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Explicit expressions are derived for the orbit properties of isochronous cyclotrons with separate homogeneous field magnets by use
of the matrix method and the hard edge approximation. The results hold for arbitrary shapes of the magnet boundaries (subject
to the condition of isochronism). As a design example a 50 to 310 MeV proton accelerator is considered in more detail.

1. Introduction

Recently, isochronous cyclotrons with separated
magnets have received increased interest. Besides the
machines of this type which are either under construc-
tion') or definitely proposed?) isochronous ring acceler-
ators have been studied as an alternative to the
Separated Orbit Cyclotron®) and for accelerating heavy
ions*-?).

For light projectiles, the main advantage of a
separated magnet structure lies in the field of beam
extraction from the accelerator: A high energy gain

_per turn can be achieved by inserting separate rf struc-

" tures into the field free sections between the magnets,
and, in addition, the radial width of a single orbit can
be reduced by exciting one or several of the rf cavities
at the third harmonic frequency (“flat-topping the rf”’).
The latter aspect has been studied in detail by Gordon®)
to whom we therefore refer for details. For heavy ions
a separated magnet cyclotron offers the possibility of
increasing the ionic charge by stripping at an inter-
mediate energy before injection into the ring’).

In a recent paper, Gordon®) has studied the orbit
properties of a separated magnet structure with radial
sectors where isochronism is maintained by a radial
increase of field strength in the magnets. This paper
presents the results of a similar study of the case of

homogeneous field magnets where isochronism is

achieved by increasing the azimuthal width of the
magnets with increasing radius. Explicit expressions

can be derived for the number of betatron oscillations
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per turn for this case. Some of the results of this papér
have been quoted without proofin a preceding publica-
tion®).

2. Basic assumptions

It is assumed that the guiding field is produced by N
identical homogeneous field magnets with & field-free
sections in between. The hard edge approximation is
assumed to be valid such that the orbit is composed of
circular and straight sections. The number of betatron
oscillations per revolution can then be determined by
use of the matrix method [cf., e.g., Livingood’)]. The
transfer matrix of one period of the magnetic field is the
product of the matrices corresponding to the magnetic
sector (M,,) and to the fieldfree sector (M), respec-
tively. The matrix M, only depends on the length / of
the straight section of the orbit between two magnets
and is given by

I1
M;

(1)
01

The magnet can be replaced by a sector magnet with
straight edges which coincide with the tangents to the
magnet boundaries at the entrance and exit of the orbit
(cf. fig. 1). The transfer matrix correspe

sector magnet is given by Steffen®), e.g. Using the
notation of fig. 1 we obtain the following expressions
for the radial and axial movements, respectively:

nding to such a
nding 1o such

rsin(2z/N)
, (2a)
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Fig. 1. Orbit section in one magnet sector. The angles y; and y,
are defined positive for the situation shown in this figure.

In these expressions, the signs of y; and y, are chosen
in such a way that both angles are positive for the
situation shown in fig. 1. Furthermore we have taken
into account that the total angle of deflection of the
orbit in one magnet equals 2z/N. From these expres-
sions the numbers of radial and axial betatron oscilla-
tions per-turn, v, and v,, respectively, can be cal-
culated”):

cos(v,."2n/N) = $Tr(M;- M, .). 3)

These equations reduce the problem of beam stability
to the problem of determining the geometrical quan-
tities y4, v, and L

3. The non-relativistic case

For all of this section, the relativistic mass increase is
neglected. The results may be of interest for a cyclotron
accelerating heavy ions to energies below 10 MeV/
nucleon as the mass increase then amounts to less than
19%. The azimuthal magnet boundaries are assumed to

TN

Fig. 2. Cross section of a sector magnet with constant spiral
angle ¢.

be given by logarithmic spirals the equation of which is

4

in polar coordinates p,¢. For these spirals, the angle ¢
between the magnet boundary and a straight line
through machine center is independent of radius. Let «
be the angle occupied by one magnet*. The field-free
sections then occupy the angle (2n/N)—«. Fig. 2 shows
a cross section of one magnet.

p = poexp(¢-ctge),

3.1. CALCULATION OF THE EQUILIBRIUM ORBIT

Let » be the radius of curvature of the orbit in the
magnetic field and s the distance between machine
center and the point of entrance of the orbit into the
magnet sector. As the equilibrium orbit is strictly
periodic a relation connecting r,s and the angles « and ¢
has to exist. Fig. 3 shows the section of the orbit in one
period of the magnetic field. The points A, B, and C are

N
M

Fig. 3. Orbit section in one period of the magnetic field.

successive points of intersection of the orbit with the
magnet boundaries, point D is the point of intersection
of the straight lines which coincide with the straight
orbit sections. Due to the periodicity of orbit and

magnetic field we obtain AM=CM =s. It is less
obvious that point B has the same distance from M as
A and C. This can be shown by the following geometri-
cal consideration:

As the orbit is deflected by the angle 2z/N in one
magnet sector the sum of the angles / ADC and
£ CMA equals 7. Consequently, the four points A, C,
D and M are situated on one circle. For the sake of
clarity, the relevant parts of fig. 3 are repeated in fig. 4.
As the two intervals AM and CM have equal size the
same holds for the two angles / ADM and /. CDM.
Also, the two intervals AD and BD have equal length
for reasons of symmetry as is evident from fig. 3. Then

* The angle « is connected to the magnet fraction fin Gordon’s
paper by o=27f|N.
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ey

Fig. 4. Part of fig. 3 with all quantities relevant to the calculation
of the equilibrium orbit.

the two triangles ADM and BDM are congruent which

establishes the said proposition BM = s.
As the angle /. AMB equals o we can read from fig. 3
the relation
(5)

which characterizes the equilibrium orbit and is
evidently independent of e.

ssin(%a) = rsin(n/N),

3.2. ORBIT STABILITY

According to the results of section 2 we now have to
determine the quantities /, y; and y,. From fig. 4 we see
immediately
| = 2ssin[(n/N)—4a] =

= 2rsin(n/N)sin[(z/N)—%a] (sin®) . (6)

The point R in fig. 4 represents the centre of the circular
part of the orbit between A and B. As the angle between

the magnet boundary and the straight line AM equals &
we obtain the following expressions of the angles:

71 =3(r—a)—3r—(2n/N)]+e& = (n/N)—fa+e, (Ta)

Y, = —(n/N)+3o+s. (7b)
By evaluating eq. (3) we get
cos (v, 2n/N) = cos(2n/N)— {1 —cos(2z/N)}-
{1 —cos[(2rn/N)—o]}"
-{cos(2e)+cos[(2n/N)—c]} ™', (8a)

cos (v, 2n/N) = 1 —{(=/N)+sin(n/N)sin[(z/N)—1a]-
(singe) ™"} {tg[(n/N) —$ou+e] +
+tg[(n/N)—ta—e]} +
+(2n/N)sin(z/N)sin[(7/N)—%«]-
“(singe) ™" tg[(n/N) — 3o +e]-
‘tg[(n/N)—}a—e].

(8b)

For ¢ =0 these equations are identical to egs. (38) in a
recent publication by Gordon®). As an example, fig. 5
shows the number of radial and axial betatron oscilla-
tions per turn for N = 6 and two different spiral angles.

4, The general case

In this section we drop two simplifying assumptions
made in the preceding one:

a. We take the relativistic mass increase into account;
b. We allow arbitrary shapes of the entrance boundaries
of the magnets.

We still make use of the hard edge approximation
and of the matrix method.

Let ¢ =B (s) be the equation of the entrance boundary
of a magnet in polar coordinates ¢,s and let o and s
have the same meaning as in section 3. The angle B is
considered an arbitrary function of s which is specified
later on to obtain optimum orbit properties. The angle
o now becomes a function of s, too, if isochronism is
to be maintained.
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Fig. 5. Dependence of (a) »; and (b) v, on the angles « and ¢ for
a nonrelativistic cyclotron with 6 magnets.
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Fig. 6. Orbit section in one period of the magnetic field with
definition of the angles o and S.

Fig. 6 shows a part of the orbit in one period of the
magnetic field. In section 3 it has been proved that the
equilibrium orbit intersects all magnet boundaries at
the same distance from machine centre. The proof was
based on the following two presuppositions:

a. The equilibrium orbit is periodic with 27/N;
b. It is deflected by the angle 27/N in one magnet.

The result therefore holds in the general case. As a
consequence eqs. (5) and (6) also hold under the
assumptions of this section. Expressing the radius r by
the particle energy we rewrite eq. (5)

ssin(3a) = (c/w)(y*>—1)*sin(n/N). 9)
Here, c is the velocity of light, w the low energy angular
frequency of the particles moving in the homogeneous
field of the magnets and y is the ratio of total and rest
energies of the particle.

4.1. THE CONDITION OF ISOCHRONISM

Isochronism determines the dependence of « on s.
Let L(y) be the length of the equilibrium orbit of
energy v and 7 the time of revolution of the particles.
Isochronism then requires that

7 = Ljv = const.
where v is the particle velocity. The length of the
equilibrium orbit is given by
L = N[(2ar/|N)+1] = 2rr+2Nssin[(n/N)—3a]. (10)

Here, /is the length of the straight orbit section between
two magnets. By use of eq. (5) this yields

7 = (2ar[v) {1 +(N/=)sin(n/N)sin[(n/N)—La]-
“(sinfe) ™1} (11)
The quantity r/v equals y/w. Equating 7(y = 1) with
7(y) from eq. (11) we obtain a relation between y and o:
p{L+(N/m)[sin(n/N)]* ctg(32) -
~(N/m)sin(zn/N)cos(n/N)} =
= 1+(N/m) [sin(n/N)]* ctg (3e0) -

—(N/=)sin(n/N)cos(n/N), (12)

where «, = a(s =0). For numerical calculations it is
more convenient to use instead of eq. (12) the following
equivalent expression

Py—1)7" {etg(3oo) —ctg(39)} =

— (/) [sin (x/N)] 2 +ctg (o) —ctg(n/N). (13)
The right hand side of this equation is evidently in-
dependent of y and o. Eqgs. (9) and (13) determine the

width of the magnet once the parameters N and o, have
been chosen.

4.2. ORBIT STABILITY

The entrance and exit boundaries of the magnets are
given by the egs. ¢ = B(s) and ¢ = B(s)+a(s), respec-
tively, in polar coordinates. Hence we obtain for the
spiral angles ¢; and &, of the boundaries

tge, = s(df/ds),
tge, = s[(dB/ds)+(dec/ds)] = tgey +s(do/ds). (14b)

(14a)

While B(s) is a function which can still be chosen in
order to optimize a special design de/ds must be cal-
culated from the expressions given above. It is advan-
tageous to consider y as the independent variable and
to write

do/ds-= (da/dy)(ds/dy)~".

This expression can be determined by differentiating
egs. (9) and (13) with respect to y. A tedious but
straightforward calculation then results in

tge, = tge; +2{°(y+1) 7
-sindao[sindasind(a—ao)] * —ctgioe} "t (15)

By analogy with eq. (7) we obtain for the angles y,
and y,

(16a)
(16b)
A similar calculation as in section 3 then leads to
cos(v,-2n[/N) = {cos(o+&, —&;) +
+cos(2r/N)cos(e, +&2)—
—2sin(r/N)sin[(n/N)—4o]-
-sin(o+e,—g; ) (sinda) ™13
-{cos(e; +&,) +

+cos[(2n/N)—a+e; —&, 1371, (17a)



ORBIT DYNAMICS OF ISOCHRONOUS CYCLOTRONS 33

cos(v,-2n[N) =1—{tg[(n/N)—La+e, ]+
+te[(nIN)—da—es]) (IN)+
+sin(z/N)sin [(z/N)—-%o]-
-(sin4a) "'} +(27/N)sin(z/N)-
-sin[(7/N)—4a] (sinde) ™ *-
g [(x/N) o2, 1t [(5]N) — bz ]
(17b)

It can easily be shown that eqs. (17) reduce to egs. (8)
if &, =¢,=¢.

The sequence of eqs. (13), (14), (15) and (17) can now
be used to determine all orbit properties at different
energies once the parameters N and «, and the function
B(s) have been chosen. The shape of the magnets is
determined by f(s) and eqgs. (9) and (13).

4.3. DETERMINATION OF THE MAGNET SHAPE FROM Vv,

It should be pointed out that the equations given
above can be used to determine the spiral angle ¢, and
hence the magnet shape from a prescribed value of v,.
It is therefore possible —in principle at least —to choose
an arbitrary dependence of v, on the particle energy
and to calculate the corresponding magnet shape. Of
course, the corresponding values of v, or practical
considerations may severely restrict the choice of v,
values.

The relevant equations are obtained by eliminating
&, from egs. (15) and (17b). This results in a second
order equation for tge,:

2{[=(t—b)/N]+tb—[tsin(v,n/N)]*}(tge, +a)tge, +
+(2t—a-+at?)[b+(n/N)]+1(t—a)(2nb/N) +
—2(1 +at)[sin(v,z/N)]* = 0,

where the following abbreviations have been used

t = tg[(n/N)—3o],

a =tge, —tge [cf. eq. (15)],

b = sin(n/N)sin[(n/N)—1«] (sinfor) " .
The quantities @, b and ¢ only depend on « and the
parameters o, and N. Once the parameters o, and N
have been chosen « as well as s are determined by the
particle energy y via egs. (9) and (13). Eq. (18) then
determines &;, and the magnet shape, i.e. the angle f,
is obtained by integrating eq. (14a) with respect to s.

(19)

5. Design example

A very simple example is obtained by chosing the
entrance edge of each magnet as a straight line through
machine centre, i.e. by putting = ¢, = 0. This design
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Fig. 7. Orbit frequencies », and v, for a cyclotron with N=6

and straight radial entrance edges of the magnets. The curves

start on top at zero energy (y = 1), the dots represent intervals

of Ay = 0.1, and the parameters give the value of the angle «o.
The dashed line indicates the resonance 2v; = ;.

has of course considerable advantages from the point
of view of manufacture. Fig. 7 shows a plot of v,
against v, for N =6 and several values of «,. The
curves start on top at y=1. With increasing 7, v,
increases while v, decreases. The dots along the lines
represent intervals of 4y = 0.1. The dashed line indicates
the coupling resonance 2v, =v,.

The question of resonances has been discussed ex-
tensively by Gordon®). As the dependence of v, and v,
is very similar to his results we confine ourselves to

TABLE 1
Orbit properties and dimensions of an isochronous ring acceler-
ator with straight radial entrance edges of the magnets. The main
parameters have the values of N=6 and «p=15°, and the
dimensions refer to a proton accelerator with a field of 15.7 kG
in the magnets.

Vv o s Vr Vy
(deg)  (m)
100 1500 0 1092  1.877
105 1578 233, 1145 1.749
110 1656 3.8 = 1200  1.628
115 1734 377 1258 1510
120 1813 421 1322 1388
125 1891  456% 1396 1258
130 1970 486 F 1487  1.107
135 2049 510  1.603 0917
140 2128 531, 1.766  0.629
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Fig. 8. Lay-out of a 50 to 300 MeV proton accelerator with

straight radial entrance edges of the magnets and oo = 15°.

Equilibrium orbits are drawn at 50 MeV intervals. The orbit
properties of this accelerator are given in table 1.

some short remarks and refer to his work for a more
detailed discussion. The most serious resonance to be
taken into account is the resonance v,=1. As this
resonance cannot be crossed during acceleration one is
restricted to operate in the regions 1 <v, <2 orv, <1.
As fig. 7 shows both regions can be used depending on
the choice of «, and on the energy range of the
accelerator.

As a specific example the case of N =6 and o, = 15°
are considered in more detail. The results of the
calculation are summarized in table 1 where the
dimensions refer to a proton accelerator with a magnetic
field strength of 15.7 kG in the magnets. As can be
seen this choice of parameters seems to be suitable for
a proton accelerator from 50 to about 350 MeV. Fig. 8
shows the lay-out of a 50 to 300 MeV proton accelerator.

6. Conclusion

It was shown that for the case of homogeneous field
magnets the orbit properties of a separated magnet
isochronous cyclotron can be determined without
solving differential equations of motion. The important
approximation made to obtain explicit expression for
the orbit properties is the hard edge approximation.
As the width of the stray field region of the magnets
constitutes a larger portion of the orbit at low energies
the approximation is expected to be more precise at
higher energies. Experience shows®) that v, values are
lower in reality than estimated by this approximation.
Nevertheless, it is felt that the expressions derived here
are sufficiently precise for serving as a guide line in
choosing the parameters of a special design which then

should be considered more closely by more exact
methods. The results obtained

cils QDAL &IC

are qnn]ifaﬁvely very

vaiiilacl

similar to recently published results for similar
accelerators®).

I thank Prof. M. M. Gordon, Michigan State
University, for making his results available to me prior
to publication. I am indebted to Mrs. G. Hoffmann
for preparing the drawings and for carrying out the
numerical calculations.
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