tmaxrafe given in the Appendix.

We shall evaluate now the condition (17a) numerically with
coefficients corresponding to the English graphite ﬁoderated na -

tural uranium reactor BEPO (3),

« ¥ 0,02 MW/°C
' D = 200 sec

ut

b MW sec/°C

m

Teking into account the influence of the delayed neutrons, the

value - B.
{

can be adopted as neutron mean life.
The negative temperature coefficient corresponding to the

heating up of the urapiumlroqs can be quoted as:
~ M _50 V
re 15x710 /°C

Introducing these values info (17a) we obtain

01 . 1 =83°C

- SkT 1
Jo= 7 < Z 200 15-10° "

r

-This is”the maximum temperature which could be reached in this

case .without overshoois. Of course, this result would be impro-~

ved by lower values of I and " .

&
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2, Automatically controlled reactor.

Now we come to the second case. The control system we
shall consider here is of the type utilized in Saclay and is
shown schematically in fig.3%. Let us suppose that the respon-

se of the system to an increase in the arbitrarily value

L fomrce |[[vorn |[RBRE %[ acicron | [omerens
y LOGARITHMIC a4
B DIFFERENTIATION -

of the power demand is fast in comparison to the thermal time
constant of the reactor. Reactivity cﬁanges due to teéemperatu=
re rise can then be neglected during the ﬁeriod of transition
to the new stationary power level and it.will not be ﬁecéssa-
ry to introduce the temperature in the analysis of the behavi-
our of the system during this period, When finally. the slowly
rising temperature effect becomes appreciable, the system w111

be able to compensate for it automatically. In the flgure G is

‘the output of the ionization chamber which 15 propqrﬁ;pnal to

the reactor power and Ql is the inéreased power demand._From:the
error Signal Ql-Q another signal y is substracted, which is
proportional to the logarithmic derivative of §, and this dif-
ference, v, is feed into the amplifier, This is described by

the following equationﬁ

Q L &
(21) v=(&,-—&-)-3%€f’”—a2 = Q,(;-E)..B.d_st:qz)

The speed of the ﬁotor and therefore also the velocity of
the bontrol rod driven by it are proportional to the output of
the amplifier. Thus, supposing that the reactivity released by
a control rod is a iinear function of its displacement, and re-

membering equation (1) we have




(22) & being a factor of . Q
proportionality Av d(ék) =L d*(fn /é?‘r)

di? ’

Combining (21) and (22) and calling ifl-z(? we dbtain:

G ol %) | p d (Ll %) @ (1-&) .

dt

This equation is identical with (10) and therefore again the

conditions:

B* .

(17v) 700, > 1 @
" | Qo) 8
(18b) = Q) %[‘“‘%Jg >a

must be fuwlfilled in.order to have no overshoots during the

transition to the new stationary power level Ql.

-_ Now let us examine the behawur of the éystem just after
the power demand has been increased'from QO fo Ql. In the first
time the imput v to the amplifier is so large that the amplifier
beccnes saturated and therefore the control rods are pulled out
with a constant llmitlng velocity W During this period equa-
tions (22) and (23) do not a_pply. Owing to the continous in- ’
creasing of the reactivity Sk (and therefore of y) which fol- '
lows the progressive witharawal of the control rodé, the im-
putlsignal to the.amplifier is gradualiy,reduced. Finally the
amplifier Safuration desappears and after a short time v becomes
0, At this instant Q hés some_value intermediate between Qo and
Ql. It is convenient to consider this moment as starting point
t=0:
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i dz(&»%,)J .
(24) vio) = C[_&?z___ £20 =0 .
According to (23) we have then the following initial condie-
tions:
dee) _ _M]
N e
Q, < Qo) < Q4

Again because of equation'(20)fit is easy to show that with
these initial conditions the fulfilment of the condition (17v)
insures that of (18b) too.

But in the present caSe-there is another condition which
must be fulfilled in order to rule out any overshoot over Ql1) .
It refers to the limiting velocity W of thé control rods, which
of course must be large enough to allow for the maximum reacti-~
vity charge rate required after t=0, Nowrwe'shall calculate an

upper limit for this maximum reactivity change rate.
When &k d?(&p‘%fz
- dE dt*s

reaches a maximum, then its first time derivative becomes O,

=

Therefore, by differentiating the equatidn (23) we obtain:.

wak

dt-

- m%,)]_ : _.;_'_H | '_3[4%%1] ]
(26) [ AT S O Lk T CL @7 7 a0

It follows that:

szﬁgh-qéw] _ 1 ir 1 é
(27} ["""— prL 'max- B Q 8K = S élfg(—(—i—)max. Q4

1) This condition has already been established by Bonnaure
et al. [1}] in another way.
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where (g)max means the maximum value of the logarithmic derivative
%%. Owing to (24) and (25) this maximum value is found to be:
. (&) _ Q@) _ G, 80 ¢ Q
®nax = G0) - B\ ""@/)S7g -

Replacing this value in (27) we get finally

4 %,)  _[d(m]  _ Qi .
29) '5[—?&—2—’ w A e € BT

This is the maximum reactivity change rate which must be
achieved by the control rods after t=0. Therefore calling és
the reactivity change rate corresponding to the limiting rod
velocity W, we obtain the following supplementary condition to
(17b)

: 2 .
(30) %'ﬁr-;?s .

By means of more thorough going developments it is also PoS=-
sible to show that the less restrictive condition
2
B> L. g
5 2 B- .
is sufficient.

Pinally let uns come back again to the first case, that is the

reactor without automatic control system, but now taking into
account one group of delayed neutrons. Then, during the first
time after the reactiviiy jump the powef will be given by the

following expression [2]:

apt -
1 - &2y
(31) a=0,|-2s " £ ¢

B-¢ ¢ F-P

where P"'JT#-(- QCSKS0,00S . After nearly 0,5 sec the se-
cond term in (31) can be neglected and therefore we can reduce
the analysis of the present »roblem to the first case only in-

troducing as initial conditions:
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- o~ B
Q(O)-QOB% —-Qom

(32) Sklo) = Sk *- 6k: = k=TT,

T(o) =T,

and as mean neutron life the value

3 Ly =Bk _B-Sk B - ——_—B:"‘Sk'-'é?“
B

where £ = f"'; /Al Zﬁ;/}\: = 5 .

It must be observed that &k is not constant but Jecreases with
] increasing temperatures. ﬂowever we are always on the safe side
é:’ adopting the smallest value of-gl given by:

o R

(34) Y _B-dk) 5 _ B-Sk"+dk, y

Gi=Fg—t =773 © o

Intreducing now (34) into (l?a) and (32) into (18) 4it is seen
that the power and the temperature will reach their final sta-
tionary values without overshoots when the fdllowing two con-

ditions are fulfilled:

""Z B | (36) "‘Z- g

Nl oy iR vy o Gmdh® 7 Z(5-557)

e wite  6k*=-dk, €0.005 with dk"< f3

Appendix, -~ Upper limits for the overshoots of power and tem-

perature when the condition (17a) is not fulfilled:

L
b < 7*8D

;max < 1 + vsD(esmax__.,l_.s

:nax)
o0
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where *
k

§ - Sko

dK

&l
D anak'
S (527)

For values of D or & very close to 1 the following formulae gi-

ves lower values

@max  op| (1=8)  FOOXD
3. <*°|zvD © o C
Imax < oma
7;° _ ‘?uf
whe re
x=VY5H -1
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