

KERNFORSCHUNGSZENTRUM

KARLSRUHE

KFK 809

Institut für Material- und Festkörperforschung

Zur Konstitution und Thermodynamik im System Uran-Ruthenium-Kohlenstoff

H. Holleck, H. Kleykamp

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

K A R L S R U H E

Mai 1970

JOURNAL OF NUCLEAR MATERIALS 35 (1970) 158-166. © NORTH-HOLLAND PUBLISHING CO., AMSTERDAM

ZUR KONSTITUTION UND THERMODYNAMIK IM SYSTEM URAN-RUTHENIUM-KOHLENSTOFF

H. HOLLECK und H. KLEYKAMP

Institut für Material- und Festkörperforschung, Kernforschungszentrum Karlsruhe, Deutschland

Eingegangen am 18. Dezember 1969

Das Phasendiagram des Systems Uran-Ruthenium-Kohlenstoff wurde an Hand von Schmelz- und Sinterproben bei 1300 °C aufgestellt. Der Aufbau des Systems wird durch zwei ternäre Phasen bestimmt: das Komplexkarbid U₂RuC₂ und URu₃C_x mit einer Kohlenstoffgrenzlöslichkeit von $x \approx 0.7$. U₂RuC₂ bildet sich peritektisch und kristallisiert tetragonal mit a=3.445-3.455 Å und c=12.563-12.592 Å. Die freien Bildungsenthalpien der Phasen URu₃ und URu₃C_x wurden durch galvanische Festkörperketten mit CaF₂ als Festelektrolyt bestimmt. Es ergibt sich: ${}^{t}\Delta G^{\circ}_{T}\langle URu_{3}\rangle = -53 800 + 8.4 T$ [cal/mol],

1000-1140 °K, $^{t}\Delta G^{\circ}_{T} \langle \text{URu}_{3}\text{C}_{x} \rangle = -53\ 100-7,0\ T \ \text{[cal/mol]},$ 860-1070 °K.

Die Standardentropie von URu₃ und die freie Bildungsenthalpie von U₂RuC₂ wurden abgeschätzt. Die hohe Stabilität der untersuchten Phase URu₃C_x erklärt den Ablauf der Reaktion UC+3Ru=URu₃C_x+(1-x)C.

Le diagramme de phase uranium-ruthénium-carbone a été établi à 1300 °C en utilisant des échantillons de différentes compositions, fondus à l'arc et frittés. Le système présente 2 phases solides ternaires, le carbure complexe U₂RuC₂ et URu₃C_x avec la solubilité maximum du carbone x égale à 0,7. U₂RuC₂ est formé par la réaction péritectique et a une structure quadratique avec a=3,445-3,455 Å et c=12,563-12,592 Å. Les énergies libres de formation de Gibbs de URu₃ et URu₃C_x ont été déterminées avec des piles galvaniques utilisant un électrolyte solide à base de CaF₂.

1. Einleitung

Das Uran-Plutonium-Mischkarbid gilt als aussichtsreicher Brennstoff für schnelle Brutreaktoren. In der Mischphase wird vor allem Plutonium gespalten, während der Brutprozess im Natururan stattfindet. Durch die Plutoniumspaltung entstehen Platinmetalle in erheblichen On a trouvé que:

 $^{t}\Delta G^{\circ}_{T}(\text{URu}_{3}) = -53\ 800 + 8.4\ T\ [cal/mole],$ 1000-1140 °K

 $\Delta G^{\circ}_{T} \langle \text{URu}_{3} \text{C}_{x} \rangle = -53 \ 100 - 7.0 \ T \ [cal/mole], \\ 860 - 1070 \ ^{\circ}\text{K}.$

L'entropie standard de URu₃ et l'énergie libre de formation de Gibbs de U₂RuC₂ a été estimée. La stabilité élevée de la phase étudiée URu₃C_x confirme la réaction observée par ailleurs: UC+3 Ru=URu₃C_x +(1-x)C.

The uranium-ruthenium-carbon phase-diagram was established at 1300 °C using arc-melted and sintered samples of different compositions. The system has two ternary solid phases, the complex carbide U_2RuC_2 and URu_3C_x with a maximum carbon solubility of $x \approx 0.7$. U_2RuC_2 is formed peritectically and crystallizes in a tetragonal structure with a=3.445-3.455 Å and c=12.563-12.592 Å. The Gibbs free energies of formation of URu₃ and URu₃C_x were determined with galvanic cells using a solid CaF₂ electrolyte. It is found that

$$^{t}\Delta G^{\circ}_{T} \langle \text{URu}_{3} \rangle = -53 \ 800 + 8.4 \ T \ \text{[cal/mole]},$$

1000-1140 °K,

$$\Delta G^{\circ}_{T} \langle \mathrm{URu}_{3} \mathrm{C}_{x} \rangle = -53 \ 100 - 7.0 \ T \ [cal/mole], 860 - 1070 \ ^{\circ}\mathrm{K}.$$

The standard entropy of URu₃ and the Gibbs free energy of formation of U₂RuC₂ were estimated. The high stability of the investigated phase URu₃C_x confirms the elsewhere observed reaction UC+3 Ru= =URu₃C_x+(1-x)C.

Mengen als Spaltprodukte. Ruthenium macht hierbei den Hauptanteil aus. Nach einem Abbrand von 10% sind etwa 4% der vorhandenen metallischen Atome Platinmetalle. Diese Tatsache veranschaulicht die Bedeutung, welche einer Charakterisierung des Verhaltens dieser Spaltprodukte im Brennelement zukommt.

Bei der Untersuchung eines Spaltprodukteinschlusses in einer bestrahlten (U, Pu)O₂-Probe gelang es, neben einer Mo, Tc, Ru, Rh und Pd enthaltenden Phase eine Verbindung zu identifizieren, die Spaltstoff mit 25,4 Gew. % U, 13,5 Gew. % Pu sowie 38,4 Gew. % Pd, 11,9 Gew. % Rh und 2,5 Gew. % Ru enthielt 1). Das Röntgenbeugungsdiagramm dieses herauspräparierten Bestandteiles zeigte das Linienmuster einer kubisch flächenzentrierten Phase mit einer Gitterkonstante von a = 4,127 Å. In den Systemen Aktinid-Platinmetall treten als charakteristische Verbindungen die Laves-Phasen der Zusammensetzung UMe₂ bzw. PuMe₂ und die dicht gepackten Ordnungsphasen der Zusammensetzung UMe₃ bzw. PuMe₃ auf. Die letzteren Verbindungen kristallisieren hexagonal (TiNi₃- bzw. MgCd₃-Typ) und kubisch (Cu₃Au-Typ). Die Gitterparameter der kubisch flächenzentrierten Phasen sind: a = $3,988 \text{ Å} (\text{URu}_3); a = 3,991 \text{ Å} (\text{URh}_3); a = 4,063 \text{ Å}$ $(UPd_4); a = 4,040 \text{ Å} (PuRh_3); a = 4,077-4,119 \text{ Å}$ $(PuPd_3).$

Konzentration und Gitterparameter der aus dem Spaltprodukteinschluss herauspräparierten Phasen legen nahe, dass es sich um eine solche kubisch flächenzentrierte Ordnungsphase handelt. Vorläufige Untersuchungen in Karbidsystemen lassen darauf schliessen, dass diese Verbindungen äusserst stabil sind. Trotzdem überrascht das Auftreten dieser metallischen Phase, durch deren Bildung Uran und Plutonium aus ihrem Oxid freigesetzt werden.

Betrachtet man die Reaktion

$$(\mathbf{U}_{0.8}\mathbf{Pu}_{0.2})\mathbf{O}_{2-x} + 3 \mathbf{Me} = \\ = (\mathbf{U}_{0.8}\mathbf{Pu}_{0.2})\mathbf{Me}_3 + (2 - x/2)\mathbf{O}_2, \quad (1) \\ \mathbf{Me} = \mathbf{Ru}, \mathbf{Rh}, \mathbf{Pd}$$

mit

$${}^{\mathbf{r}} \varDelta G_{1} = {}^{\mathbf{r}} \varDelta G^{\circ} \langle (\mathbf{U}_{0.8} \mathbf{P} \mathbf{u}_{0.2}) \mathbf{M} \mathbf{e}_{3} \rangle - \\ - {}^{\mathbf{r}} \varDelta G^{\circ} \langle (\mathbf{U}_{0.8} \mathbf{P} \mathbf{u}_{0.2}) \mathbf{O}_{2 \to x} \rangle, \quad (2)$$

sowie die Folgereaktion

$$n(\mathbf{U}_{0.8}\mathbf{Pu}_{0.2})\mathbf{O}_{2-x} + (2-x/2)\mathbf{O}_{2} = \\ = n(\mathbf{U}_{0.8}\mathbf{Pu}_{0.2})\mathbf{O}_{2-x+(2-x)/n}, \ n \gg 1$$
(3)
mit
$${}^{\mathbf{r}}\varDelta G_{2} \approx \varDelta \overline{G}_{\mathbf{O}_{2}},$$
(4)

$$\Delta G_2 \approx \Delta \bar{G}_{0_2},$$

so folgt, dass die freie Enthalpie

$$\Delta G_3 = {}^{t} \Delta G^{\circ} \langle (\mathbf{U}_{0.8} \mathbf{Pu}_{0.2}) \mathbf{Me}_3 \rangle - \\ - {}^{t} \Delta G^{\circ} \langle (\mathbf{U}_{0.8} \mathbf{Pu}_{0.2}) \mathbf{O}_{2-x} \rangle + \Delta \bar{G}_{\mathbf{O}_2}$$
 (5)

der Gesamtreaktion [(1) und (3)] negativ werden muss, damit diese metallische Ordnungsphase gebildet werden kann. Bei 2000 °K und x = 0.06 ist ${}^{f} \Delta G^{\circ} \langle (\mathbf{U}, \mathbf{Pu}) \mathbf{O}_{1.94} \rangle \approx -170 \text{ kcal und}$ $\Delta \overline{G}_{O_2} \approx -125 \text{ kcal }^2$), d.h. ${}^{\mathrm{f}}\!\Delta G^{\circ} \langle \mathrm{U}, \mathrm{Pu})\mathrm{Me}_3 \rangle$ müsste negativer als -45 kcal sein.

Infolge der geringen Stabilität der Karbide läuft die Reaktion

$$3 \text{ UC} + 3 \text{ Me} = \text{UMe}_3 + \text{U}_2\text{C}_3$$
 (6)

 mit

und

$${}^{f} \Delta G^{\circ}_{1500} \langle 3 \text{ UC} \rangle = -77 \text{ kcal }^{3} \rangle$$
 (7)

$$^{f} \Delta G^{\circ}_{1500} \langle \mathrm{U}_{2} \mathrm{C}_{3} \rangle = -52 \; \mathrm{kcal} \; ^{3})$$
 (8)

schon ab, wenn die sich bildende metallische Phase UMe₃ stabiler als -25 kcal ist. Als Folge dieser Reaktion könnte sich eine zusätzliche Gefahr der Aufkarburierung des Brennstoffes ergeben.

Bisher ist nur eine binäre Uran- bzw. Plutonium-Platinmetall-Phase thermochemisch untersucht worden. Campbell et al.⁴) fanden mittels EMK-Messungen für die freie Bildungsenthalpie der Laves-Phase PuRu₂ zwischen 935 und 1069 °K:

$${}^{\rm f} \Delta G^{\circ}{}_{T} = -26.8 \pm 0.0069 \ T \ {\rm kcal/mol.}$$
 (9)

Nachstehende Untersuchungen sollen Aufschluss über den Aufbau des Dreistoffsystems U-Ru-C geben und Aussagen über die Stabilität der auftretenden Phasen liefern.

Bisherige Arbeiten 2.

Das Randsystem Uran-Kohlenstoff ist im Hinblick auf seine Bedeutung oftmals untersucht worden, vgl. ⁵). Bei den Temperaturen unserer Untersuchung (T < 1500 °C) sind nur das Monokarbid UC und das Sesquikarbid U₂C₃ stabil. UC besitzt bei 1300 °C einen begrenzten homogenen Bereich zur kohlenstoffarmen Seite.

Das binäre System Uran-Ruthenium ist in Abb. 1 dargestellt ⁶). Die Verbindungen U₂Ru, URu, U₃Ru₄ und U₃Ru₅ sind hinsichtlich ihrer

Abb. 1. Phasendiagramm des Systems Uran-Ruthenium.

Struktur noch nicht geklärt. URu₃ (AuCu₃-Typ, a=3,889 Å) ist die einzige intermetallische Phase, deren Schmelz- bzw. Zersetzungstemperatur oberhalb 1300 °C liegt. Ruthenium zeigt weder eine nennenswerte Kohlenstofflöslichkeit noch bildet es ein Karbid im festen Zustand ⁷).

Über vorläufige Untersuchungen in den Dreistoffsystemen Uran-Platinmetall-Kohlenstoff berichteten wir kürzlich. Das Auftreten ternärer Verbindungen U_2MeC_2 wurde dort beschrieben ^{8, 9}). Die Phasen wurden kürzlich von Haines und Potter bestätigt ¹⁰).

3. Untersuchungen zum Aufbau des Systems U-Ru-C

3.1. EXPERIMENTELLES

Ausgangssubstanzen waren: UC (Fa. Nukem, Wolfgang b. Hanau) mit 400 ppm O₂, 4,77% C, <10 ppm N₂; Uranspäne (Fa. Nukem) mit 120 ppm O₂, 120 ppm N₂, 53 ppm C; Ruthenium (Fa. Schuchardt, München) 99,95%; Kohlenstoff (Flammenruss 101, Fa. Degussa). Proben 20 verschiedener Zusammensetzungen wurden aus den Komponenten kalt gepresst und entweder im Lichtbogen erschmolzen und anschliessend zwischen 1300 und 1500 °C im Hochvakuum homogenisiert oder nur im Hochvakuum einer Homogenisierungsglühung ausgesetzt.

Die Proben wurden röntgenographisch (Guinier und Debye-Aufnahmen), metallographisch und z.T. mikroanalytisch untersucht. Die Gitterkonstanten wurden mit NaCl als Eichsubstanz aus Guinier-Aufnahmen bestimmt.

3.2. Ergebnisse

und

Eine Auswertung von Probenreihen, welche 90 Stunden bei 1300 °C im Hochvakuum homogenisiert wurden, ergab eine Phasenfeldaufteilung gemäss Abb. 2. Folgende Reaktionen bestimmen den Aufbau des Systems:

$$2 \operatorname{UC} + \operatorname{Ru} = \operatorname{U}_2 \operatorname{RuC}_2 \tag{10}$$

$$UC + 3 Ru = URu_3C_x + (1 - x)C.$$
 (11)

SYSTEM URAN-RUTHENIUM-KOHLENSTOFF

Abb. 2. Schnitt bei 1300 °C im Phasendiagramm des Dreistoffsystems Uran-Ruthenium-Kohlenstoff.

A

Als ternäre Phasen existieren also dasKomplexkarbid U₂RuC₂ sowie die aus der binären Verbindung URu3 durch Kohlenstoffeinbau entstandene Phase URu₃C_x. Das Röntgenogramm des ternären Komplexkarbides (Auswertung in Tab. 1) liess sich tetragonal raumzentriert indizieren. Bei 1300 °C ergaben sich Gitterkonstanten von a = 3,445-3,455 Å und c = 12,563-12,592 Å. Die etwas unterschiedlichen Parameter von U2RuC2 in verschiedenen Proben lassen auf einen geringen Homogenitätsbereich schliessen. Bei höheren Temperaturen wurde ein noch geringerer Gitterparameter (c=12,52 Å) beobachtet⁸). Eine Abschätzung der Dichte führt auf zwei Formeleinheiten U₂RuC₂ pro Elementarzelle. Das Schliffbild einer Schmelzprobe von U_2RuC_2 (Abb. 3) zeigt die Bildung dieser Phase mit primär ausgeschiedenem UC_x (dunkel), peritektisch gebildetem U₂RuC₂ (grau) und URu₃ (hell). Nach einer Homogenisierungsglühung dieser Probe entsteht das einphasige Gefüge der ternären Phase (Abb. 4, dunkel=Poren).

		TABE	LLE les a		
uswertung	einer	Guinie	raufnahme de	es Komplez	s
karb	ides U	$_{2}RuC_{2}$	(Cu Ka-Strah	lung)	

hkl	$\sin^2 \vartheta imes 10^3$ gefunden	$\sin^2 artheta imes 10^3 \ ext{berechnet}$	rel. gesch. Intensität
101 004 103 110 006	53.5 60.2 83.8 99.6 135.5	$53.6 \\ 60.1 \\ 83.7 \\ 99.8 \\ 135.2$	$\begin{array}{c}3\\2\\10\\8\\2\end{array}$
105 114 200 107	$143.4 \\ 160.3 \\ 200.1 \\ 233.2$	$143.7 \\ 159.9 \\ 199.6 \\ 233.9$	1 3 4 2
116 008 211 204	$235.0 \\ 240.6 \\ 253.0 \\ 259.5$	$235.0 \\ 240.3 \\ 253.3 \\ 259.7$	2 > 1 1 1
213 206 118	283.2 335.2 339.7	$283.3 \\ 334.8 \\ 340.1$	6 2 2

Abb. 3. Schliffbild einer Schmelzprobe der Zusammensetzung 40 U/20 Ru/40 C (At. %), geätzt. Röntgenbefund: UC (dunkel) + U₂RuC₂ (grau) + URu₃ (hell). $\times 350$

Abb. 4. Schliffbild einer bei 1300 °C homogenisierten Schmelzprobe der Zusammensetzung 40 U/20 Ru/40 C (At. %), geätzt. Röntgenbefund: U₂RuC₂. ×350

Das Komplexkarbid steht mit UC, U₂C₃ (Abb. 5, dunkel=U₂C₃), Kohlenstoff und URu₃C_x im Gleichgewicht. In der kubisch flächenzentrierten Ordnungsphase URu₃ können die oktaedrischen Lücken bei 1300 °C bis zu einer Zusammensetzung von etwa URu₃C_{0.7} aufgefüllt werden. Der Gitterparameter von URu₃ wächst durch diesen Kohlenstoffeinbau von a = 3,988 Å auf a = 4,051 Å an. Abb. 6 zeigt den Gitterparameterverlauf von URu₃C_x in Abhängigkeit vom Kohlenstoffgehalt. Die Probe mit 10 At. % C zeigt ein einphasiges Gefüge, während jene mit 20 At. % C (Abb. 7) Kohlenstoffausscheidungen an den Korngrenzen auf-

Abb. 5. Schliffbild einer bei 1700 °C homogenisierten Schmelzprobe der Zusammensetzung 40 U/10 Ru/50 C (At. %), geätzt. Röntgenbefund: U_2C_3 (dunkel) + UC (helle Ausscheidungen) + U_2RuC_2 (hell). ×350

Abb. 6. Gitterparameter der Phase URu_3C_x in Abhängigkeit vom Kohlenstoffgehalt.

Abb. 7. Schliffbild einer bei 1300 °C homogenisierten Schmelzprobe der Zusammensetzung 20 U/60 Ru/20 C (At. %), geätzt. Röntgenbefund: URu₃C_x. \times 350

weist. Der relativ hohe Gitterparameter von a = 4,061 Å in der Probe mit 15 At. % C wurde für andere Zusammensetzungen bei 1300 °C nicht mehr beobachtet. Er ist möglicherweise einer noch nicht vollständig im Gleichgewicht befindlichen Probe zuzuordnen. Eine Mikrosondenanalyse ergab für die Kohlenstoffkonzentration in der Ordnungsphase des Dreiphasenfeldes U₂RuC₂+URu₃C_x+C (Abb. 8, grau= U₂RuC₂, hell=URu₃C_x) einen Wert von etwa 2 Gew. % C. Diese Befunde lassen uns auf eine Löslichkeit von etwa 15 At. % C in URu₃ bei 1300 °C schliessen.

Eine nennenswerte Rutheniumlöslichkeit in den Randphasen UC und U_2C_3 konnte nicht festgestellt werden.

Abb. 8. Schliffbild einer bei 1300 °C homogenisierten Schmelzprobe der Zusammensetzung 25 U/30 Ru/45 C (At. %), geätzt. Röntgenbefund: U_2RuC_2 (grau) + URu_3C_x (hell). ×350

4. Thermodynamische Untersuchungen

Die freien Bildungsenthalpien der Phasen URu₃ und URu₃C_x wurden durch Messung elektromotorischer Kräfte (EMK) von galvanischen Festkörperketten gewonnen. Die Stabilität der Verbindung U₂RuC₂ wurde aus dem Phasendiagramm U-Ru-C (Abb. 2) abgeschätzt.

4.1. GRUNDLAGEN

Im Phasendiagramm Uran-Ruthenium (Abb. 1) steht die rutheniumreichste Verbindung URu₃ mit Ruthenium im Gleichgewicht ⁶). Es lässt sich daher folgende Bildungskette zweiter Art mit festem Calciumfluorid als Elektrolyt zur Bestimmung der freien Bildungsenthalpien von URu₃ aufbauen:

$$(-)$$
Pt/U, UF₃/CaF₂/UF₃, URu₃, Ru/Pt (+) (I)

Im Gleichgewicht gilt auf der linken Seite der Kette (I):

$$\mu^{\circ}_{\rm U} + 3\mu'_{\rm F} = \mu^{\circ}_{\rm UF_3}, \qquad (12)$$

auf der rechten Seite gilt:

$$\mu''_{\rm U} + 3\mu''_{\rm F} = \mu^{\circ}_{\rm UF_3}, \qquad (13)$$

$$\mu''_{\mathrm{U}} + 3\mu^{\circ}_{\mathrm{Ru}} = \mu^{\circ}_{\mathrm{URu}_3}.$$
 (14)

Dabei ist μ° das chemische Potential im Standardzustand, μ' und μ'' die chemischen Potentiale in einem beliebigen Zustand auf der linken bzw. rechten Seite der Kette (I). Aus (12), (13) und (14) folgt:

$$3 (\mu'_{\mathbf{F}} - \mu''_{\mathbf{F}}) = \mu^{\circ}_{\mathbf{UF}_{3}} - \mu^{\circ}_{\mathbf{U}} - \mu^{\circ}_{\mathbf{UF}_{3}} + \mu^{\circ}_{\mathbf{URu}_{3}} - 3\mu^{\circ}_{\mathbf{Ru}}, \quad (15)$$

$$\mathbf{B} \left(\mu'_{\mathbf{F}} - \mu''_{\mathbf{F}} \right) = {}^{\mathbf{f}} \varDelta G^{\circ} \langle \mathbf{U} \mathbf{R} \mathbf{u}_{\mathbf{3}} \rangle. \tag{16}$$

Da weiterhin gilt [11]:

-

$$\mu''_{\mathbf{F}} - \mu'_{\mathbf{F}} = FE \tag{17}$$

(F Faradaysche Konstante, E elektromotorische Kraft), ergibt sich mit (16):

$$^{\mathrm{f}} \Delta G^{\circ} \langle \mathrm{URu}_3 \rangle = -3FE.$$
 (18)

Diese in der Literatur beschriebene Methode zur Bestimmung freier Bildungsenthalpien binärer Verbindungen [z.B. ^{11, 12})] lässt sich auf ternäre Verbindungen übertragen. Im isothermen Schnitt (T = 1300 °C) des Phasendiagramms Uran-Ruthenium-Kohlenstoff (Abb. 2) stehen URu₃C_x, Ruthenium und Kohlenstoff im Gleichgewicht, so dass folgende Bildungskette zur Bestimmung der freien Bildungsenthalpie von URu₃C_x aufgebaut werden kann:

Im Gleichgewicht gilt auf der linken Seite der Kette (II) wieder Gl. (12), auf der rechten

Seite gilt Gl. (13) und:

$$\mu''_{\rm U} + 3 \,\mu^{\circ}_{\rm Ru} + x \mu^{\circ}_{\rm C} = \mu^{\circ}_{\rm URu_3} C_x. \tag{19}$$

$$3 (\mu'_{\rm F} - \mu''_{\rm F}) = \mu^{\circ}_{\rm UF_3} - \mu^{\circ}_{\rm U} - \mu^{\circ}_{\rm UF_3} + \mu^{\circ}_{\rm URu_3Cx} - 3\mu^{\circ}_{\rm Ru} - x\mu^{\circ}_{\rm C}, \qquad (20)$$

$$3 (\mu'_{\mathbf{F}} - \mu''_{\mathbf{F}}) = {}^{\mathrm{f}} \varDelta G^{\circ} \langle \mathrm{URu}_{3} \mathrm{C}_{x} \rangle.$$
(21)

Mit Gl. (17) ergibt sich:

$${}^{\mathrm{f}} \varDelta G^{\circ} \langle \mathrm{URu}_3 \mathrm{C}_x \rangle = -3FE.$$
 (22)

In beiden Ketten ist die EMK der freien Bildungsenthalpie direkt proportional.

4.2. Experimentelles

Das Zweiphasengleichgewicht URu₃-Ru wurde durch Festkörperreaktion bei 1500 °C im Hochvakuum (18 Std.) nach der Gleichung

$$\mathbf{U} + 5 \,\mathbf{Ru} = \mathbf{U}\mathbf{Ru}_3 + 2 \,\mathbf{Ru} \tag{23}$$

hergestellt. Die Bildung des Dreiphasengleichgewichts URu_3C_x -Ru-C erfolgte unter denselben Bedingungen nach der Gleichung

$$URu_{3} + 2 Ru + (2+x) C =$$

= URu₃C_x + 2 Ru + 2 C. (24)

Die röntgenographische Auswertung ergab ein URu₃C_x mit einer Gitterkonstante a =4,052 Å, das der Zusammensetzung von ungefähr URu₃C_{0.7} (ca. 15 At. % C) entspricht.

Die Elektroden wurden durch Verpressen von UF₃ entweder mit gleichen Gewichtsteilen Uran-Schnitzeln oder mit den pulverisierten Gemischen $URu_3 + 2 Ru oder URu_3C_x + 2 Ru +$ 2 C hergestellt. Als Elektrolyt wurden CaF₂-Einkristalle verwendet (Gulton Industries, Brighton, England). Die Kette war in Form von drei aufeinander gepressten Tabletten angeordnet. Der Aufbau der Apparatur und die Versuchsdurchführung wurden an anderer Stelle beschrieben ^{11, 13}). Die EMK-Messungen wurden zwischen 590 und 870 °C ausgeführt. Das stellte sich nach mehreren Gleichgewicht Stunden ein.

Das aus Urankarbid, Kohlenstoff und Ruthenium bei 1500 °C gebildete URu₃ C_x enthielt stets geringe Mengen der ternären Verbindung U₂RuC₂ und war darüberhinaus für EMK-Messungen wegen mangelhafter Einstellung des Gleichgewichts nicht geeignet.

4.3. Ergebnisse

Die Messergebnisse sind in Abb. 9 dargestellt. Für die freie Bildungsenthalpie von URu₃ und URu₃ C_x ergibt sich mit (18) und (22):

$${}^{f} \Delta G^{\circ}_{T} \langle \mathrm{URu}_{3} \rangle = -53800 + 8,4T \pm \pm 1000 \ [\mathrm{cal/mol}], \ 1000 - 1140 \ ^{\circ}\mathrm{K}, \quad (25)$$

$${}^{f} \varDelta G^{\circ}{}_{T} \langle \mathrm{URu}_{3} \mathrm{C}_{x} \rangle = -53100 - 7,0T \pm \pm 1000 \text{ [cal/mol]}, 860 - 1070 ^{\circ}\mathrm{K}.$$
 (26)

Abb. 9. Temperaturabhängigkeit der elektromotorischen Kraft der Ketten (I) und (II).

Die Werte der thermodynamischen Funktionen bei 1000 °K lauten: ${}^{t}\Delta H^{\circ}_{1000}\langle \text{URu}_{3}\rangle = -53,8 \pm 5,0 \text{ kcal/mol}, (27)$ ${}^{t}\Delta S^{\circ}_{1000}\langle \text{URu}_{3}\rangle = -8,4 \pm 4,0 \text{ cal/grd} \cdot \text{mol}, (28)$ ${}^{t}\Delta G^{\circ}_{1000}\langle \text{URu}_{3}\rangle = -45,5 \pm 1,0 \text{ kcal/mol}, (29)$ ${}^{t}\Delta H^{\circ}_{1000}\langle \text{URu}_{3}\text{C}_{x}\rangle = -53,1 \pm 3,0 \text{ kcal/mol}, (30)$ ${}^{t}\Delta S^{\circ}_{1000}\langle \text{URu}_{3}\text{C}_{x}\rangle = +7,0 \pm 2,0 \text{ cal/grd} \cdot \text{mol}, (31)$

$$^{t}\Delta G^{\circ}_{1000} \langle \mathrm{URu}_{3} \mathrm{C}_{x} \rangle = -60.1 \pm 1.0 \text{ kcal/mol.} (32)$$

Die freie Bildungsenthalpie der ternären Verbindung U₂RuC₂ kann aus dem Phasendiagramm U-Ru-C (Abb. 2) abgeschätzt werden:

Mit den Reaktionsgleichungen

 $U_2 RuC_2 + 5 Ru = 2 URu_3 C_x + 2 (1-x)C,$ (33)

$$5 U_2C_3 + 2 URu_3C_x = 6 U_2RuC_2 + (3+2x)C$$
 (34)

ergibt sich eine Ungleichung für die freie Bildungsenthalpie von U_2RuC_2 :

$$\begin{array}{ll} 2^{t} \varDelta G^{\circ} \langle \mathrm{URu}_{3} \mathrm{C}_{x} \rangle < {}^{t} \varDelta G^{\circ} \langle \mathrm{U}_{2} \mathrm{Ru} \mathrm{C}_{2} \rangle \\ < \frac{5}{6} {}^{t} \varDelta G^{\circ} \langle \mathrm{U}_{2} \mathrm{C}_{3} \rangle + \frac{1}{3} {}^{t} \varDelta G^{\circ} \langle \mathrm{URu}_{3} \mathrm{C}_{x} \rangle. \end{array} (35)$$

 Mit

$$^{f} \Delta G^{\circ}_{1000} \langle \mathrm{U}_2 \mathrm{C}_3 \rangle = -51 \; \mathrm{kcal/mol} \; ^3) \quad (36)$$

und der gemessenen freien Bildungsenthalpie von URu_3C_x ergibt sich

$$-120 ext{ kcal/mol} < {}^{t} \varDelta G^{\circ}_{1000} \langle \mathrm{U}_2 \mathrm{RuC}_2 \rangle \ < -63 ext{ kcal/mol}.$$
 (37)

5. Diskussion

den Systemen Uran-Übergangsmetall-In Kohlenstoff (U-M-C) bilden die Übergangsmetalle der 4. und 5. Gruppe stabilere Karbide als UC, diese stehen deshalb mit Uran im Gleichgewicht (z.B. U-Zr-C, U-Nb-C). Die Übergangsmetalle der 6. (und 7.) Gruppe bilden instabilere Karbide, so dass UC mit den entsprechenden Metallen im Gleichgewicht steht. Die Übergangsmetalle der 8. Gruppe bilden mit Uran stabile intermetallische Verbindungen. Uranmonokarbid reagiert mit den Metallen unter Bildung dieser metallischen Phasen [Ausnahme U-Fe-C, vgl. auch ¹⁴)]. Die ternäre Verbindung U₂RuC₂ gehört neben den orthorhombischen Komplexkarbiden UMC₂ der Metalle der 6. und 7. Gruppe sowie den tetragonalen Komplexkarbiden UMC₂ der Eisenmetalle Fe, Co, Ni zu einer weiteren Gruppe von uranhaltigen Komplexkarbiden der Formel U₂MC₂, die mit den Platinmetallen gebildet werden.

Uran und die Platinmetalle bilden die schon erwähnten intermetallischen Phasen. Die stabilsten sind offensichtlich die Lavesphasen UMe₂ und besonders die Ordnungsphasen UMe₃ (Cu₃Åu-Typ, TiNi₃-Typ, MgCd₃-Typ).

Die Anwendung der Engel-Brewer Theorie [vgl. etwa ^{15, 16})] führt zu der Voraussage, dass diejenigen Phasen, die aus den Übergangsmetallen der III A- bis V A-Gruppe mit den Elementen der 8. Gruppe gebildet werden, eine ungewöhnliche Stabilität aufweisen, die mit der Zahl der an der Bindung teilnehmenden Elektronen steigt. Eine qualitative Bestätigung der Stabilität dieser intermetallischen Phasen erfolgte durch die Reaktion von ZrC mit Rh, Pd, Os, Ir und Pt^{15,17}) sowie von UC mit Rh, Pd, Ir, Pt und Au^{8, 18}). In allen Fällen bildeten sich die Phasen ZrMe3 bzw. UMe3. deren freie Bildungsenthalpien demnach grössere Beträge als die der entsprechenden Karbide aufweisen. Quantitative Ergebnisse liegen bisher nicht vor. Für die freie Bildungsenthalpie der Phase ZrPt₃ sind jedoch aus vorläufigen EMK-Messungen Werte von ungefähr -80 kcal/mol aus Ergebnissen des H₂-H₂O- Gleichgewichts -100 kcal/mol angegeben worden ¹⁷). Die grosse Stabilität von URu₃ mit ${}^{f} \Delta G^{\circ}_{1000} =$ -45.5 kcal/mol ist in diesem Rahmen zu sehen. Die negative Bildungsentropie ${}^{t}\Delta S^{\circ}_{1000} = -8,4$ cal/grd.mol ist auffällig. Nach Rand und Kubaschewski¹⁹) ist die Bildungsentropie für eine grosse Zahl von Verbindungen, die aus festen Elementen gebildet werden, näherungsweise Null. Die Bildungsentropien sind jedoch für die intermetallischen Uran-Verbindungen, für die Messungen vorliegen, wesentlich kleiner als Null. Johnson 20) hat eine empirische Formel aufgestellt, nach der für die Reaktion

$$\langle \mathbf{U} \rangle + n \langle \mathbf{Me} \rangle = \langle \mathbf{UMe}_n \rangle$$
 (38)

bei 700 °K gilt (m ΔH = Schmelzenthalpie des Metalls Me):

$${}^{\mathrm{f}} \Delta S^{\circ}{}_{700} \langle \mathrm{UMe}_{n} \rangle = 8,10 \ (n+1) + \\ + 0,246 (S^{\circ}{}_{700} \langle \mathrm{U} \rangle + n \ S^{\circ}{}_{700} \langle \mathrm{Me} \rangle) + \\ + n \ (\mathrm{m} \Delta H \langle \mathrm{Me} \rangle / T_{\mathrm{m}}).$$
(39)

Für URu₃ ergibt sich mit den thermodynamischen Daten für Uran und Ruthenium²¹):

$$dS^{\circ}_{700}\langle \text{URu}_3 \rangle = -12.2 \text{ cal/grd} \cdot \text{mol.}$$
 (40)

Die Übereinstimmung mit dem experimentellen Wert $-8,4 \pm 4,0$ cal/grd mol ist befriedigend. Unter der Voraussetzung einer temperaturunabhängigen Bildungsentropie ergibt sich für die Standardentropie von URu₃:

$$S^{\circ}_{298} \langle \mathrm{URu}_3 \rangle = {}^{\mathrm{f}} \Delta S^{\circ}_{700} \langle \mathrm{URu}_3 \rangle + \\ + S^{\circ}_{298} \langle \mathrm{U} \rangle + 3S^{\circ}_{298} \langle \mathrm{Ru} \rangle \\ = 24.3 \pm 4.0 \text{ cal/grd} \cdot \mathrm{mol.}$$
(41)

Bemerkenswert ist die starke Stabilitäts-

steigerung durch Lösung von Kohlenstoff in URu₃. Die Reaktionsenthalpie bei der Bildung von URu₃C_x ist hingegen nicht wesentlich von Null verschieden. Die Deutung des hohen Betrages der freien Bildungsenthalpie der kohlenstoff-stabilisierten Phase URu₃C_x muss späteren Untersuchungen vorbehalten bleiben.

Eine ähnliche Auffüllung von Lückenpositionen durch Metalloidatome kann für den Ablauf mancher Reaktion verantwortlich sein, auf welche aus thermodynamischen Daten rein binärer Phasen nicht geschlossen werden kann (z.B. Reaktionen von Oxiden mit Platinmetallen) *.

Die Untersuchungen an diesen Phasen werden fortgeführt. Darüber hinaus sind thermodynamische Messungen an den uranhaltigen Komplexkarbiden aufgenommen worden.

Zur Frage des Verhaltens des Spaltproduktes Ruthenium in einem karbidischen Brennelement kann man folgende Annahmen machen: Wenn eine ternäre Verbindung (U_{0.8}Pu_{0.2})₂ RuC₂ existiert, so wird diese Phase in Ausscheidungen auftreten. Möglicherweise tritt eine Uran- oder Plutonium-Abreicherung in dieser Phase, verbunden mit einer Uran- oder Plutonium-Abreicherung in der angrenzenden Monokarbidphase auf. In Zonen, deren Temperatur oberhalb der peritektischen Zerfallstemperatur (≈ 1700 °C) liegt, wird sich eine Phase (U, Pu) Ru_3C_x bilden. Der Einfluss dieser Reaktion auf die Verschiebung des Verhältnisses Metall zu Metalloid im Brennstoff, hängt von der Kohlenstofflöslichkeit in dieser Ordnungsphase ah. Weitere Aussagen über das Verhalten der Platinmetalle-insbesondereRuthenium-in einem hochabgebrannten Brennelement, sollen den Befunden an einem solchen Material selbst vorbehalten bleiben.

* Der Gitterparameter der Ordnungsphase, die in einem oxidischen Brennstoff nachgewiesen werden konnte, liegt mit 4,127 Å oberhalb der Werte der binären Phasen UMe₃ bzw. PuMe₃ (vgl. Einleitung). Ein Sauerstoffeinbau in Lückenpositionen liegt deshalb möglicherweise auch hier vor.

Danksagung

Herrn Dr. B. Kanellakopulos, Institut für Heisse Chemie, danken wir für die Herstellung des Urantrifluorids, Fräulein G. Knittel, Fräulein I. Unglaub, Herrn H. Fischer für die Mithilfe bei den Experimenten.

Literatur

- J. I. Bramman, R. M. Sharpe, D. Thom und G. Yates, J. Nucl. Mat. 25 (1968) 201
- ²) M. H. Rand und T. L. Markin, Thermod. Nucl. Mat., Proc. Symp. (Wien, 1967) S. 637
- ³) C. E. Holley und E. K. Storms, Thermod. Nucl. Mat., Proc. Symp. (Wien, 1967) S. 397
- 4) G. M. Campbell, L. J. Mullins und J. A. Leary, Thermod. Nucl. Mat., Proc. Symp. (Wien, 1967) S. 75
- ⁵) E. K. Storms, The refractory carbides (New York, London, 1967)
- ⁶) J. I. Park, J. Res. Natl. Bur. Std. 72 A (1968) 1
- B. Jeantet und A. G. Knapton, Planseeber. Pulvermet. 12 (1964) 12
- ⁸) H. Holleck, J. Nucl. Mat. 28 (1968) 339
- ⁹) H. Holleck, Vortrag, Hauptversammlung der Deutschen Gesellschaft für Metallkunde (Berlin, Mai 1969) AED-Conf. 1969–153–001
- ¹⁰) H. R. Haines und P. E. Potter, Nature 221 (1969) 1238
- ¹¹) H. Kleykamp, Ber. Bunsenges. Physik. Chem. 73 (1969) 354
- ¹²) J. J. Egan, J. Phys. Chem. 68 (1964) 978
- ¹³) H. Schmalzried, Z. Physik. Chem. NF 25 (1960)
 178
- ¹⁴) H. Holleck und H. Kleykamp, J. Nucl. Mat. 32 (1969) 1
- ¹⁵) L. Brewer, Acta Met. **15** (1967) 553
- W. Hume-Rothery, Progr. Mater. Sci. 13 (1967) 229
- ¹⁷) P. R. Wengert, UCRL-18727 (1969)
- ¹⁸) N. H. Krikorian, T. C. Wallace, M. C. Krupka und C. L. Radosevich, J. Nucl. Mat. 21 (1967) 236
- ¹⁸) N. H. Krikorian, J. Nucl. Mat. 21 (1967) 236
- ¹⁹) M. H. Rand und O. Kubaschewski, The thermochemical properties of uranium compounds (Edinburgh, 1963)
- ²⁰) I. Johnson, Compds. Interest Nucl. Reactor Techn., Proc. Symp. (Boulder, 1964) S. 171
- ²¹) D. R. Stull und G. C. Sinke, Thermodynamic properties of the elements (Washington, 1956)