

KERNFORSCHUNGSZENTRUM

KARLSRUHE

Februar 1969

KFK 930

Abteilung Strahlenschutz und Dekontamination

Die Strahlenbelastung der Umgebung des Kernforschungszentrums Karlsruhe infolge der Ableitung radioaktiver Stoffe in die Atmosphäre

J.J. Heil, L.A. König

GESELLSCHAFT FUR KERNFORSCHUNG M. B. H.

KARLSRUHE

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

~

KERNFORSCHUNGSZENTRUM KARLSRUHE

Februar 1969

KFK 930

Abteilung Strahlenschutz und Dekontamination

Die Strahlenbelastung der Umgebung des Kernforschungszentrums Karlsruhe infolge der Ableitung radioaktiver Stoffe in die Atmosphäre

von

J.J. Heil und L.A. König

Gesellschaft für Kernforschung m.b.H., Karlsruhe

Abstract

The present report describes a new calculation of radiation exposure in the vicinity of the Nuclear Research Center Karlsruhe as a result of the release of radioactive substances into air. The exposure is exclusively caused by external irradiation. The calculation was based on a procedure which mainly refers to directly measurable meteorological data.

In Table 1 are summarized the emission data used for the calculations. Table 2 contains the processed meteorological data. Special attention was paid to the problem of the so-called calm which signifies in physics that no motion of the air can be detected with the available measuring equipment. Table 3 provides a survey on the maximum gammaand beta dose contributions caused by the different institutions of the Nuclear Research Center. Table 4 gives the values in mrem/a of radiation exposure as well as comparative values of gamma dose measurements for various interesting points.

The new calculation of radiation exposure in the vicinity of the Nuclear Research Center with the help of a new calculating programme essentially confirmed the results obtained by previous calculations. This is, in particular, true for the statement that by the release of radioactive substances into air radiation exposure does not exceed the few percent of natural radiation exposure and that it is practically impossible to determine it by measurements.

Inhaltsverzeichnis

1.	Einleitung	1
2.	Rechenmethoden	1
	2.1 Gammastrahlung	1
	2.1.1 Exakte Behandlung	1
	2.1.2 Näherungsweise Behandlung der räumlic Ausdehnung der Abluftfahne	chen 2
	2.1.3 Behandlung als Flächenquelle	3
	2.2 Betastrahlung	5
3.	Durchführung der Berechnung	7
4.	Ergebnisse	. 9
5.	Diskussion	10
	5.1 Bemerkungen zum Rechenverfahren	10
	5.2 Bemerkungen zu den Ergebnissen	10
	5.3 Vergleich mit Messungen	12
	5.4 Schlußfolgerungen	12
Li	teratur	13
Ta	abellen	14
Ab	bildungen	18

Seite

1. Einleitung

Der vorliegende Bericht enthält die Ergebnisse einer Abschätzung der durch die planmäßigen Ableitungen radioaktiver Stoffe in die Atmosphäre verursachten Ortsdosen pro Jahr innerhalb und außerhalb der Grenzen des Kernforschungszentrums Karlsruhe.

Unter 2. werden verschiedene Rechenmethoden beschrieben. Einzelheiten über die Erarbeitung der in diesem Bericht wiedergegebenen Ergebnisse werden unter 3. dargestellt. Die Rechenergebnisse werden unter 4. wiedergegeben und unter 5. diskutiert.

2. Rechenmethoden

Die Unterschiede in der Schwächung von Beta- und Gammastrahlung in Luft legen eine getrennte Behandlung der beiden Strahlenarten nahe.

Das den im folgenden abgeleiteten Formeln zugrundeliegende Koordinatensystem ist in Abb. 1 erklärt.

2.1 Gammastrahlung

2.1.1 Exakte Behandlung

Die Gammadosisleistung $\mathbb{D}_{\gamma,i}$ $\begin{bmatrix} \underline{rem} \\ \theta_{\gamma,i} \end{bmatrix}$ des gasförmig bzw. in Aerosolform mit der Konzentration C_i $\begin{bmatrix} \frac{\theta_i}{m^2} \end{bmatrix}$ vorliegenden Nuklids i ergibt sich nach der Beziehung

$$D_{\gamma,i} = K_{\gamma,i} \int B(\mu s) e^{-\mu s} C_i s^{-2} dV .$$
 (1)

Hierin bedeuten:

 $K_{\gamma,i}$ die Gammadosiskonstante des Nuklids i $\left[\frac{\text{rem}}{h} \frac{\text{m}^2}{\text{Ci}}\right]$ B(μs) den build-up-Faktor μ den totalen Schwächungskoeffizienten $\left[\text{m}^{-1}\right]$ s den Abstand $\left[\text{m}\right]$ zwischen dem Volumenelement dV $\left[\text{m}^3\right]$ und dem Aufpunkt Zwischen der Konzentration C, und der Aktivitätsabgabe A, pro Zeiteinheit besteht der Zusammenhang

(2)

- 3 -

$$C_i = A_i \chi e^{-\lambda_i \frac{r}{u}}$$

- mit χ meteorologischer Ausbreitungsfaktor $\left[\frac{\sec}{m^3}\right]$ λ_i Zerfallskonstante $\left[\sec^{-1}\right]$ u Windgeschwindigkeit $\left[m \sec^{-1}\right]$ Abstand [m] Schornstein - Volumenelement dV

Gl. (1) und (2) gelten für einen bestimmten Zeitpunkt. Die Dosisleistung pro Jahr erhält man durch Integration von Gl. (1) über den Zeitraum eines Jahres. Als Schwierigkeit erweist sich hierbei die zeitliche Veränderlichkeit von A_i sowie von χ . Solange keine Nuklidgemische zeitlich veränderlicher Zusammensetzung emittiert werden, kann die Größe A, von geeigneten Meßgeräten, die das Produkt Luftdurchsatz mal Aktivitätskonzentration bestimmen, registriert werden. Die kontinuierliche direkte Messung von χ hingegen ist praktisch unmöglich, da sie einen untragbaren Aufwand erfordern würde. Man kann also höchstens versuchen, aus den Meßergebnissen für andere meteorologische Größen auf χ zurückzuschließen, wobei man jedoch auf theoretische Überlegungen (vgl. z.B. 11 bis [4]) zurückgreifen muß, was nicht frei von Unsicherheiten ist.

Die strenge Lösung des Problems nach der über die Zeit integrierten Gl. (1) ist daher praktisch undurchführbar. Man ist vielmehr auf Näherungsmethoden angewiesen.

Näherungsweise Behandlung der räumlichen Ausdehnung der Abluftfahne 2.1.2

Im folgenden wird der das Radionuklid kennzeichnende Index weggelassen.

Die Auswirkung der räumlichen Ausdehnung der Abluftfahne kann nach oben abgeschätzt werden, wenn für den Ort mit dem Koordinaten r, arphi, O als Konzentration die Maximalkonzentration über diesen Punkt

- 2 -

für den unendlich ausgedehnten Halbraum angesetzt wird. Durch einen Korrekturfaktor K < 1 kann der so erhaltene Wert verbessert werden. Korrekturfaktoren dieser Art werden von Alonso /5/ angegeben. Man hat dann die Beziehung

$$-\frac{4}{r_{o}}r_{o}$$

$$D_{\gamma}(r_{o},\varphi) = K \cdot g \cdot \chi(r_{o}) \cdot A \cdot H(\varphi) \cdot e$$
(3)

Hierin bedeuten:

g	den Dosisfaktor [rem.m ³ /6i	sec
н(φ)	die Häufigkeit der Winddrift	in den Sektor φ
ū	die über das Jahr gemittelte	Windgeschwindigkeit
	für den Sektor	

Eine Berechnung nach diesem Verfahren wurde bereits früher unter Benutzung der in /4/ angegebenen Diagramme durchgeführt. Hier werden nur einige der Ergebnisse wiederholt (Tab. 4).

2.1.3 Behandlung als Flächenquelle

In einer rechnerischen Abschätzung konnte gezeigt werden, daß unter den hier gegebenen Bedingungen die vertikale Ausdehnung der Abluftfahne keine große Rolle spielt^{*)}. Man darf daher von dem Modell einer Flächenquelle eine recht befriedigende Genauigkeit erwarten.

Es seiA α (u, φ) du d φ der Bruchteil der von einer Quelle in Höhe h pro Jahr emittierten Aktivität Å, der in Richtung φ bis φ + d φ mit der Geschwindigkeit u bis u + du transportiert wird. Es gilt also die Normierungsbedingung

$$\int_{0}^{\infty} \int_{0}^{2\pi} \alpha(u, \varphi) d\varphi du = 1$$

(4)

- 4 -

A sei zeitlich konstant.

- 3 -

^{*)} Die Dosisleistung in einem Punkt außerhalb eines unendlich ausgedehnten, gleichmäßig mit Aktivität erfüllten (räumlich konstante Konzentration) Zylinders ist praktisch unabhängig vom Zylinderradius gleich der Dosisleistung im gleichen Punkt durch eine unendlich ausgedehnte Linienquelle am Ort der Achse mit gleicher Aktivität pro Längeneinheit.

Betrachtet man den Sektor d φ als Linienquelle, so befindet sich dort auf dem Linienelement dr (siehe Abb. 1) die Aktivität

$$\frac{A}{u} e^{-\lambda \frac{r}{u}} \alpha(u,\varphi) du d\varphi dr.$$

Der Beitrag dD zur Dosisleistung im Punkt P($r_0, \varphi_0, 0$) des betrachteten Linienelementes (siehe Abb. 1) ergibt sich damit nach der Beziehung

$$dD_{\gamma} = K_{\gamma} A e^{-\lambda \frac{r}{u}} \alpha(u, \varphi) B(\mu s) e^{-\mu s} \frac{du d\varphi dr}{u s^2}$$

Hierin bedeuten:

 $\begin{array}{ll} K_{\gamma} & \mbox{die Gammadosiskonstante } \left[\frac{\mbox{rem } m^2}{\mbox{h } {\rm Ci}} \right] \\ B(\mu s) &= 1 + \mu s + \frac{1}{7 \ {\rm E}_{\gamma}^{2}, 4} \ (\mu s)^2 & \mbox{den Buildupfaktor} \\ \mu & \mbox{den totalen Schwächungskoeffizienten } \left[m^{-1} \right] \\ s &= \left\{ \mbox{h}^2 + \mbox{r}^2 + \mbox{r}_0^2 - 2 \ {\rm r} \ {\rm r}_0 \ \cos \left(\varphi - \varphi_0 \right) \right\}^{1/2} \\ & \mbox{den Abstand vom Aufpunkt P mit den Zylinder-koordinaten } (\mbox{r}_0, \ \varphi_0, \ 0) \ {\rm zum \ Linienelement \ dr \ der \ Abluftfahne \ in \ Höhe \ h \ [m] } \\ E_{\gamma} & \mbox{die Gammaenergie \ in \ MeV} \end{array}$

Unter Benutzung der Abkürzung

$$F(s) = B(\mu s) e^{-\mu s} s^{-2}$$
 (5)

erhält man damit für die Dosisleistung im Punkt P

$$\overset{\circ}{D}_{Y}(P) = K_{Y} \overset{\circ}{A} \int_{0}^{\infty} \int_{0}^{2\pi} \int_{0}^{\infty} \alpha(u, \varphi) e^{-\lambda \frac{r}{u}} F(s) \frac{du}{u} d\varphi dr .$$
 (6)

5 -

Die Auswertung des Integrales (6) ist sehr aufwendig. Im Sonderfall $\lambda \frac{r}{u} \ll 1$, also $r \ll u T_{1/2}$ ($T_{1/2}$ Halbwertszeit) und $\frac{\partial \alpha(u, \varphi)}{\partial \varphi} = 0$ bzw. $\alpha(u, \varphi) = \alpha_j(u)$ für $\varphi_{j-1} \ll \varphi \ll \varphi_j$ läßt sich die Auswertung

aber wesentlich vereinfachen *). Es gilt dann

$$D_{\gamma}(P) = K_{\gamma} A \Sigma P_{j} q_{j} (r_{o}, \varphi_{o})$$
(7)
$$j=1$$

mit $P_j = \int \frac{\alpha_j(u)}{u} du$

und
$$q_j(r_0, \varphi_0) = \int_{j-1}^{\gamma_j} \int_{0}^{\infty} F(s) dr d\varphi$$

J ist die Zahl der Sektoren.

2.2 Beta-Strahlung

Die Strahlenbelastung durch Beta-Strahlung kann mit einem erheblich geringeren mathematischen Aufwand behandelt werden, da die Reichweite von Beta-Strahlung in Luft verglichen mit jener der Gammastrahlung gering ist. Es genügt daher, die für den unendlich ausgedehnten Halbraum gültige Beziehung

$$D_{B}(r_{o},\varphi) = 0.28 \frac{\text{rad } \text{m}^{3}}{\text{MeV Ci sec}} C(r_{o},\varphi) E_{B,eff}$$
(8)

zu benutzen.

*) In jedem Sektor j ($\varphi_{j-1} < \varphi < \varphi_j$) wird also $\alpha(u, \varphi)$ als nur von u abhängig betrachtet.

- 6 -

Hierin bedeuten:

In Gl. (8) ist $C(r_{o}, \varphi)$ entsprechend Gl. (2) einzusetzen.

Da Jahresdosen berechnet werden sollen, hat man also für die Konzentration den über ein Jahr gemittelten Wert $\overline{C(r_o, \varphi)}$ zu benutzen. Es gilt

$$c(r_0,\varphi) = A \overline{\chi(r_0,\varphi)}$$

Da $\chi(r_o, \varphi)$ für den Standort Leopoldshafen nicht exakt bekannt ist, wird der Ansatz gemacht

$$\overline{\chi(\mathbf{r}_{o},\varphi)} = R_{j} \overline{\chi_{B}(\mathbf{r}_{o})} , \qquad (9)$$

worin $\chi_B(r_o)$ den aus Fig. 9 von /4/ entnommenen mittleren richtungsunabhängigen Ausbreitungsfaktor darstellt. R_j ist ein Korrekturfaktor, der die gegebene Windrichtungs- und Windgeschwindigkeitsverteilung berücksichtigen soll. Mit der Annahme, daß $\chi \sim \frac{1}{u}$ gilt, was für den Momentanwert von χ in guter Näherung zutrifft, gelangt man zu dem Ansatz

 $R_{j} = N \cdot P_{j} , \qquad (10)$

worin

$$P_{j} = \int_{0}^{\infty} \frac{\alpha_{j}(u)}{u} du$$

Ø

(siehe Gl. (7)) bedeutet und N ein Normierungsfaktor darstellt, der sich aus dem Spezialfall der Gleichverteilung bestimmen läßt. Hier muß gelten $R_j = 1$ und $P_j^{gl} = const.$ für alle j. Somit erhält man wegen

$$P_{j}^{gl} = \frac{J}{J}^{\Sigma P}_{J}$$

für den Normierungsfaktor N

$$\begin{array}{c} J \\ \Sigma P \\ j \\ N \cdot P_{j}^{gl} = N \cdot \frac{j=1}{J} \\ J \\ \end{array} = 1$$

Hiermit folgt schließlich aus den Gln. (8) bis (11)

$$\hat{D}_{B}(r_{o}, \varphi) = 0,28 \frac{\text{rad } \text{m}^{3}}{\text{MeV Ci sec}} \hat{A} E_{eff} \frac{J P_{j}}{J} \frac{\chi_{B}(r_{o})}{\chi_{B}(r_{o})}$$
(12)

Wie die Ergebnisse zeigen werden, ist der Beitrag der Beta-Strahlung zur Gesamtstrahlenbelastung gering, so daß die in diesem Kapitel vorgenommenen Vereinfachungen und Vernachlässigungen vertretbar erscheinen.

3. Durchführung der Berechnung

Die in dieser Arbeit berechnete Strahlenbelastung wurde für Gammastrahler nach 2.1.3 und für Betastrahler nach 2.2 bestimmt. Tabelle 1 enthält eine Übersicht über die zugrundeliegenden Emissionsdaten der einzelnen Anlagen des Kernforschungszentrums. Die eingesetzten meteorologischen Daten beruhen auf Messungen der Wetterwarte Karlsruhe in 17 m Höhe, die von Bolender statistisch ausgewertet wurden $\sqrt{67}$. Sie sind in Tabelle 2 wiedergegeben. Die Höhenabhängigkeit der mittleren Windgeschwindigkeit wurde durch einen einfachen Korrekturfaktor (Verhältnis der mittleren Windgeschwindigkeiten) berücksichtigt. Die benutzten Daten sind in Abb. 2 dargestellt. Sie wurden aus Angaben in einer Arbeit von Diem und Zedler $\sqrt{7}$ abgeleitet.

Besondere Aufmerksamkeit wurde der Angabe in Tab. 2 über die Windstille gewidmet. Diese Angabe bedeutet physikalisch, daß die Windgeschwindigkeit unterhalb von 0,5 m/sec lag, also nicht gemessen werden konnte. Da die zur Berechnung benutzte Gl. (7) für u = 0 eine Singularität aufweist, wurde für diesen Geschwindigkeitsbereich die Häufigkeit proportional der Geschwindigkeit angesetzt, wodurch der Geschwindigkeit 0 die Häufigkeit 0 zugeordnet wird.

(11)

Die Angabe "Windstille" bedeutet nun auch, daß in diesem Geschwindigkeitsbereich die Windrichtung unbekannt ist. Es ergibt sich also das Problem, die in den Bereich O bis 0,5 m/sec fallenden nicht gemessenen Winddaten auf die verschiedenen Richtungen aufzuteilen. Hierbei bieten sich u.a. folgende Lösungen an:

- a) Die Gleichverteilung auf alle Sektoren.
- b) Die gewichtete Verteilung proportional zur Häufigkeit der einzelnen Windrichtungen.
- c) Die gewichtete Verteilung proportional zur Häufigkeit kleiner Windgeschwindigkeiten in den einzelnen Richtungen.

Bezeichnet man die Häufigkeit der Windstille mit h_c und die Häufigkeit der Windgeschwindigkeit in Richtung j zwischen u_{l-1} und u_l mit h_{jl}, so erhält man

$$h_{j1} = \frac{h_c}{J}$$
 für Lösung a , (13 a)

$$h_{j1} = \frac{h_c}{1-h_c} \sum_{l=2}^{L} h_{j1} \quad \text{für Lösung b} \quad (13 \text{ b})$$

und

$$h_{j1} = \frac{J_{j2}}{J} h_c \quad \text{für Lösung c} . \quad (13 c)$$

$$\sum_{j=1}^{\Sigma} h_{j2}$$

Lösung c erscheint besonders einleuchtend, doch wäre es wohl verfrüht, sich endgültig für einen der drei Lösungsvorschläge zu entscheiden. Um jedoch zu sehen, welche Auswirkung die Wichtung im Schwachwindbereich hat, wurden alle drei Verfahren durchgerechnet und die Ergebnisse miteinander verglichen.

Tab. 2 wurde nach Bestimmung von h_{j1} aus h_c und h_{j1} (1 = 2,3,...) wie folgt in der Rechnung verarbeitet: Es wurde

$$\int_{u}^{u} \alpha_{j}(u) \, du = \frac{h_{jl}}{\Delta \varphi}$$
(14)

angesetzt, so daß

- 9 -

gemäß der Normierungsbedingung (4) und in Übereinstimmung mit der Normierung der h_{il} wird. Für $\alpha_i(u)$ wurde angesetzt

$$\alpha_{j}(u) = \begin{cases} \frac{2 h_{j1} u}{u_{1}^{2} \Delta \varphi} & \text{für } 0 < u < u_{1} = 0,5 \text{ m/sec} \\ \frac{h_{j1}}{(u_{1}-u_{1-1}) \Delta \varphi} & \text{für } u_{1-1} < u < u_{1} \text{ und } 1 \neq 2. \end{cases}$$

Damit wird

$$P_{j} = \frac{2 h_{j1}}{u_{1} \Delta \varphi} + \frac{L}{1=2} \frac{h_{j1}}{(u_{1} - u_{1-1}) \Delta \varphi} \ln \frac{u_{1}}{u_{1-1}}.$$
 (15)

4. Ergebnisse

Die nach Gl. (15) unter Berücksichtigung der bezüglich der sogenannten Windstille korrigierten meteorologischen Daten berechneten Gewichtsfaktoren sind in den Abb. 3 a – c veranschaulicht. Die Numerierung der Abbildungen erfolgte hierbei entsprechend jener unter 3. für die Lösungsvorschläge gewählten. Um den Beitrag der schwachen Winde zu veranschaulichen, werden die Beiträge zu P_j der Geschwindigkeiten zwischen 0 und 0,5 m/sec sowie 0 und 2,0 m/sec mitangegeben.

Während bei der Berechnung der Gammadosisleistung über sämtliche Windrichtungen summiert wird, wird nach dem unter 2.2 beschriebenen Modell jeder Sektor als unabhängig von den anderen betrachtet. Die Betadosisleistung wurde nach Gl. (12) bestimmt, wobei die Langzeitausbreitungsfaktoren aus dem Bericht von Bryant /4/ übernommen wurden. Dabei wurden Korrekturen für die Höhenabhängigkeit der mittleren Windgeschwindigkeit angewandt.

- 9 -

- 10 -

the star

2 B

Tabelle 3 gibt eine Übersicht über die maximalen Dosisbeiträge der einzelnen kerntechnischen Anlagen des Kernforschungszentrums. Angegeben werden der Gammadosiswert für den Schornsteinfußpunkt sowie der maximale Betadosiswert am Boden ermittelt nach 2.2. Man erkennt, daß nur FR2, WAK und Zyklotron merkliche Dosisbeiträge liefern, so daß die übrigen Anlagen bei der Ermittlung der Isodosen unberücksichtigt bleiben können.

In Abb. 4 a - c sind die erhaltenen Isodosen wiedergegeben. Für einige besonders interessante Punkte sind die Ortsdosen pro Jahr in Tabelle 4 zusammengestellt. Zum Vergleich hinzugefügt wurden die Ergebnisse einer früheren Berechnung.

5. Diskussion

5.1 Bemerkungen zum Rechenverfahren

Die vorliegende Gammaisodosenberechnung beruht auf einem Verfahren, das sehr weitgehend auf direkt meßbare meteorologische Daten zurückgreift. Der Verzicht auf die Berücksichtigung einer vertikalen Ausbreitung der Abgase, der durch eine Abschätzung gerechtfertigt wird, erspart nicht nur erheblichen mathematischen Aufwand, sondern auch die schwierige Bestimmung der Parameter in Ausbreitungsformeln. Bei der Berechnung der Betaisodosen mußte dagegen auf ein meteorologisches Ausbreitungsmodell zurückgegriffen werden. Da indessen der Betabeitrag zur Strahlenbelastung gering ist, bewirkt die anfechtbare Anwendung der Bryantschen Diagramme /4/ keine unzulässige Verfälschung des Resultats.

5.2 Bemerkungen zu den Ergebnissen

Von besonderem Interesse ist der Vergleich der hier vorliegenden Ergebnisse mit jenen einer früheren Berechnung, bei der zwar die Richtungsverteilung des Windes, nicht aber die Geschwindigkeitsverteilung berücksichtigt worden war. Es war schon wegen der unterschiedlichen meteorologischen Eingabedaten nicht zu erwarten, daß die im wesentlichen auf den Diagrammen von Bryant /4/ beruhenden alten Isodosen völlig mit den neuberechneten zusammenfallen würden, doch sollten die wichtigsten Aussagen der alten Berechnung erhalten

_ 10 _

- 11 -

bleiben. Um dies zu prüfen, wurden neuberechnete und alte Werte in Tabelle 4 einander gegenübergestellt, wobei die neuen Ergebnisse für Verfahren a) (siehe 3.) zur Berücksichtigung der Kalmen angegeben sind. Hierbei ergibt sich eine i.a. befriedigende Übereinstimmung. Nur am Schornsteinfußpunkt des FR2 besteht eine Diskrepanz zwischen den alten und den neuen Werten, die auch mit der Berücksichtigung der Windgeschwindigkeitsverteilung zusammenhängen dürfte. Die Ortsdosen pro Jahr innerhalb des Kernforschungszentrums sind jedoch ohne große Bedeutung:

- a) Sie berücksichtigen nicht, daß sich Personen im Kernforschungszentrum nur ca. 1/4 der Zeit aufhalten.
- b) Nicht berücksichtigt ist die Abschirmwirkung von Gebäuden, die eine erhebliche Reduktion der Strahlendosis bewirkt.

Auf Grund dieser Überlegungen hat man elso ipnerhalb des Kernforschungszentrums eine Strahlenbelastung der Personen unter 25 % der berechneten Ortsdosen pro Jahr zu erwarten. Eine solche Strahlenbelastung kann durch die Personendosimetrie praktisch nicht nachgewiesen werden.

In der unbebauten unmittelbaren Umgebung des Kernforschungszentrums halten sich Personen normalerweise nur einen geringen Teil der Zeit auf, so daß ihre Strahlenbelastung ebenfalls unterhalb von 25 % der berechneten Ortsdosis liegen wird.

Die Strahlenbelastung in den umliegenden Ortschaften ist außerordentlich gering. Sie beträgt nur einen praktisch nicht nachweisbaren Prozentsatz des natürlichen Untergrundes, jedoch werden die sehr geringen Ortsdosiswerte kaum von Personen empfangen werden, da sich diese ebenfalls einen wesentlichen Anteil der Zeit in Räumen aufhalten.

Besonders lehrreich erscheint die in den Abb. 3 a - c gegebenen Darstellungen der Gewichtsfaktoren. Sie zeigen deutlich den Einfluß der Schwachwindwetterlagen (u < 2 m/sec) auf die Strahlenbelastung in den Richtungen SW bis WSW.

- 12 -

Es muß darauf hingewiesen werden, daß mangels in geeigneter Form aufbereiteter meteorologischer Daten der dosisreduzierende Effekt der Schornsteinüberhöhung nicht berücksichtigt werden konnte. Im allgemeinen liegt die Lufttemperatur unter der Ablufttemperatur, außerdem ist gerade bei Schwachwindwetterlagen die Schornsteinüberhöhung infolge des Impulses besonders groß, was der im vorliegenden Bericht vorgenommenen Wichtung dieser Wetterlagen entgegenwirkt.

5.3 Vergleich mit Messungen

Die Gammaortsdosis im Kernforschungszentrum Karlsruhe und seiner Umgebung wird mit Glasdosimetern gemessen. Einige vorläufige Ergebnisse dieser Messungen $\langle 8 \rangle$ sind zum Vergleich in Tabelle 4 übernommen. Hierbei wurde der mitgemessene natürliche Untergrund zu 80 mrem/a angenommen und abgezogen. Der Meßfehler der Einzelmessung wird auf <u>+</u> 10 mrem geschätzt. Diese Messungen erfassen auch Direkteinstrahlung mit, die nicht im Zusammenhang mit der Ableitung radioaktiver Stoffe in die Atmosphäre steht.

Wie man aus Tabelle 4 entnehmen kann, lassen die Messungen darauf schließen, daß die Ergebnisse der vorliegenden Berechnung auf der sicheren Seite liegen.

5.4 Schlußfolgerungen

Die in der vorliegenden Arbeit beschriebene Neuberechnung der Strahlenbelastung der Umgebung des Kernforschungszentrums Karlsruhe infolge der Ableitungen radioaktiver Stoffe in die Luft, hat im wesentlichen das Ergebnis einer früheren Berechnung bestätigt. Bestätigt wurde insbesondere die Aussage, daß die Strahlenbelastung der Bevölkerung in der Umgebung durch das Kernforschungszentrum wenige Prozent der natürlichen Strahlenbelastung nicht übersteigt und durch keine Meßmethode direkt nachgewiesen werden kann.

Für zukünftige Rechnungen erscheint es zunächst wünschenswert, die Möglichkeiten des hier beschriebenen Verfahrens voll auszuschöpfen, indem noch mehr meteorologische Informationen verarbeitet werden, was dieses Verfahren im Gegensatz zu anderen ohne merklich größeren Aufwand ermöglicht. Z.B. könnte man die Zahl der Sektoren vergrößern und Tabelle 2 für verschiedene Höhen eingeben.

- 13 -

- [1] Meteorology and Atomic Energy, AECU 3066 (1955)
- [2] Sutton, O.G.: Micrometeorology New York McGraw Hill 1953
- [3] Blässer, G. und Wirtz, K.: Nukleonik, <u>3</u>, 164 u. 210 (1961); KFK 79 (1961)
- [4] Bryant, P.M.: AHSB (RP) R 42 (1964)
- [5] Alonso, A.: Health Physics <u>13</u>, 487 (1967)
- [6] Bolender, E., persönliche Mitteilung
- [7] Diem, M. und Zedler, P.: Berichte des Deutschen Wetterdienstes Nr. 97 (Band 13), 1964
- [8] Piesch, E., persönliche Mitteilung

Tabelle 1: Emissionsdaten

Emittent	FR2	WAK	ZYKL.	SNEAK	IRCH	ІНСН	HZ	KNK	MZFR
Kaminhöhe [m]	99,5	60	35	50	15	60	60	100	100
Abluftmenge Lm ³ /h]	40 000 - 120 000	85 000	20 000	60 000	64 365	120000	90000	52450	220000
Ablufttemp.	25 - 32	30	20 -30	20	18	18	23	18-40	10-30
Austrittsquerschnitt	7,5	2	0,8	1,8	3,1	5,7	5,3	0,95	4,9
Austrittsgeschwindigk.	1,5 ÷ 4,5	12	7	11	6	6	5	15	12,5
Nuklid	Ax-43	Kr-85	Ar-41 N-13 0-15	Ar-41	Ar-41 Kr-85	Kr-85	Kr-85	Ar-41	Ar-41
abgegebene Aktivität [Ci/h]	25	37,5	8.10 ⁻³ 0,137 0,0298	6,6·10 ⁻³	3,3.10 ⁻⁶ * 2,2.10 ⁻⁵	1,8.10 ⁻²	9,5·10 ⁻³	4,6•10 ⁻²	4,2.10 ⁻³
abgegebene Aktivitäts- konzentration Ci/m ³	(2, 1-6 ,25). •10 ⁻⁴	4,4.10-4	3.10 ⁻⁷ 6,85.10 ⁻⁶ 1,48.10 ⁻⁶	1,1.10 ⁻⁷	-	1,5·10 ⁻⁷	1,05.10 ⁻⁷	8,8•10 ⁻⁷	2,1•10 ⁻⁸

* Zeitliche Mittelwerte der diskontinuierlichen Abgabe

<u>Tabelle 2:</u> Relative Häufigkeit (in % aller Beobachtungsstunden) der Windrichtungen unterteilt nach vier Geschwindigkeitsstufen. Windstatistik Karlsruhe 1952 - 1965

Geschwindig- keits-Stufen	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	N	Wind- stillen
0,5 - 1,9 m/s	1,98	4,45	5,91	4,86	3,55	1,56	0,90	2,65	3,34	2,58	1,39	1,08	0,81	0,91	1,02	1,38	
2,0 - 3,9 m/s	2,15	1,64	4,64	2,22	1,36	0,25	0,08	0,68	4,80	7,94	3,89	1,22	0,66	0,41	0,58	1,29	
4,0 - 6,9 m/s	0,53	0,10	0,55	0,29	0,12	0,01	0,00	0,06	2,00	6,97	5,39	1,19	0,48	0,14	0,16	0,44	
≥ 7,0 m/s	0,02	-	0,02	-	-	-	-	0,01	0,31	1,79	1,89	0,41	0,11	0,02	0,01	0,02	
Ohne Unter- teilung nach Geschwindig- keitsstufen	4,68	6,19	11,12	7,37	5,03	1,82	0,98	3,40	10,45	19,28	12,56	3,90	2,06	1,48	1,77	3,13	4,81

Ganzer Tag (00.00 - 24.00 Uhr MOZ)

123 365 ausgewertete Beobachtungsstunden = 100 %

Es ist die Richtung angegeben, aus der der Wind kommt.

- 15 -

Tabelle 3

Maximale Dosisbeiträge der kerntechnischen Anlagen des Kernforschungszentrums Karlsruhe

		D	9999			
Institut/ Abteilung	Nuklid	y Max Schornstein- fußpunkt	B Konzentrations- maximum	Entferung (Richtung)		
FR 2	Ar-41	185	2,8	600 m (WSW)		
WAK	Kr- 85	2,02	5,55	500 m (WSW)		
Zvklotron	Ar-41	0,32	. 0,1			
	N-13	4,35	1,15	400 m (WSW)		
	0-15	0,94	< 0,1	-		
SNEAK	Ar-41	0,132	< 0,1			
IRCH	Ar-41	< 0,1	< 0,1			
ІНСН	Kr-85	< 0,1	< 0,1	-		
HZ	Kr-85	< 0,1	< 0,1	;		
KNK	Ar-41	0,34	< 0,1			
MZFR	Ar-41	< 0,1	< 0,1			

Tabelle 4

Ortsdosiswerte an einigen interessierenden Stellen

Ont	Berechnet	Berechnete Strahlenbelastung[mrem/a]						
	γ (FR2) (Wichtunga	$\beta + \gamma$ (WAK + FR2) (Wichtung a)	alte Werte $\beta + \gamma$	[mrem/a]				
I. <u>Kernforschungs-</u> zentrum								
FR2-Schornstein	185	190	110					
Nordtor	42	46	30	10 ÷ 15				
Südtor	17	20	20	10 ÷ 20				
Zaun 600 m NE v.FR2	49	55	60	10 - 30				
Zaun 500 m SW v.FR2	48,5	50	30	20 - 60				
		·						
II. <u>Umliegende</u> Wohngebiete								
Bruchsal	2	2	3					
Blankenloch	2	2,4	2	nicht				
Friedrichstal	4	6	7	hachwels- bar				
Eggenstein	7,3	9	6					
Leopoldshafen	9,4	12	-8					
Linkenheim	3,1	4,3	4					
Karlsruhe	1	1	1					

Abb. 1 Benutzte Koordinatensysteme

- 18 -

- 19 -

- 20 -

Abb. 3b Gewichtsfaktoren Pj nach Wichtung b

- 21 -

Abb. 3c Gewichtsfaktoren Pj nach Wichtung c

-----: *Pj* -----: *pj1* -----: *pj1* + *pj2*

- 22 -

