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Explicit expressions are derived for the orbit properties of isochronous cyc1otrons with separate homogeneous fie1d magnets by use
of the matrix method and the hard edge approximation. The results hold for arbitrary shapes of the magnet boundaries (subject

to the condition ofisochronism). As a design example a 50 to 310 MeV proton accelerator is considered in more detail.

1. Introduction
Reeently, isoehronous eyc1otrons with separated

magnets have reeeived inereased interest. Besides the
maehines of this type whieh are either under eonstrue
tion") or definitely proposed") isoehronous ring aeceler
ators have been studied as an alternative to the
Separated Orbit Cyclotron") and for aecelerating heavy
ions4,5). .

For light projectiles, the main advantage of a
separated magnet strueture lies in the field of beam
extraetion from the accelerator: A high energy gain

. per turn can be achieved by inserting separate rf struc
. tures into the field free seetions between the magnets,
and, in addition, the radial width of a single orbit can
be redueed by exeiting one or several of the rf eavities
at the third harmonie frequency ("Rat-topping the rf").
The latter aspeet has been studied in detail by Gordon")
to whom we therefore refer for details. For heavy ions
aseparated magnet eyclotron offers the possibility of
inereasing the ionie charge by stripping at an inter
mediate energy before injeetion into the ring").

In a reeent paper, Gordon") has studied the orbit
properties of aseparated magnet strueture with radial
seetors where isoehronism is maintained by a radial
inerease of field strength in the magnets. This paper
presents the results of a similar study of the case of
homogeneous field magnets where isochronism is
aehieved by inereasing the azimuthaI width of the
magnets with inereasing radius. Explicit expressions
can be derived for the number of betatron oscillations

per turn for this ease. Some of the results of this paper
have been quoted without proof in a preceding publica
tion").

2. Basic assumptions
It is assumed that the guiding field is produeed by N

identieal homogeneous field magnets with N field-free
seetions in between. The hard edge approximation is
assumed to be valid such that the orbit is composed of
circular and straight sections. The number of betatron
oscillations per revolution ean then be determined by
use of the matrix method [cf., e.g., Livingood/j]. The
transfer matrix of one period of the magnetie field is the
product of the matrices corresponding to the magnetic
seetor (Mm) and to the fieldfree seetor (M[), respec
tively. The matrix M[ only depends on the length lof
the straight section of the orbit between two magnets
and is given by

(1)

The magnet can be replaced by a sector magnet with
straight edges which coincide with the tangents to the
magnet boundaries at the entranee and exit of the orbit
(cf. fig. 1). The transfer matrix corresponding to such a
seetor magnet is given by Steffen"), e.g. Using the
notation of fig. 1 we obtain the following expressions
for the radial and axial movements, respectively:

[

cos[(2n/N)-Y1] (COSY1)-1

M
mr

= -(1 +tgY1 tgyz)sin[(2n/N)-Y1 +Yz] {rcos(Y1 -yz)}-1

[

1-(2n/N)tgY1 2nr/N ]

M
mz

= r- 1[tgyz-tgY1-(2n/N)tgY1 tgyz] 1+(2n/N)tgyz .

29

rsin(2n/N) ]
(2a)

cos[(2n/N)+Yz](cOSY2)-1 '

(2b)
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be given by logarithmic spirals the equation of which is

Fig. 3. Orbit section in one period of the magnetic field.

in polar coordinates p,</>. For these spirals, the angle e
between the magnet boundary and a straight Iine
through machine center is independent of radius. Let IX

be the angle occupied by one magnet*. The field-free
sections then occupy the angle (2n/N)-IX. Fig. 2 shows
a cross section of one magnet.

(4)p = poexp(</>'ctge),

3.1. CALCULATION OF THE EQUILIBRIUM ORBIT

Let r be the radius of curvature of the orbit in the
magnetic field and s the distance between machine
center and the point of entrance of the orbit into the
magnet sector. As the equilibrium orbit is strictly
periodic a relation connecting r.sand the angles CI. and s
has to exist. Fig. 3 shows the section of the orbit in one
period of the magnetic field. The points A, B, and C are

successive points of intersection of the orbit with the
magnet boundaries, point D is the point of intersection
of the straight lines which coincide with the straight
orbit sections. Due to the periodicity of orbit and
magnetic field we obtain AM = CM = s. It is less
obvious that point B has the same distance from M as
A and C. This can be shown by the following geometri
cal consideration:

As the orbit is deflected by the angle 2n/N in one
magnet sector the sum of the angles L ADC and
L CMA equals tt. Consequently, the four points A, C,
D and Mare situated on one circ1e. For the sake of
c1arity, the relevant parts of fig. 3 are repeated in fig. 4.
As the two intervals AM and CM have equal size the
same holds for the two angles L ADM and L CDM.
Also, the two intervals AD and BD have equallength
for reasons of symmetry as is evident from fig. 3. Then

* The angle e<: is connected to the magnet fractionJin Gordon's
paper bye<:=lnflN.

/
magnet
boundaries

/

Fig. 1. Orbit section in one magnet sector. The angles Yl and Y2
are defined positive for the situation shown in this figure.

Fig. 2. Cross section of a sector magnet with constant spiral
angle e.

I
I/~

3. The non-relativistic case
For all ofthis section, the relativistic mass increase is

neglected. The results may be of interest for a cyc1otron
accelerating heavy ions to energies below 10 MeV/
nuc1eon as the mass increase then amounts to less than
1%. The azimuthal magnet boundaries are assumed to

In these expressions, the signs of 1'1 and 1'2 are chosen
in such a way that both angles are positive for the
situation shown in fig. 1. Furthermore we have taken
into account that the total angle of deflection of the
orbit in one magnet equals 2n/N. From these expres
sions the numbers of radial and axial betatron oscilla
tions per turn, v, and vz' respectively, can be cal
culated"):

cos(vr,z·2n/N) = tTr(Mf' Mmr,z)' (3)

These equations reduce the problem of beam stability
to the problem of determining the geometrical quan
tities 1'1' 1'2 and I.
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orbit and is
Vz

M

Fig. 4. Part offig. 3 with all quantities relevant to the calculation
of the equilibrium orbit.

4. The general case
In this section we drop two simplifying assumptions

made in the preceding one:
a. We take the relativistic mass increase into account;
b. We allow arbitrary shapes of the entrance boundaries

of the magnets.
We still make use of the hard edge approximation

and of the matrix method,
Letep=ß(s) be the equation ofthe entrance boundary

of a magnet in polar coordinates ep,s and let IX and s
have the same meaning as in section 3. The angle ß is
considered an arbitrary function of s which is specified
later on to obtain optimum orbit properties. The angle
IX now becomes a function of s, too, if isochronism is
to be maintained.

For e = 0 these equations are identical to eqs. (38) in a
recent publication by Gordon"). As an example, fig. 5
shows the number of radial and axial betatron oscilla
tions per turn for N = 6 and two different spiral angles.

(5)ssin(ta) = rsin(n/N),
which characterizes the equilibrium
evidently independent of e.

the two triangles ADM and BDM are congruent which

establishes the said proposition BM = s.
As the angle L AMB equals o: we can read from fig. 3

the relation

1.2

08

3.2. ORBIT STABILITY 2.0

According to the results of section 2 we now have to
determine the quantities I, Y1 and Y2' From fig. 4 we see
immediately 1.6

1= 2ssin[(n/N)-ta] =

= 2rsin(n/N)sin [(n/N) --ta] (sin -tat 1. (6)

The point R in fig. 4 represents the centre of the circular
part of the orbit between A and B. As the angle between

the magnet boundary and the straight line AM equals e
we obtain the following expressions of the angles:

N=6

Fig. 5. Dependence of (a) Pz and (b) 1'r on the angles IX and e for
a nonrelativistic cyc1otron with 6 magnets.

Y1 = -t(n-a)-t[n-(2n/N)] +e = (n/N)-tIX+e, (7a)

Y2 = -(n/N)+ta+ e. (7b)

By evaluating eq. (3) we get

COS(vr·2n/N) = cos(2rc/N)- {l-cos('2n/N)}'

· {1-cos [(2n/N)-a]}'

· {cos(2e)+cos [(2n/N)-a]}-t, (8a)

cosfv, '2n/N) = 1- {(n/N) + sin(n/N)sin [(n/N)-ta] .

.(sinj«)" 1}{tg [(n/N)-ta+ e]+

+tg[(n/N)-ta-e]} +

+ (2n/N) sin (n/N) sin [(n/N)-ta] .

· (sin ta)-1 tg [(n/N) -ta+ e]'

·tg[(n/N)-ta-e]. (8b)

"l.Jr

108

1.04

1.00

20 24

a

b
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Fig. 6. Orbit section in one period of the magnetic field with
definition of the angles IX and ß.

Fig. 6 shows apart of the orbit in one period of the
magnetic fie1d. In section 3 it has been proved that the
equi1ibrium orbit intersects all magnet boundaries at
the same distance from machine centre. The proof was
based on the following two presuppositions:
a. The equi1ibrium orbit is periodic with 2n/N;
b. It is defLected by the angle 2n/N in one magnet.

The resu1t therefore ho1ds in the general case. As a
consequence eqs. (5) and (6) also hold under the
assumptions of this section. Expressing the radius r by
the partic1e energy we rewrite eq. (5)

ssin(ta) = (c/w)(1'2-1)tsin(n/N). (9)

Here, c is the velocity oflight, w the 10w energy angular
frequency of the partic1es moving in the homogeneous
fie1d of the magnets and l' is the ratio of total and rest
energies of the partic1e.

4.1. THE CONDITION OF ISOCHRONISM

Isochronism determines the dependence of a on s.
Let L(1') be the 1ength of the equilibrium orbit of
energy l' and "C the time of revolution of the partic1es.
Isochronism then requires that

"C = L/v = const.

where v is the partic1e velocity. The 1ength of the
equilibrium orbit is given by

L = N[(2nr/N)+ 1] = 2nr+2Nssin[(n/N)-taJ. (10)

Here, 1is the 1ength of the straight orbit section between
two magnets. By use of eq. (5) this yie1ds

"C = (2nr/v) {I + (N/n) sin(n/N)sin [(n/N)-ta] .
·(sinta)-l}. (11)

The quantity rjo equa1s »[ca. Equating "C(1' = 1) with
"C(1') from eq. (11) we obtain a relation between l' and a:

1'{1 + (N/n) [sin(n/N)Yctg(-!-a)~
-(N/n)sin(n/N)cos(n/N)} =

= 1+ (N/n) [sin(n/N)]2ctg(-!-ao)-

-(N/n)sin(n/N)cos(n/N), (12)

where ao= a(s = 0). For numerica1 calcu1ations it is
more convenient to use instead of eq. (12) the following
equiva1ent expression

1'(1'-lt 1{ctg(tao)-ctg(-!-a)} =

= (n/N) [sin(n/N)r2+etg(tao)-etg(n/N). (13)

The right hand side of this equation is evidently in
dependent of l' and o: Eqs. (9) and (13) determine the
width ofthe magnet onee the parameters N and aohave
been chosen.

4.2. ORBIT STABILITY

The entrance and exit boundaries of the magnets are
given by the eqs. 4J = ß(s) and 4J = ß(s)+a(s), respee
tive1y, in polar coordinates. Hence we obtain for the
spiral ang1es 81 and 82 of the boundaries

tg e, = s(dß/ds), (14a)

tg s, = s[(dß/ds) + (da/ds)] = tg81 +s(da/ds). (14b)

Whi1e ß(s) is a function which ean still be chosen in
order to optimize a special design da/ds must be ca1
cu1ated from the expressions given above. It is advan
tageous to consider l' as the independent variable and
to write

da/ds= (da/d1') (ds/d1't 1.

This expression can be determined by differentiating
eqs. (9) and (13) with respect to 1'. A tedious but
straightforward calcu1ation then results in

tg82 = tgs, +2{1'2(1'+1)-1.

.sintao[sin tasin -!-(a- ao)r 1_ etgtao} -1. (15)

By analogy with eq. (7) we obtain for the ang1es 1'1
and 1'z

1'1 = (n/N)-ta+81' (16a)

1'2 = -(n/N)+!!x+8z. (16b)

A simi1ar calcu1ation as in section 3 then leads to

cos(vr2n/N) = {cos(a+82 -81)+

+cos(2n/N)cos(81 +82)

-2sin(n/N)sin[(n/N)-ta] .

.sin(a +82 -81) (sin tat 1}.

. {COS(81 +82) +

+cos[(2n/N)-a+81 -82]}-1, (17a)
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cos(vz'2n/N) = 1-{tg[(n/N)-tO:+81]+
+tg[(n/N)-tO:-8Z]} {(n/N)+

+sin(n/N)sin [(n/N) -to:]·

.(sin to:) -I} +(2n/N)sin(n/N)'

. sin [(n/N) -to:] (sin to:)-l .

.tg [(n]N) - to:+ 81]tg [(n/N) -to: -8Z]'

(17b)

It can easily be shown that eqs. (17) reduce to eqs. (8)
if 8 1 =8z =8.

The sequence of eqs. (13), (14), (15) and (17) can now
be used to determine all orbit properties at different
energies once the parameters N and 0:0 and the function
ß(s) have been chosen. The shape of the magnets is
determined by ß(s) and eqs. (9) and (13).

4.3. DETERMINATION OF THE MAGNET SHAPE FROM Vz

It should be pointed out that the equations given
above can be used to determine the spiral angle 8 1 and
hence the magnet shape from a prescribed value of Vz.

It is therefore possible - in principle at least - to choose
an arbitrary dependence of Vz on the particle energy
and to calculate the corresponding magnet shape, Of
course, the corresponding values of vr or practical
considerations may severely restriet the choice of Vz

values.
The relevant equations are obtained by eliminating

8z from eqs. (15) and (l7b). This results in a second
order equation for tg a. :

2{[n(t-b)/N] +tb-[tsin(vzn/N)]Z}(tg81 +a)tg81+

+(2t- a+ atZ) [b+ (n/N)] + t(t- a)(2nb/N)+

-2(1+at)[sin(vzn/N)]Z = 0, (18)

where the following abbreviations have been used

t = tg[(n/N)-to:],

a = tg8z-tg81 [cf. eq. (15)],

b = sin(n/N)sin [(n/N)-to:] (sin to:t 1.

The quantities a, band t only depend on 0: and the
parameters 0:0 and N. Once the parameters 0:0 and N
have been chosen 0: as well as s are determined by the
particle energy y via eqs. (9) and (13). Eq. (18) then
determines 81' and the magnet shape, i.e. the angle ß,
is obtained by integrating eq. (14a) with respect to s.

5. Design example
A very simple example is obtained by chosing the

entrance edge of each magnet as a straight line through
machine centre, i.e. by putting ß= 8 1 = 0. This design

N=6

0.51"'-----\------\-f----\--+-----'<,-------j

O.':--...L.---::':!-----'-::"::---:---'::'.
1.0

Fig. 7. Orbit frequencies Pr and Pz for acyclotron with N = 6
and straight radial entrance edges of the magnets. The curves
start on top at zero energy (y = 1), the dots represent intervals
of Lly = 0.1, and the parameters give the value of the angle oeo.

The dashed line indicates the resonance 2Pz = Pr.

has of course considerable advantages from the point
of view of manufacture. Fig. 7 shows a plot of vz

against v, for N = 6 and several values of 0:0' The
curves start on top at y = 1. With increasing y, v,
increases while Vz decreases. The dots along the lines
represent intervals of LI y = 0.1. The dashed line indicates
the coupling resonance 2vz = vr •

The question of resonances has been discussed ex
tensively by Gordon''). As the dependence of v, and Vz

is very similar to his results we confine ourselves to

TABLE 1
Orbit properties and dimensions of an isochronous ring acceler
ator with straight radial entrance edges of the magnets. The main
parameters have the values of N = 6 and oeo = 15°, and the
dimensions refer to a proton accelerator with a field of 15.7 kG

in the magnets.

y oe S Pr Vz

(deg) (m)

1.00 15.00 0 1.092 1.877
1.05 15.78 2.33 1.145 1.749
1.10 16.56 3.18 1.200 1.628
1.15 17.34 3.77 1.258 1.510
1.20 18.13 4.21 1.322 1.388
1.25 18.91 4.56' 1.396 1.258
1.30 19.70 4.86'-Wi 1.487 1.107
1.35 20.49 5.10 1.603 0.917
1.40 21.28 5.31 1.766 0.629
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Fig. 8. Lay-out of a 50 to 300 MeV proton aeeelerator with
straight radial entrance edges of the magnets and lXo = 15°.
Equilibrium orbits are drawn at 50 MeV intervals. The orbit

properties of this aeeelerator are given in table 1.

some short remarks and refer to his work for a more
detailed discussion. The most serious resonance to be
taken into account is the resonance Vz = 1. As this
resonance cannot be crossed during acceleration one is
restricted to operate in the regions 1 < Vz < 2 or Vz < 1.
A~ fig. 7 shows both regions can be used depending on
the choice of c!o and on the energy range of the
accelerator.

As a specific example the case of N = 6 and c!o = 15°
are considered in more detail. The results of the
calculation are summarized in table 1 where the
dimensions refer to a proton accelerator with a magnetic
field strength of 15.7 kG in the magnets. As can be
seen this choice of parameters seems to be suitable for
a proton accelerator from 50 to about 350 MeV. Fig. 8
shows the lay-out of a 50 to 300MeV proton accelerator.

6. Conclusion

It was shown that for the case of homogeneous field
magnets the orbit properties of aseparated magnet
isochronous cyclotron can be determined without
solving differential equations ofmotion. The important
approximation made to obtain explicit expression for
the orbit properties is the hard edge approximation.
As the width of the stray field region of the magnets
constitutes a larger portion of the orbit at low energies
the approximation is expected to be more precise at
higher energies. Experience shows") that Vz values are
lower in reality than estimated by this approximation.
Nevertheless, it is feIt that the expressions derived here
are sufficiently precise for serving as a guide line in
choosing the parameters of a special design which then
should be considered more closely by more exact
methods, The results obtained are qualitatively very
similar to recently published results for similar
accelerators").

I thank Prof. M. M. Gordon, Michigan State
University, for making his results available to me prior
to publication. I am indebted to Mrs. G. Hoffmann
for preparing the drawings and for carrying out the
numerical calculations.

References
1) J. P. Blaser and H. A. Willax, IEEE Trans. Nuel. Sei. NS-13

nO.4 (1966) 194.
2) 200 MeV multipartiele multiple-stage eyelotron, a proposal

to the US NSF, Department of Physics, Indiana University,
(1968); A. A. Glasov et. al. JINR-R 3932.

3) M. M. Gordon, Nuel. Instr. and Meth. 58 (1968) 245.
4) V. P. Dzelepov, V. P. Dmitrievskij, B..1. Zamolodcikov and

V. V. Kol'ga, Proe. 6th Intern. Conf. High Energy Accelerators
(Carnbridge, 1967) CEAL-2000, p. 295; Atomn. Energ. 24
(1968) 323.

5) G. Schatz, Nucl. Instr. and Meth. 67 (1969) 103.
6) M. M. Gordon, Ann. Phys. (N.Y.) 50 (1968) 571.
7) J. J. Livingood, Cyclic Particle Accelerators (Princeton, 1961)

p.42.
8) K. G. Steffen, High Energy Beam Optics (New York, 1965)

p.100.


