

KERNFORSCHUNGSZENTRUM

KARLSRUHE

Juli 1969

KFK 1051

Institut für Strahlenbiologie Institut für Neutronenphysik und Reaktortechnik

 $Strahlenempfindlichkeit \ von \ Bakteriophagen-DNS$

I. Brüche und Vernetzungen nach Bestrahlung in vitro

T. Coquerelle, L. Bohne, U. Hagen J. Merkwitz

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

KARLSRUHE

المراجع المراجع المراجع والمراجع

Sonderdruck aus der

ZEITSCHRIFT FÜR NATURFORSCHUNG Verlag der Zeitschrift für Naturforschung, Tübingen

Band 24 b, Heft 7, 1969

Strahlenempfindlichkeit von Bakteriophagen-DNS

I. Brüche und Vernetzungen nach Bestrahlung in vitro

Radiation sensitivity of Bacteriophage DNA I: Breaks and Crosslinks after Irradiation in vitro

THÉRÈSE COQUERELLE, LEUTHOLD BOHNE und ULRICH HAGEN

Institut für Strahlenbiologie, Kernforschungszentrum Karlsruhe

und JÜRGEN MERKWITZ

Institut für Neutronenphysik und Reaktortechnik, Kernforschungszentrum Karlsruhe

(Z. Naturforschg. 24 b, 885---893 [1969]; eingegangen am 5. Februar 1969)

DNA isolated from Coli bacteriophage T1 was irradiated in 0.165 M NaCl with γ -rays. The molecular weight was determined by measurement of the sedimentation coefficient and viscosity. An analysis of the boundary permits the determination of the sedimentation distribution. The distribution of sedimentation coefficients obtained at various DNA concentrations were extrapolated to zero concentration and were transformed into molecular weight distributions. These were used to calculate the weight average molecular weight $M_{\rm w}$ and the number average molecular weight $M_{\rm n}$.

The molecular weight of T1-DNA was found to be $32 \cdot 10^6$. After irradiation at a concentration of 200 μ g/ml, double breaks as well as intermolecular crosslinks could be determined. The number of double breaks showed a rise with dose that can best be described as composed of a linear and a quadratic term. At low doses the crosslinks increase linearly, the rate being approximately half of that for the linear part of the double breaks. After higher doses, where most of the molecules are degraded, apparently no additional crosslinks are produced. No crosslinks were seen in DNA degraded by DNase. The influence of the DNA concentration on the degradation and the formation of crosslinks is discussed.

In letzter Zeit wurden mehrere Versuche unternommen, die Strahleninaktivierung von Bakteriophagen auf die Strukturveränderungen der Desoxyribonucleinsäure (DNS) zu beziehen^{1, 2}. Insbesondere wurde die Zahl der strahlenbedingten Brüche der Doppelhelix und des Einzelstranges bestimmt und ihre Zahl mit der Hemmung der Vermehrungsfähigkeit verglichen³. Bei solchen Versuchen wurde gefunden, daß Brüche der Doppelhelix nicht die alleinige Ursache der Inaktivierung der Phagen sein

³ D. FREIFELDER, Proc. nat. Acad. Sci. USA 54, 128 [1965].

¹ D. FREIFELDER, Radiat. Res. 29, 329 [1966].

² J. BLOK, L. H. LUTHYINS u. A. L. M. ROOS, Radiat. Res. **30**, 468 [1967].

können. Nach diesen ersten annähernden Schätzungen schien es uns wichtig, die durch Strahlung bedingte Degradierung genau zu beschreiben, indem wir neben der Zahl der Brüche in der DNS auch die Größenverteilung der erhaltenen Bruchstücke bestimmten. Damit ergeben sich Aufschlüsse über den Mechanismus des Abbaues sowie über mögliche Vernetzungsreaktionen. In dieser ersten Mitteilung dieser Untersuchungen soll die Methode der Analyse der Mol.-Gew.-Verteilung dargestellt werden sowie die Veränderungen der Phagen-DNS, die nach Bestrahlung in wäßriger Lösung gefunden wurden. In einer früheren Mitteilung⁴ wurde die Kettenlänge der DNS aus Kalbsthymus durch die Analyse der Mol.-Gew.-Verteilung ermittelt. Bei diesen Untersuchungen mit relativ kleinen Molekülen konnte die Konzentrations-Abhängigkeit der erhaltenen Sedimentationskonstanten vernachlässigt werden. Bei der vorgesehenen Analyse der Bakteriophagen-DNS mit hohen Mol.-Gew. muß diese Konzentrations-Abhängigkeit jedoch berücksichtigt werden. Eine geeignete Methode hierfür wird beschrieben.

Material und Methoden

I. Mikroorganismen

Als Untersuchungsmaterial diente uns die DNS des Coliphagen T1. Die Züchtung und Reinigung der Phagen erfolgte nach der Methode von HOTZ⁵.

2. Isolierung der DNS, Konzentrationsbestimmung und Proteingehalt

Die Isolierung der DNS erfolgte mit Phenol nach der Methode von MANDELL und HERSHEY⁶. Die isolierte DNS wurde bei 4°C gegen 0,165-m. NaCl-Lösung, pH 7, dialysiert.

Die Konzentration der DNS in Lösung wurde über den Phosphatgehalt nach CHEN u. a.⁷ und über die Extinktion bei 260 nm bestimmt. Es ergab sich für den Extinktionskoeffizienten der T1-DNS: $E_1^1 \stackrel{\text{w}}{=} = 198$. Der Proteingehalt der Proben, bestimmt nach LOWRY u. a.⁸, lag in der Regel unter 3 Prozent.

Zur Vermeidung mechanischer Degradierung der DNS wurden Verdünnungen der DNS-Präparationen

- ⁴ U. HAGEN, Biochim. biophysica Acta [Amsterdam] 134, 45 [1967].
- ⁵ G. Horz, Habilitationsschrift, Karlsruhe 1966.
- ⁶ J. D. MANDELL u. A. D. HERSHEY, Analyt. Biochem. [New Nork] 1, 66 [1060]
- York] 1, 66 [1960]. ⁷ P. S. CHEN, T. Y. TORIBARA U. H. WARNER, Analytic. Chem. 28, 1756 [1956].
- ⁸ O. H. LOWRY, N. J. ROSENBROUGH, A. L. FARR u. R. J. RANDALL, J. biol. Chemistry **193**, 265 [1951].

durch Abwägen der DNS-Lösungen und Zupipettieren des Lösungsmittels vorgenommen. Zur besseren Durchmischung wurde die verdünnte Lösung dann mindestens einen Tag stehen gelassen. Die Zellen der Ultrazentrifuge wurden durch Eingießen in das Mittelstück nach Entfernung des oberen Fensters gefüllt.

3. Bestrahlung

DNS-Lösungen der Konzentrationen 40 μ g/ml, 200 μ g/ml und 400 μ g/ml wurden 10 min mit N₂ bzw. O₂ gesättigt und in einer ⁶⁰Co- γ -Quelle (Gammazell 200, Atomic Energy of Canada, Ltd.) bestrahlt. Die Dosisleistung betrug 6,5 · 10⁴ rad/Stunde.

4. Viskosität

Für Viskositätsmessungen wurde das von ZIMM und CROTHERS⁹ entwickelte Rotationsviskosimeter verwendet. Die dabei auftretenden Scherkräfte von $\langle s \rangle = 2,77 \cdot 10^{-3} \, \text{dyn} \cdot \text{cm}^{-2}$ waren so niedrig, daß sich eine Extrapolation der gemessenen Grenzviskosität [η] auf die Scherkraft $\langle s \rangle = 0$ erübrigte¹⁰.

5. Sedimentationskoffiezient und mittleres Molekulargewicht $M_{s\eta}$

Die Sedimentationsversuche wurden bei 20,0 °C in einer analytischen Ultrazentrifuge (Spinco E, Fa. Beckman, München) mit UV-Optik bei 260 nm vorgenommen. Die Umlaufgeschwindigkeit betrug 15220 Upm bzw. 17980. Damit wurden Aggregationen der DNS-Moleküle während der Sedimentation vermieden, wie sie von ATEN und COHEN¹¹ und von ROSENBLOOM und SCHUMAKER¹² beobachtet wurden. Die Filmschwärzung wurde mittels eines Mikrodensitometers "Analytrol" (Fa. Beckman) aufgezeichnet. Belichtungs- und Entwicklungszeit wurden so gewählt, daß eine lineare Beziehung zwischen Konzentration und Filmschwärzung gegeben war.

Die Sedimentations-Koeffizienten $S_{20, w, 0,5}^{\circ}$ wurden aus dem Abstand $X_{0,5}$ der Gradienten bei 50% der Konzentration von der Referenzlinie in einem Bereich von $c_{\rm A}=5$ bis 40 μ g/ml ermittelt ($c_{\rm A}=$ Anfangskonzentration der Lösung). Durch graphische Extrapolation der reziproken Werte von $S_{20, w, 0,5}^{\circ}$ auf die Konzentration $c_{\rm A}=0$ kann dann $S_{20, w, 0,5}^{\circ}$ bestimmt werden. Mit diesem so erhaltenen Wert $S_{0,5}^{\circ}$ und dem für dieselbe DNS-Probe erhaltenen Wert der Grenzviskosität [η] wurde nach MANDELKERN und FLORY¹³ das mittlere Mol.-Gew. $M_{s\eta}$ berechnet.

- ⁹ B. H. ZIMM u. D. M. CROTHERS, Proc. nat. Acad. Sci. USA 48, 905 [1962].
- ¹⁰ D. M. CROTHERS U. B. H. ZIMM, J. molecular Biol. **12**, 525 [1965].
- ¹¹ J. B. T. ATEN u. J. A. COHEN, J. molecular Biol. 12, 537 [1965].
- ¹² J. ROSENBLOOM u. V. N. SCHUMAKER, Biochemistry 6, 276 [1967].
- ¹³ L. MANDELKERN, W. R. KRIGBAUM, H. A. SCHERAGA u. P. J. FLORY, J. chem. Physics **20**, 1392 [1952].

STRAHLENEMPFINDLICHKEIT VON BAKTERIOPHAGEN-DNS

6. Degradierung der DNS

Zum enzymatischen Abbau der DNS wurde Desoxyribonuclease I (Worthington DPFF) verwendet. Die Inkubation erfolgte in 0,165-m. NaCl mit $0.5 \cdot 10^{-4}$ -m. MgCl+MnCl₂ bei pH 7. Die Reaktion wurde mit EDTA (Endkonzentration 0,01-m.) abgestoppt.

Ergebnisse

1. Veränderung des Sedimentations-Gradienten nach Bestrahlung

Abb. 1 a zeigt den bei der Sedimentation in der analytischen Zentrifuge erhaltenen Gradienten einer unbestrahlten DNS-Lösung. Die senkrecht verlaufende Linie repräsentiert die im Schwerefeld der Zentrifuge mit gleicher Geschwindigkeit sedimentierenden Moleküle von T1-DNS, die somit von einheitlicher Größe sind. Bei insgesamt 6 Präparationen

Abb. 1 a. Gradient einer UV-Aufnahme während der Sedimentation einer unbestrahlten DNS. 1 b. Gradient einer UV-Aufnahme während der Sedimentation einer bestrahlten DNS. Die Pfeile kennzeichnen die Abschnitte, welche die langsamer oder schneller als die unbestrahlte Kontrolle sedimentierenden Moleküle repräsentieren. RLM: Referenzlinie am Meniskus, M: Meniskus. RLB: Referenzlinie am Boden.

- ¹⁴ U. HAGEN u. H. WELLSTEIN, Strahlentherapie 128, 565 [1965].
- ¹⁵ V. N. SCHUMAKER u. H. K. SCHACHMAN, Biochim. biophysica Acta [Amsterdam] 23, 628 [1957].

ergab sich im Mittel für $S_{0,5}^0$ 35,6±0,75 und für $[\eta]$ 149±5,2 dl/g, woraus sich ein Mol.-Gew. $M_{s\eta}$ von 31,9±0,89·10⁶ errechnet.

Abb. 1 b zeigt den S-förmig verlaufenden Gradienten einer mit 1 krad bestrahlten DNS-Lösung (200 μ g/ml). Das mittlere Mol.-Gew. $M_{s\eta}$ ist bei dieser Dosis gleich dem der Kontrolle (30 · 10⁶); ein Vergleich der Abbn. 1 a und 1 b weist jedoch darauf hin, daß nach Bestrahlung ein Gemisch von verschieden schnell sedimentierenden Molekülen vorliegt, dessen Größenverteilung ermittelt werden muß.

2. Sedimentationsverteilung

Jeder Punkt X_i , Y_i des Sedimentationsgradienten (vgl. Abb. 1) entspricht einer bestimmten Konzentration von Molekülen in einem gegebenen Abstand vom Rotationszentrum. Zur Aufstellung der Sedimentationsverteilung wurde der jedem X_i entsprechende S_i° -Wert in der üblichen Weise berechnet ^{14-16, 4}. Nach Einführen der die Sektorform der Zelle berücksichtigenden Verdünnungskorrektur wurde Y_i in den relativen Massenanteil c_i umgewandelt. Die Gesamtkonzentration ist hierbei 1,0. Auf diese Weise ließen sich integrale Verteilungskurven der Sedimentation S_i° gegen c_i darstellen.

Um eine Verteilung der S_i^0 -Werte zu erhalten, mußten diese Kurven auf die DNS-Konzentration $c_A = 0$ extrapoliert werden. Hierzu eignet sich einmal die Methode von CANTOW¹⁷. Man benötigt dazu die S_i° Verteilungen bei verschiedenen Konzentrationen. Die Extrapolation eines einzelnen S_i° -Wertes auf S_i° kann jedoch auch mit der Gleichung

$$S_{\mathbf{i}}^{0} = S_{\mathbf{i}}^{c} (1 + k_{\mathbf{s}}' \cdot [\eta]_{\mathbf{i}} \cdot c_{\mathbf{A}} \cdot c_{\mathbf{i}})$$
(1)

vorgenommen werden. Da bei der fortschreitenden Sedimentation eine stetige Verdünnung von c_A auf $c_A \cdot c_i$ stattfindet, ist es zweckmäßig, das Mittel aus beiden Werten $c_A(0.5 + c_i/2)$ einzusetzen:

$$S_{i}^{0} = S_{i}^{c} [1 + k_{s}' \cdot [\eta]_{i} \cdot c_{A} (0, 5 + c_{i}/2)].$$
(2)

Die von EIGNER und DOTY¹⁷ definierte Konstante $k_{\rm s}'$ für die Konzentrations-Abhängigkeit der Sedimentation wurde in den vorliegenden Versuchen aus den $S_{0,5}^{\rm c}$ und $[\eta]$ -Werten berechnet. In Übereinstimmung mit anderen Autoren^{11, 18} fanden wir $k_{\rm s}'$ -Werte zwischen 0,7 und 1,0.

- ¹⁷ H. J. CANTOW, Makromolekulare Chem. 30, 169 [1959].
- ¹⁸ J. EIGNER u. P. DOTY, J. molecular Biol. 12, 549 [1965].

¹⁶ K. V. SHOOTER u. J. A. V. BUTLER, Trans. Farad. Soc. 52, 734 [1956].

Die zu jedem S_i^{c} -Wert gehörenden Werte der Grenzviskosität $[\eta]_i$ wurden der von EIGNER und DOTY¹⁸ angegebenen Beziehung (Gl. (3)) entnommen:

$$[\eta] = a \cdot (S^0)^b . \tag{3}$$

Die Größen *a* und *b* variieren etwas mit der Größe und Gestalt der Moleküle und mit S^0 . Die von uns für Kalbsthymus-DNS, T4-DNS und T1-DNS erhaltenen Werte von S^0 und $[\eta]$ stimmten mit der Beziehung (3) gut überein (vgl. Abb. 1 bei WEINERT und HAGEN¹⁹).

Gln. (2) und (3) bilden ein System nichtlinearer Gleichungen für S_i^0 , wobei S_i^c und c_i bekannte Größen sind. Das Gleichungssystem wurde numerisch durch Iteration gelöst. In Abb. 2 sind als Bei-

Abb. 2. Verteilung der S_i^{c} -Werte bestrahlter T1-DNS (4 krad), ermittelt aus Sedimentationen bei verschiedenen Konzentrationen. $\circ - \circ 20.8 \ \mu g/ml$, $\bigtriangleup - \bigtriangleup 9.8 \ \mu g/ml$, $\Box - \bigsqcup 5.8 \ \mu g/ml$, $\bigcirc - \circlearrowright S_i^{0}$ -Verteilung, erhalten aus der Extrapolation von $1/S_i^{c}$ gegen c=0. \bullet , \blacktriangle , $\blacksquare S_i^{0}$ -Werte, ermittelt aus den experimentellen Punkten \circ , \bigtriangleup , \blacksquare , welche nach den Gln. (2) und (3) gegen c=0 extrapoliert wurden.

spiel die aus den einzelnen S_i^{e} -Werten (offene Symbole) berechneten S_i^{0} -Werte (geschlossene Symbole) für eine bestrahlte Probe eingezeichnet. Man sieht die gute Übereinstimmung mit der Verteilung der S^0 -Werte, die durch die graphische Interpolation nach CANTOW¹⁷ erhalten wurde (halbgeschlossene Symbole).

3. Molekulargewichtsverteilung

Die von EIGNER und DOTY¹⁸ eingeführte empirische Beziehung

$$S^{0} = K_{s}(M_{s\eta})^{a_{s}} \tag{4}$$

erlaubt, die S_1^{0} -Werte in die entsprechenden Mol.-Gew. M_i umzuwandeln^{*}. Bei Mol.-Gew. oberhalb von $4 \cdot 10^6$ ist $K_s = 0,034$ und $a_s = 0,405$. Bei der Nachprüfung dieser Werte bei unserem Untersuchungsmaterial zeigte sich, daß für a_s ebenfalls 0,405 erhalten wurde, K_s jedoch je nach Präparation zwischen 0,031 und 0,034 variierte. Für jede Probe wurde deshalb K_s aus $M_{s\eta}$ und $S_{20,w}^0$ gesondert berechnet.

Die Ermittlung der Mol.-Gew.-Verteilung (M_i gegen c_i) einer bestimmten DNS-Probe erfolgte durch die Auswertung von zwei bis drei Sedimentationen von Lösungen verschiedener DNS-Konzentration, wobei von jedem Sedimentationslauf zwei Aufnahmen herangezogen wurden.

Aus den Mol.-Gew.-Verteilungen können das Gewichtsmittel $M_{\rm w} = \sum_{i=1}^{n} m_i M_i$ und das Zahlenmittel $M_{\rm n} = 1/\sum_{i=1}^{n} m_i/M_i$ des Mol.-Gew. durch Einteilung der Mol.-Gew. in Klassen von (i-1) bis *i* ermittelt werden. Die vollständige Berechnung aller Daten erfolgte durch ein Fortran-IV Programm-mit einer Rechenmaschine IBM 7074.

Abb. 3 (Kurve A) zeigt die Mol.-Gew.-Verteilung für unbestrahlte DNS. Sie stellt, entsprechend dem in Abb. 1 gezeigten Gradienten, eine senkrechte Linie dar, ein Zeichen für das einheitliche Mol.-Gew. aller DNS-Moleküle. Nach Bestrahlung mit 1 krad bei der Konzentration 200 μ g/ml (Kurve B) ist nur noch ein Teil der Moleküle unversehrt, einige Moleküle sind zu kleineren Bruchstücken degradiert, andere haben ein höheres Mol.-Gew. als vor der Bestrahlung. Das macht das Auftreten von Vernetzungen von Molekülen untereinander wahrscheinlich. Nach höheren Dosen (Kurve C, 4 krad, 200 μ g/ml) läßt sich kein unversehrter Anteil der DNS-Moleküle mehr beobachten, der Anteil der degradierten Moleküle nimmt weiter zu.

4. Bestimmung der Bruch- und Vernetzungsrate

Aus M_w und M_n kann nun die Bruchwahrscheinlichkeit des Doppelstranges A pro Nucleotidpaar und die Vernetzungswahrscheinlichkeit Q pro Monomer bestimmt werden. Da sich die Vernetzung am Ein-

¹⁹ H. WEINERT u. U. HAGEN, Strahlentherapie **136**, 204 [1968].

^{*} Die von EIGNER und DOTY¹⁸ eingeführte Konstante K_s ist nicht zu verwechseln mit der von den gleichen Autoren verwendeten Konstante k_s' in Gl. (1).

Abb. 3. Mol.-Gew.-Verteilungen von T1-DNS, erhalten aus der Sedimentation bei verschiedenen Konzentrationen: A nicht bestrahlt, B bestrahlte DNS (1 krad bei 200 μ g/ml in N₂), \times , \triangle : 20,8 μ g/ml; 0, \bullet : 9,8 μ g/ml (zu A und B). C bestrahlte DNS (4 krad bei 200 μ g/ml in N₂), \times , \triangle : 19,6 μ g/ml; 0, \bullet : 11,4 μ g/ml; \Box , \blacksquare : 6,3 μ g/ml.

zelstrang ereignet, ist hier das Monomer ein Nucleotid.

Wie früher⁴ gezeigt wurde, entstehen Brüche der Doppelhelix nach der Beziehung:

$$A = (p D + \beta)^2 n, \qquad (5)$$

wobei β die Bruchwahrscheinlichkeit des Einzelstranges vor Bestrahlung und p die Bruchrate des Einzelstranges pro Nucleotid und rad ist. n ist nach l. c. ⁴ gleich 7. Nach HENGLEIN und SCHNABEL ²⁰ steigt die Vernetzungswahrscheinlichkeit Q linear mit der Dosis:

$$Q = q D , \qquad (6)$$

wobei q die Vernetzungswahrscheinlichkeit eines Monomers pro rad ist. Bei unbestrahlter T1-DNS ist, da es sich um molekulareinheitliche Moleküle handelt, $M_{n0} = M_{w0} = M_0$. Der Polymerisationsgrad der doppelsträngigen DNS ergibt sich aus P =

²⁰ A. HENGLEIN U. W. SCHNABEL, in: Current Topics in Radiation Research (ed. M. EBERT U. A. HOWARD), North-Holland Publ. Cy., Amsterdam 1966, Vol. II. M/m, wobei *m* das mittlere Mol.-Gew. eines Nucleotidpaares ist. Werden die Vernetzungen nicht berücksichtigt, ist die gemessene Bruchwahrscheinlichkeit pro Monomer (A_{app}):

$$A_{\rm app} = \frac{1}{P_{\rm n}} - \frac{1}{P_{\rm 0}} = \left[\frac{1}{M_{\rm n}} - \frac{1}{M_{\rm 0}}\right] m \,. \tag{7}$$

 A_{app} entspricht A, wenn Q = 0.

Ereignen sich neben Brüchen auch Vernetzungen, so wird nach CHARLESBY²¹ $\frac{1}{P_n}$ um $\frac{Q}{2}$ kleiner. Es ergibt sich dann:

$$A - \frac{Q}{2} = \left[\frac{1}{M_{\rm n}} - \frac{1}{M_{\rm 0}}\right] m \,. \tag{8}$$

Das Gewichtsmittel wird durch Vernetzungen stärker beeinflußt als durch Brüche (CHARLESBY²¹):

$$\frac{A}{2} - Q = \left[\frac{1}{M_{\rm w}} - \frac{1}{M_0}\right] m \,. \tag{9}$$

Für A und Q ergibt sich nun daraus:

$$A = \left[\frac{2}{M_{\rm n}} - \frac{1}{M_{\rm o}} - \frac{1}{M_{\rm w}}\right] \frac{m}{1.5} , \qquad (10)$$

$$Q = \left[\frac{1}{M_{\rm n}} + \frac{1}{M_{\rm 0}} - \frac{2}{M_{\rm w}}\right] \frac{m}{1.5} \,. \tag{11}$$

Diese Gln. sind allerdings streng nur gültig, wenn die Brüche statistisch verteilt sind. Die Gültigkeit dieser Annahme soll später diskutiert werden.

5. Beziehung der Bruchrate zur Dosis

Gemäß Gl. (5) entstehen Doppelbrüche einmal quadratisch $(n p^2 D^2)$ sowie linear mit der Dosis $(2 n p \beta D)$. Der Anteil der Doppelbrüche $(\beta^2 n)$ vor Bestrahlung ließ sich bei Bakteriophagen-DNS nicht sicher messen, konnte jedoch, wie aus Abb. 3 (A) ersichtlich ist, vernachlässigt werden.

Setzt man $2 n p \beta = b$ und $n p^2 = c$, so erhält man

$$A = b \cdot D + c \cdot D^2 \,. \tag{12}$$

In Abb. 4 sind die aus Gl. (10) erhaltenen Werte von A nach Bestrahlung bei der Konzentration 400 μ g/ml, 200 μ g/ml in N₂ und in O₂ und bei 40 μ g/ml gegen die Dosis aufgetragen. Die einzelnen Meßdaten finden sich in Tab. 1. Nach Bestrahlung zweier verschiedener DNS-Präparationen bei 200 μ g/ml zeigt sich deutlich ein Unterschied in der Empfindlichkeit, der wohl durch Verunreinigungen an niedermolekularen Bestandteilen und an Protein

²¹ A. CHARLESBY, Atomic Radiation and Polymers, Pergamon Press, Oxford 1960.

ΤН. СС	OUERELLE,	L. BOHNE,	U. HAGEN	UND	J. MERKWITZ
--------	-----------	-----------	----------	-----	-------------

Konzentration bei Bestrahlung	Dosis	$M_{ m w}\cdot 10^{-6}$	$M_{n} \cdot 10^{-6}$	$A\cdot 10^6$	$\frac{\frac{1}{M_{n}} - \frac{1}{M_{0}}}{\frac{1}{M_{w}} - \frac{1}{M_{0}}}$	$Q \cdot 10^6$
$200~\mu { m g/ml}$	Kontrolle	28,26 28,5	28,26 28,5	·····	· · · · · · · · · · · · · · · · · · ·	
1. Präparation in N_2	$1\cdot 10^3$ rad $2\cdot 10^3$ rad $4\cdot 10^3$ rad	29,85 25,86 22,46	26,36 19,82 15,55	$2,99 \pm 1,30 \\ 11,60 \pm 2,40 \\ 20,68 \pm 2,46$	$-1,59 \\ 4,37 \\ 3,13$	$1,33 \pm 0,39 \ 1,47^* \pm 0,63 \ 1,97 \pm 0,19$
2. Präparation in N_2	7,7 \cdot 10 ³ rad 1 \cdot 10 ³ rad 2 \cdot 10 ³ rad 4 \cdot 10 ³ rad	$11,93 \\ 27,56 \\ 23,54 \\ 19,74$	$7,2 \\ 23,57 \\ 16,87 \\ 10,66$	$\begin{array}{c} 67,55 \pm 9,34 \\ 5,05 \pm 1,45 \\ 16,86 \pm 1,66 \\ 47,28 \pm 11,20 \end{array}$	2,14 6,54 3,30 3,78	$1,85^{*} \pm 2,10 \\ 1,055 \pm 0,21 \\ 1,96 \pm 0,41 \\ 6,52 \pm 2,12$
2. Präparation in O ₂	$1 \cdot 10^{3} \text{ rad}$ $2 \cdot 10^{3} \text{ rad}$ $4 \cdot 10^{3} \text{ rad}$	15,74 27,64 26,65 15,52	$ \begin{array}{r} 10,00 \\ 22,71 \\ 14,45 \\ 10,36 \end{array} $	$\begin{array}{c} 47,28 \pm 11,20 \\ 8,65 \pm 1,14 \\ 27,28 \pm 2,55 \\ 38,52 \pm 0,25 \end{array}$	8,80 14,80 2,10	$egin{array}{c} 0.52 & \pm 2.13 \ 1.796 \pm 0.41 \ 6.28 & \pm 0.72 \ 1.06 & \pm 0.23 \end{array}$
400 µg/ml	Kontrolle $1 \cdot 10^3$ rad $2 \cdot 10^3$ rad $4 \cdot 10^3$ rad $6 \cdot 10^3$ rad $8 \cdot 10^3$ rad	31,0 28,44 32,23 25,90 20,60 19,87	$\begin{array}{c} 31,0\\ 27,81\\ 31,15\\ 24,51\\ 16,48\\ 16,33 \end{array}$	$\begin{array}{rrrr} 1,86\pm & 0,34\\ 1,76\pm & 0,96\\ 4,46\pm & 0,52\\ 16,71\pm & 1,91\\ 16,52\pm & 1,08 \end{array}$	1,235 0,154 1,345 1,760 1,580	$\begin{array}{c} - \ 0.54^{*} \pm \ 0.30 \\ + \ 0.46 \ \pm \ 0.12 \\ - \ 0.97 \ \pm \ 0.17 \\ - \ 0.84^{*} \pm \ 0.37 \\ - \ 1.75^{*} \pm \ 0.67 \end{array}$
$40 \ \mu { m g/ml}$	Kontrolle $6 \cdot 10^2$ rad $8 \cdot 10^2$ rad $1 \cdot 10^3$ rad Kontrolle	$\begin{array}{c} 35,64\\ 30,72\\ 29,14\\ 28,47\\ 30,70 \end{array}$	35,64 28,28 28,31 26,27 30,70	$\begin{array}{rrr} 4,25 \pm & 0,17 \\ 3,49 \pm & 0,16 \\ 5,39 \pm & 0,15 \end{array}$	1,61 1,155 1,435	$\begin{array}{c} -\ 0.36 \ \pm\ 0.103 \\ -\ 1.10 \ \pm\ 0.33 \\ -\ 0.89 \ \pm\ 0.27 \end{array}$
· · · · · · · · · · · · · · · · · · ·	$2 \cdot 10^2$ rad 1,5 \cdot 10^3 rad $2 \cdot 10^3$ rad	30,70 22,82 22,66	30,15 20,04 20,28	$\begin{array}{cccc} 0,51\pm & 0,25 \ 9,67\pm & 0,49 \ 9,18\pm & 1,35 \end{array}$	1,545 1,450	$egin{array}{c} + \ 0,11^{*} \pm \ 0,11 \ - \ 1,03 \ \pm \ 0,12 \ - \ 1,40 \ \pm \ 0,49 \end{array}$

Tab. 1. Molekulargewichte bestrahlter T1-DNS. A: Bruchwahrscheinlichkeit pro Nucleotidpaar. Q: Vernetzungswahrscheinlichkeit pro Nucleotid. * Q-Werte, die nicht signifikant ($p \le 0.05$) von Null verschieden sind. A und Q sind auf die für jede Präparation gemessenen Werte M_{w_0} und M_{n_0} bezogen.

Ľ

bedingt ist. Eine intensive Reinigung der DNS verbietet sich jedoch, da hierbei erhebliche Scherkräfte

auftreten. Wie sich aus der Kurve für die 2. Serie bei 200 µg/ml ergibt, besteht zwischen der Strahlenempfindlichkeit in Stickstoff- und in Sauerstoffatmosphäre kein wesentlicher Unterschied. Die Punkte für die Bestrahlung bei 40 µg/ml liegen zwischen den beiden Serien der Konzentration von 200 μ g/ml. Durch eine weitere Verdünnung unter 200 μ g/ml steigt die Empfindlichkeit also nicht mehr an. Im Gegensatz dazu ist die Bruchwahrscheinlichkeit nach Bestrahlung bei der Konzentration von $400 \,\mu g/ml$ deutlich geringer. Mittels Regressionsanalyse wurden b und c in Gl. (12) für die geringste quadratische Abweichung ermittelt. Es ergab sich dann:

Abb. 4. Beziehung zwischen Bruchwahrscheinlichkeit und Strahlendosis bei drei Versuchsserien mit verschiedenen Konzentrationen $\pm \sigma_{M}$.

]	bestrahlt	bei	40	$[\mu g/ml]$	in N_2	

- bestrahlt bei 200 $[\mu g/ml]$ in N₂ (1. Präparation) •
- bestrahlt bei 200 $[\mu g/m]$ in N_2^{*} (2. Präparation) bestrahlt bei 200 $[\mu g/m]$ in N_2 (2. Präparation) bestrahlt bei 400 $[\mu g/m]$ in N_2 ۸ 0

1. Präparation (Bestrahlung bei 200 μ g/ml) $b=2,57\cdot10^{-9}, c=0.80\cdot10^{-12}.$

2. Präparation (Bestrahlung bei 200 μ g/ml)

 $b=4,22\cdot10^{-9}, c=1,90\cdot10^{-12},$

3. Praparation (Bestraniung bei 400
$$\mu$$
g/ml)
 $b=1,26\cdot10^{-9}, c=0,129\cdot10^{-12}.$

6. Vernetzungsrate in Abhängigkeit von der Strahlendosis

Aus dem Vergleich der Gradienten in den Abbn. 1 a und 1 b geht hervor, daß nach Bestrahlung bei der Konzentration 200 μ g/ml neben gebrochenen Molekülen auch Moleküle mit höherem Mol.-Gew. als dem der Kontrolle entstehen. Wie aus den Mol.-Gew.-Verteilungen (Abb. 3 B) ersichtlich ist, werden Moleküle bis zum doppelten Mol.-Gew. der Kontrolle beobachtet. Berechnet man die Vernetzungsrate Q aus M_n und M_w nach Gl. (11), so zeigt sich, daß Q bis etwa 2 krad ansteigt, bei höheren Strahlendosen jedoch gleich bleibt, d. h. es entstehen keine neuen Vernetzungen mehr. Die Anfangssteigung von Q mit der Dosis ergibt $q = 1,4 \cdot 10^{-9}$, d. h. die Vernetzungsrate beträgt etwa die Hälfte des linearen Anteils der Doppelbrüche.

Bei der Bestrahlung bei einer Konzentration von 40 μ g/ml ergeben sich keine Vernetzungen; an den mit dem Densitometer aufgezeichneten Gradienten konnten keine Anzeichen für eine schneller sedimentierende Fraktion gesehen werden, die errechneten Q-Werte zeigen negative Werte. Bestrahlt man bei 400 μ g/ml, so lassen sich wohl am Gradienten schneller als die Kontrolle sedimentierende Fraktionen nachweisen, die Q-Werte sind jedoch nicht signifikant von Null verschieden (Tab. 1). Dieser Befund soll später noch erörtert werden. Ein unmittelbarer Hinweis auf das Vorliegen von Vernetzungen wird auch erhalten, wenn man $1/M_n$ und $1/M_w$ gegen die Dosis aufträgt. Ist das Verhältnis der Neigung der beiden Kurven

$$\frac{1/M_{\rm n}-1/M_{\rm 0}}{1/M_{\rm w}-1/M_{\rm 0}}$$

größer als 2, so liegen Vernetzungen vor (Tab. 1).

7. Molekulargewichts-Verteilungen der DNS nach Abbau mit Desoxyribonuclease

Um methodische Fehler bei dem Nachweis von Vernetzungen in bestrahlter DNS auszuschließen, wurde T1-DNS mit Desoxyribonuclease I abgebaut. Hierbei sind keine Vernetzungen zu erwarten. Untersucht man die DNS, die nur geringfügig abgebaut ist, so findet sich am Gradienten in der analytischen Zentrifuge nur ein Anteil, der langsamer sedimentiert als die unversehrten Moleküle, jedoch keinen Anteil mit schneller wandernden Molekülen (Abb. 5 a). Weiter wurden DNS-Moleküle mit höherem Abbaugrad untersucht (Abbn. 5 b und 5 c), die ebenfalls am Gradienten keine Anzeichen von Vernetzungen erkennen lassen. Bei diesen Proben wurde die Mol.-Gew.-Verteilung sowie die Abbau- und Vernetzungsrate berechnet (Tab. 2). Es ergibt sich, daß Q hier negativ oder nahe Null ist; im Verhältnis zur Abbaurate A ist Q klein.

Abb. 5. Gradienten von UV-Aufnahmen während der Sedimentation von mit DNase abgebauter T1-DNS. a) 5 min Abbau mit DNase, Enzym-Konz. 0,1 μ g/ml, b) 10 min Abbau mit DNase, Enzym-Konz. 1 μ g/ml, c) 15 min Abbau mit DNase, Enzym-Konz. 1 μ g/ml.

Diskussion

1. Ermittlung der Molekulargewichts-Verteilung

Aus der Form des Gradienten in der Zelle der analytischen Ultrazentrifuge ermittelten wir die Heterogenität der Teilchengröße. Voraussetzung war, daß die Form des Gradienten nicht durch Diffusion, durch den "Johnston-Ogston-Effekt" oder

durch den "self sharpening-Effect" verändert ist 22. Wie früher gezeigt wurde⁴, kann der Einfluß der Diffusion bei der hochmolekularen DNS vernachlässigt werden, da die Extrapolation der erhaltenen Sedimentations-Verteilungen auf die Aufnahmezeit $t = \infty$ keine Veränderung ihrer Form bringt²³. Dagegen wird der Gradient durch die Konzentrations-Abhängigkeit der Sedimentationsgeschwindigkeit erheblich schmäler. Prinzipielle Lösungen zur Eliminierung dieser Effekte wurden von BALDWIN²⁴ gegeben. Dabei zeigte es sich, daß die bei verschiedenen Konzentrationen erhaltenen Sedimentations-Verteilungen auf die Konzentration Null extrapoliert werden müssen. Von CANTOW¹⁷ wurden Rechenverfahren angegeben, wie sich solche Extrapolationen am ehesten durchführen lassen. Da uns bei den untersuchten Proben die Konzentrations-Abhängigkeit des mittleren Sedimentations-Koeffizienten S^c_{20, w. 0.5} bekannt war, konnten wir neben dem Verfahren von CANTOW¹⁷ auch rechnerisch die Verteilung der S-Werte bei der Konzentration Null ermitteln. Dabei ergaben sich mit beiden Verfahren übereinstimmende Werte.

Aus einer Verteilung der S⁰-Werte ließ sich dann leicht die Verteilung der Mol.-Gew. nach den von EIGNER und DOTY¹⁸ aufgestellten empirischen Beziehungen ermitteln. Mit Hilfe der gleichzeitig durchgeführten Viskositätsmessungen konnten wir die von diesen Autoren angegebenen Konstanten bestätigen.

2. Degradierung der DNS nach Bestrahlung

In Übereinstimmung mit früheren Untersuchungen⁴ an DNS aus Kalbsthymus nimmt auch an T1-DNS die Zahl der Doppelbrüche quadratisch mit der Dosis zu. Wie eine statistische Analyse der Regression zeigte, ist neben der quadratischen Komponente der Dosiseffektkurve auch ein linearer Anteil zu messen. Da die Zahl der Einzelbrüche in diesen Versuchen nicht gleichzeitig bestimmt wurde, kann nicht entschieden werden, ob dieser lineare Anteil von Doppelbrüchen dadurch zustande kommt, daß Einzelbrüche gegenüber von bereits bestehenden Einzelbrüchen eintreten, oder ob es strahlenbedingte Ereignisse in wäßriger Lösung gibt, die mit einer einzigen Reaktionskette zu einem Bruch der Doppelhelix führen.

Entsprechend der Abb. 3 und dem errechneten Wert für b und c ist die Abbaurate nach Bestrahlung bei 400 μ g/ml etwa halb so groß wie nach Bestrahlung bei 200 µg/ml. Dies ist auch aus der Konzentrations-Abhängigkeit der Strahleneffekte in wäßriger Lösung zu erwarten. Eine weitere Verdünnung der Lösung führt zu keiner weiteren Erhöhung der Strahlenempfindlichkeit. Das bedeutet, daß nicht mehr alle DNS-Moleküle von den durch die Strahlung im Wasser entstandenen Radikalen erreicht werden. Berechnet man die Molekülradien der verwendeten DNS-Moleküle nach ROSENBLOOM und SCHUMAKER¹², so ergibt sich, daß bei einer Konzentration von etwa 120 µg/ml die DNS-Moleküle sich noch eben berühren; sie sind also bei 40 μ g/ml deutlich voneinander getrennt. Da die Strahlenempfindlichkeit bei 200 und 40 μ g/ml etwa gleich ist, ist es möglich, daß nur die im statistischen Knäuel des DNS-Moleküls befindlichen Wasserradikale zur Bruchentstehung beitragen, nicht aber die außerhalb der Knäuel zwischen den einzelnen Molekülen.

3. Entstehung von Vernetzungen in bestrahlter DNS

Im Gegensatz zu den Untersuchungen an Thymus-DNS⁴, bei denen Vernetzungen nur aus dem Verhältnis $M_{\rm w}/M_{\rm n}$ vermutet werden konnten, finden sich bei Verwendung molekulareinheitlicher DNS eindeutige Hinweise auf das Vorliegen von Vernetzungen. Es erscheint nach Bestrahlung eine Fraktion, die schneller als die Kontrolle sedimentiert. Bei einem Abbau der DNS mit DNase tritt sie nicht auf. Zusätzlich ergeben sich bei der Bestrahlung von T1-DNS bei 200 µg/ml durch die rechnerische Auswertung der Vernetzungsrate Q signifikant von Null verschiedene Werte (Tab. 1). Diese Q-Werte steigen jedoch nur bis 2 krad mit der Dosis an; eine Erhöhung der Dosis führt zu keiner weiteren Zunahme der Vernetzungen. Wie sich aus der von ROSENBLOOM und SCHUMAKER¹² gefundenen Beziehung zwischen Mol.-Gew. und dem Streuradius in Lösung ergibt, berühren sich die DNS-Moleküle mit steigenden Abbauraten immer seltener, so daß weniger Vernetzungen entstehen. Bei einer Konzentration von 200 µg/ml ist die für eine Vernetzung kritische Grenzkonzentration²⁰ ckrit bereits unterschritten, wenn das Mol.-Gew. einzelner Moleküle kleiner als 1,5.107 ist. Dies entspricht auch unseren Beobachtungen, da nach Dosen über 2 krad, nach denen $M_{\rm n}$ kleiner als 1,5 $\cdot 10^7$ wird, keine weiteren Vernetzungen mehr auftreten.

²⁴ R. L. BALDWIN, J. Amer. chem. Soc. 76, 402 [1954].

²² H. K. SCHACHMAN, Ultracentrifugation in Biochemistry, Academic Press, New York and London 1959.

²³ R. L. BALDWIN u. J. W. WILLIAMS, J. Amer. chem. Soc. 72, 4325 [1950].

STRAHLENEMPFINDLICHKEIT VON BAKTERIOPHAGEN-DNS

Abbauzeit	$S^{ m e}_{ m 0,5}$	$M_{ m w}\cdot 10^{-6}$	$M_{ m n}\cdot 10^{-6}$	$A\cdot 10^{6}$	$\frac{\frac{1}{M_{n}} - \frac{1}{M_{0}}}{\frac{1}{M_{w}} - \frac{1}{M_{0}}}$	$Q\cdot 10^6$
Kontrolle	28,2	30,70	30,70			
$10 \min$	$18,\!15$	5,43	3,88	121,7	1,48	-16,40
		5,65	4,02	118,0	1,49	-15,12
$15 \min$	10,25	1,26	0,63	962,0	2,05	+ 6,82
	,	1,17	0,60	1006,0	1,99	- 2,55

Tab. 2. Molekulargewichte mit DNase degradierter DNS (DNase Konz. 1 µg/ml). Bruch- und Vernetzungsrate (A und Q).

Nach diesen Überlegungen konnten auch nach einer Bestrahlung bei 40 μ g/ml keine Vernetzungen erwartet werden, da die Moleküle der T1-DNS sich erst bei 120 μ g/ml berühren. Unsere Beobachtungen entsprechen diesen Erwartungen. Die geringen Anzeichen von Vernetzungen bei einer Bestrahlung bei 400 μ g/ml sind vermutlich mit der hohen Viskosität dieser Lösung zu erklären, was die Beweglichkeit der Makroradikale stark einschränkt. Dieser Effekt ist auch bei Kunststoffen bekannt²⁰.

Die Versuche zeigen, daß nach einer Bestrahlung von hochpolymerer DNS in Lösung ebenso Vernetzungen eintreten als bei Bestrahlung von synthetischen Polymeren. Das Vorliegen von Vernetzungen in bestrahlter DNS-Lösung wurde auch durch elektronenoptische Aufnahmen belegt ²⁵. Ebenso wie bei den synthetischen Polymeren besteht auch bei der DNS eine kritische Konzentration, unter der keine Vernetzungen mehr auftreten; ferner ist die Vernetzungswahrscheinlichkeit in konzentrierten Lösungen mit hoher Viskosität geringer. Im Gegensatz zu der Bestrahlung von trockener DNS²⁶ wird aber in Lösung keine "Gel-Dosis" erreicht, d. h. es entsteht kein unlösliches Netzwerk von Molekülen. Das mag dadurch bedingt sein, daß die Abbaurate der Polynucleotidkette viel größer ist als die Vernetzungsrate. Auch unter günstigen Bedingungen beträgt das Verhältnis Doppelbruch zu Vernetzung 1:0,35, während es bei Bestrahlung trockener DNS¹⁴ 1:3,37 beträgt. In Lösung gilt dies nur für niedrige Dosen, bei höheren Dosen steigt die Zahl der Doppelbrüche infolge der zahlreichen Einzelbrüche stark an, so daß die Brüche noch mehr gegenüber den Vernetzungen überwiegen.

Das Vorliegen von Vernetzungen bei der Bestrahlung von synthetischen Polymeren führt zu der Annahme, daß Energiewanderungen innerhalb des Makromoleküls stattfinden (CHARLESBY²⁷). Es werden G-Werte für q von etwa 1 beobachtet, was bedeutet, daß fast jede Primärionisation schließlich zu einer Vernetzung beiträgt. Bei DNS-Lösungen konnten wir nur einen maximalen G-Wert für q von 10^{-3} erhalten. Das würde bedeuten, daß die zur Vernetzung führenden Radikale wesentlich kurzlebiger sind als die in einer Lösung mit synthetischen Polymeren, oder daß die bei den synthetischen Polyren angenommene Energiewanderung solcher Radikale in der DNS nicht stattfindet.

Es ist zu vermuten, daß unsere Methode der Berechnung von Q-Werten eher zu kleine Werte liefert als zu große. Dies ergibt sich einmal aus einem Vergleich der errechneten O-Werte mit der Form der Mol.-Gew.-Verteilung wie aus der Tatsache, daß negative Q-Werte errechnet werden, wenn ein Wert von Null zu erwarten ist. Dies kann einmal dadurch bedingt sein, daß sehr kleine Bruchstücke in den Densitometerkurven nicht erkannt werden, und so die Werte für M_n zu groß werden. Das führt dann zu kleineren Q-Werten. Berücksichtigt man, daß bei der Bestrahlung von Lösungen mit 40 µg/ml im Mittel ein Q-Wert von $-0.7 \cdot 10^{-6}$ gemessen wird, so ist nicht auszuschließen, daß auch bei den anderen Bestrahlungsserien die angegebenen Q-Werte etwa um diesen Betrag zu niedrig gemessen werden. Auf der anderen Seite besteht die Möglichkeit, daß die hier nicht gefundenen kleinen Bruchstücke auch tatsächlich nicht auftreten. Das würde bedeuten, daß die Brüche in der DNS-Kette nicht über das Molekül statistisch verteilt sind, sondern an bestimmten, durch eine besondere Struktur ausgezeichneten Stellen lokalisiert sind.

Frl. B. ALTENDORF danken wir für ihre ausgezeichnete technische Assistenz.

²⁷ A. CHARLESBY, in: Radiation Research (ed. G. SILINI), North-Holland Publ. Cy., Amsterdam 1967, p. 265.

N. N. DE GUPTA, M. SARKAR U. D. N. MISRA, J. molecular Biol. 15, 619 [1966].
 P. ALEXANDER U. J. T. LETT, Nature [London] 187, 933

²⁶ P. ALEXANDER u. J. T. LETT, Nature [London] 187, 933 [1960].

 Alexandria de l'Alexandria de la la la companya de la company de la companya de la comp el companya de la comp el companya de la comp el compan