

KERNFORSCHUNGSZENTRUM

KARLSRUHE

November 1969

KFK 1059

Institut für Radiochemie

Zur Berechnung der Halbwertszeiten unbekannter Isotope der Actiniden

K.A. Keller, H. Münzel

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

November 1969

KFK 1059

Institut für Radiochemie

Zur Berechnung der Halbwertszeiten unbekannter Isotope der

Actiniden

von

K.A. Keller und H. Münzel

Gesellschaft für Kernforschung m.b.H., Karlsruhe

Zusammenfassung

Zur Berechnung der partiellen Halbwertszeiten des &-Zerfalls und Elektroneneinfangs wurden halbempirische Gleichungen abgeleitet. Durch die Berücksichtigung einer mittleren Anregungsenergie der Tochterkerne konnte eine wesentliche Verbesserung der Genauigkeit erreicht werden. Mit diesen Beziehungen wurden unter Berücksichtigung der Spantanspaltung die totalen Halbwertszeiten neutronenarmen Isotope der Actiniden bis zur Ordnungszahl 108 berechnet.

Summary

For the prediction of partial half-lives for α -decay and electron capture, semiempirical relationships were derived. By use of mean excitation energies of the daughter nucleides an improved accuracy could be obtained. The total half-lives of neutron deficient actinide isotopes, extended up to atomic number 108, were computed by means of these equations, taking into account the partial half-lives for spontaneous fission.

Résumé

Pour la prédiction des périodes partielles de la désintégration α et de la capture électronique des relations semi-empirique étaient dérivées. En tenant compte des énergies moyennes excitées des descendants une précision plus exacte pouvait être obtenue. Les périodes totales des isotopes actinides très déficients en neutrons s'étendant jusqu'au nombre atomique 108 étaient calculées au moyen de cette équations en tenant compte des périodes partielles de la fission spontanée.

Inhaltsverzeichnis

1.	Einleitung 1
2.	Berechnung der partiellen Halbwertszeiten 1
	2.1. Der Elektroneneinfang 1
	2.2. Der α-Zerfall
	2.3. Die Spontanspaltung 14
3.	Berechnung der totalen Halbwertszeiten 16
4.	Literaturverzeichnis 27
5.	Tabellen

·

1. Einleitung

Das wachsende Interesse an der Untersuchung der Isotope der schwersten Elemente hat in den letzten Jahren die Zahl der Zerfallsdaten wesentlich vergrößert. Zur Zeit werden beträchtliche Bemühungen zur Erzeugung unbekannter Nuklide unternommen. Die Planung solcher Untersuchungen wird durch die Kenntnis der zu erwartenden Halbwertszeit und der bevorzugten Zerfallsart wesentlich erleichtert. Außerdem vereinfacht eine Zerfallssystematik die Zuordnung unbekannter Kerne. In der vorliegenden Arbeit wurde deshalb versucht, mit Hilfe der neuesten Zerfallsdaten eine genauere Abschätzung der Halbwertszeiten neutronenarmer Isotope der Actiniden bis zur Ordnungszahl 108 zu erreichen.

2. Berechnung der partiellen Halbwertszeiten

Im Massenbereich neutronenarmer Isotope der schwersten Elemente sind drei Zerfallsprozesse von Bedeutung: der Elektroneneinfang, der α -Zerfall und die Spontanspaltung. Im folgenden wird die Berechnung der partiellen Halbwertszeiten der einzelnen Zerfallsarten beschrieben.

2.1. Der Elektroneneinfang

Bei dieser Zerfallsart überwiegt immer der Einfang von K-Elektronen, falls er energetisch möglich ist. Für die besonders häufig vorkommenden erlaubten oder einfach verbotenen Übergänge ergibt sich die Zerfallswahrscheinlichkeit λ_{K} des K-Einfangs nach KONOPONSKI (4) zu

$$\lambda_{K} = \frac{g^{2} \cdot g_{K}^{2}}{4 \cdot \pi^{2}} \cdot q_{K}^{2} \cdot S_{0,1} \qquad \text{Gl. 1}$$

g² : universelle Kopplungskonstante
g^k : Radialamplitude für die Hauptquantenzahl n = 1 (K-Schale)
q_k : Energie des Neutrinos beim K-Einfang
S : Shape-Faktor

In dieser Gleichung wird bei erlaubten Übergängen ($\Delta I = 0^+, 1^+$) der Shape-Faktor S₀ benutzt und S₁ bei den einfach verbotenen Übergängen ($\Delta I = 0^-, 1^-$). Beide Faktoren sind unabhängig von der Neutrinoenergie q_K.

Zum Druck eingereicht am 10.11.69

Ersetzt man λ_{K} durch die partielle Halbwertszeit t_K des K-Einfangs, so kann man Gl. 1 folgendermaßen schreiben

$$q_{K}^{2} \cdot t_{K} = \frac{4 \cdot \pi^{2} \cdot \ln 2}{g^{2} \cdot g_{K}^{2}} \cdot \frac{1}{s_{0,1}}$$
 G1. 2

Das Quadrat der Neutrinoenergie q_K ist gleich der aus log ft-Nomogrammen von MOSZKOWSKI (5) bekannten statistischen Raten-Funktion f_K des K-Einfangs. Die rechte Seite von Gl. 2 ist für erlaubte und einfach verbotene Übergänge über die Funktion g_K^2 nur von der Ordnungszahl Z abhängig. Damit ist das Produkt $q_K^2 \cdot t_K$ für ein gegebenes Z gleich einer Konstanten, dem ft-Wert. Mit Gl. 2 lassen sich demnach unbekannte partielle Halbwertszeiten t_K erlaubter und einfach verbotener Übergänge bei Kenntnis der Neutrinoenergie q_K und des log ft-Wertes berechnen. Bei mehrfach verbotenen Übergängen gilt der obige einfache Zusammenhang nicht mehr, da der Shape-Faktor S energieabhängig ist.

Von diesen Überlegungen ausgehend, ermittelten VIOLA und SEABORG (1) aus bekannten Zerfallsdaten des Elektroneneinfangs (6) folgende mittlere log ft-Werte für Kerne mit Z > 82 und N > 126.

Kerntyp	∠log ft>
g-g	6,2 ± 1,3
g-u	6,2 [±] 1,3
u-g	6,1 ± 0,8
u-u	6,9 [±] 0,7
-	

Tabelle 1 Mittlere log ft-Werte nach (1)

Sie setzten dabei voraus, daß bei schweren Kernen überwiegend erlaubte oder einfach verbotene Zerfälle stattfinden. Ferner nahmen sie an, daß die Übergänge nur zum Grundzustand des Tochterkerns führen. Sie vernachlässigten also die Anregungsenergie und auch die Elektronenbindungsenergie. Dies bedeutet, daß bei VIOLA und SEABORG die Neutrinoenergie q_K gleich dem Q-Wert Q_f des Elektroneneinfangs ist. Aus den mittleren log ft-Werten und den geschätzten Q_E --Werten (7) berechneten sie mittels der MOSKOWSKI-Nomogramme die partiellen Halbwertszeiten t_E des Elektroneneinfangs unbekannter Nuklide. Die Genauigkeit liegt nach Tabelle 1 bei einem Faktor 5 bis 20 je nach Kerntyp.

Dieser Berechnungsart liegt eine quadratische Abhängigkeit der Zerfallswahrscheinlichkeit λ des Elektroneneinfangs von Q_{ϵ} zugrunde. Die doppeltlogarithmische Auftragung der experimentellen Halbwertszeiten t $_{\epsilon}$ gegen die entsprechenden Q_{ϵ} -Werte zeigt jedoch, daß der Zusammenhang besser mit einem größeren Exponenten als 2 (Exponent von q_{K} in Gl. 1) beschrieben werden kann. Ausgleichsrechnungen ergaben z.B. bei g-u- und u-g-Kernen den Wert 3,5.

Ferner trifft die Annahme von VIOLA und SEABORG nicht zu, daß die ξ -Übergänge nur zum Grundzustand des Tochterkerns erfolgen. Vielmehr läßt sich an Hand von Zerfallsschemen (8, 9) zeigen, daß bei einer großen Anzahl von Kernen intensive ξ -Übergänge zu höherenergetischen Tochterzuständen führen. Da sich dabei die Neutrinoenergie q_K oft erheblich vom Q_{ξ} -Wert unterscheidet, sind für eine genauere Abschätzung der partiellen Halbwertszeit t $_{\xi}$ des Elektroneneinfangs unbedingt die Anregungsenergien der Tochterkerne zusammen mit der Elektronenbindungsenergie zu berücksichtigen.

Die partielle Halbwertszeit t $_{\xi}$ eines Nuklids erhält man aus den partiellen Halbwertszeiten der einzelnen ξ -Übergänge. Unter der Annahme einer statistischen Verteilung der Niveaus wurde mit Gl. 1 und dem Ansatz (10)

$$S(E_A) \propto E_A^{-2} \exp(2 \cdot 7 \overline{a \cdot E_A})$$
 G1. 3

G1. 4

für die Niveaudichte g eine Abschätzung der Population der Zustände der Tochterkerne durchgeführt. Dabei zeigte es sich, daß mit steigenden Q $_{\epsilon}$ -Werten der Zerfall bevorzugt zu höherangeregten Niveaus führt.

Diese Tendenz wird durch experimentelle Daten bestätigt. Da jedoch die Energien der populierten Niveaus der Tochterkerne nicht vorhergesagt werden können, wurde versucht, eine mittlere Anregungsenergie einzuführen. Diese stellt den Mittelwert der Energien der durch ε -Zerfall populierten Tochterniveaus dar. Die Wichtung der Energien ist durch die prozentuale Häufigkeit des jeweiligen ε -Übergangs gegeben:

$$\langle E_{A}(\varepsilon) \rangle = \frac{\sum_{j=1}^{P} \varepsilon_{j} E_{j}}{\sum_{j=1}^{P} \varepsilon_{j}}$$

- 3 -

 $\langle E_A(\epsilon) \rangle$: mittlere Anregungsenergie des Tochterkerns für Elektroneneinfang E_j : Energie eines Tochterniveaus j, zu dem ein ϵ -Übergang führt $P_{\epsilon j}$: prozentuale Häufigkeit eines ϵ -Übergangs zum Niveau j.

Nach dieser Gleichung wurden im Gebiet Z > 82 und N > 126 die mittleren Anregungsenergien von Kernen mit bekanntem Zerfallsschema berechnet. Abb. 1 zeigt diese Werte in Abhängigkeit von den Q_{ξ} -Werten. Danach ist die Anregungsenergie etwa gleich der Hälfte des Q_{ξ} -Wertes.

<u>Abb. 1</u> Abhängigkeit der nach Gl. 4 berechneten mittleren Anregungsenergien
∠E_A(ε)> der Tochterkerne vom Q-Wert des Elektroneneinfangs. Der Kerntyp der Tochternuklide ist durch verschiedene Zeichen gekennzeichnet:

x : g-g-Kerne; O : g-u-Kerne; ∆ : u-g-Kerne; □ : u-u-Kerne Die Kurve wurde durch visuelle Anpassung an die experimentellen Werte erhalten.

- 4 -

Diesen Verlauf kann man gut mit Hilfe der Niveaudichteverteilung (Gl. 3) unter Verwendung der Konstanten a = 12 beschreiben. Ferner zeigte es sich, daß die mittleren Anregungsenergien der beim Zerfall von g-g-Kernen gebildeten Nuklide kleiner sind. Dies ist auch zu erwarten, da die Niveaudichten der entstehenden u-u-Kerne größer sind. Bei größeren Q_E -Werten scheint die mittlere Anregungsenergie $\langle E_A(E) \rangle$ nicht mehr proportional zu Q_E zu sein. Diese Tendenz stimmt nicht mit den theoretischen Abschätzungen überein. Da jedoch keine experimentellen Daten vorliegen, wurde für Q_E>3 MeV eine mittlere Anregungsenergie von 1,6 MeV angenommen.

Da der Einfang aus höheren Schalen im allgemeinen nicht vernachlässigbar ist, wurden die partiellen Halbwertszeiten t_K des K-Einfangs aus t_E -Werten berechnet. In 1. Näherung ergibt sich nach (11) für erlaubte und einfach verbotene ξ -Übergänge die folgende Gleichung:

$$t_{K} = t_{\varepsilon} \left[1 + \left(\frac{L_{LI}}{L_{K}}\right) \left(\frac{q_{LI}}{q_{K}}\right) \cdot \left(1 + \left(\frac{L_{LII}}{L_{LI}}\right)\right) \right] \qquad \text{G1. 5}$$

t_K : partielle Halbwertszeit des K-Einfangs tε : partielle Halbwertszeit des Elektroneneinfangs q_K : Neutrinoenergie beim K-Einfang q_{LI} : Neutrinoenergie beim LI-Einfang L_{LI}/L_K bzw. L_{LII}/L_{LI} : Z-abhängige Konstanten nach (11)

Der Exponent 2 von q_{K} aus Gl. 1 wurde durch die Größe C_{2} ersetzt. Die Z-abhängigen Konstanten im Bereich Z = 101 bis 108 und die Bindungsenergien B_{K} und B_{LI} für Z > 104 wurden durch Extrapolation erhalten. Für den Zusammenhang zwischen der berechneten partiellen Halbwertszeit t_{K} und der Neutrinoenergie q_{K} wurde in Analogie zu Gl. 1 folgende allgemeinere Gleichung mit den Konstanten C_{1} und C_{2} angenommen.

$$t_{K} = C_{1} \cdot q_{K}^{C_{2}} = C_{1} \cdot (Q_{\varepsilon} - \langle E_{A}(\varepsilon) \rangle - B_{K})^{C_{2}} \qquad G1. 6$$

 Q_{ϵ} : Q-Wert des Elektroneneinfangs $\langle E_A(\epsilon) \rangle$: mittlere Anregungsenergie B_K : Bindungsenergie der K-Elektronen C_1, C_2 : Konstanten

- 5 -

Der Exponent C₂ der Neutrinoenergie q_K sollte nach Gl. 1 den Wert 2 besitzen. Abb. 2 zeigt jedoch am charakteristischen Beispiel der u-g-Kerne, daß tatsächlich eine bessere Anpassung mit einem größeren Wert für C₂ erreicht werden kann. Eine Ausgleichsrechnung ergab die in Tab. 2 aufgeführten Werte, wobei t_K in min und q_K in MeV eingesetzt wurden.

<u>Abb. 2</u> Zusammenhang zwischen der Neutrinoenergie q_K und der Halbwertszeit t_K des K-Einfangs am charakteristischen Beispiel der u-g-Kerne. Werte mit unterschiedlicher Ordnungszahl Z sind durch verschiedene Zeichen dargestellt, deren Bedeutung sich aus Abb. 11 ergibt. Die Gerade ergab sich aus der Ausgleichsrechnung.

Die sich ergebenden Werte für C_2 bedeuten nicht, daß auch der Exponent von q_K in Gl. 1 größer als 2 sein sollte. Die größeren Werte sind wahrscheinlich auf die Mittelwertbildung bei der Berechnung der Anregungsenergien zurückzuführen. Dies ergibt sich durch einen Vergleich der Zerfallswahrscheinlichkeiten, welche einerseits nach Gl. 1 in Verbindung mit Gl. 3 und andererseits nach Gl. 6 berechnet wurden.

Kerntyp	C ₁	°2
g-g	119 ± 46	-2,4 ± 0,5
g-u	12 ± 6	-4,3 ± 0,4
น-g	12 ± 6	-3,6 ± 0,3
น-u	184 ± 78	-4,5 ± 0,7

Tabelle 2 Werte der Konstanten C, und C, in Gl. 6

Bei der Ausgleichsrechnung wurden unbekannte Anregungsenergien der Abb. 1 entnommen. Bei den g-g-Kernen standen nur zwei experimentelle Werte aus dem Bereich Z > 82 und N > 126 zur Verfügung. Um dennoch eine Halbwertszeitabschätzung zu erhalten, wurden ξ -Zerfallsdaten von Kernen mit 50 \leq Z \leq 82, 82 \leq N \leq 126 und Z > 82, 82 \leq N \leq 126 herangezogen.

Die Fehler in der partiellen Halbwertszeit t ϵ sind in Tabelle 3 als Faktoren angegeben. Für den Fehler des Einzelwertes wurde die Formel $\sqrt{\sum \left(\frac{t - t_{exp}}{t}\right)^2/n-2}$ benutzt und daraus der Fehler des Mittelwertes berechnet.

	Fehler in der partiellen Halbwertszeit ta für den								
Kerntyp	Einzelwert	Mittelwert	Mittelwert						
	(diese Arbeit)	(diese Arbeit)	(VIOLA und SEABORG)						
g-g	4,6	1,9	20						
g-u	3,2	1,7	20						
u-g	3,2	1,7	6						
u-u	4,3	1,9	5						

In Abb. 3 ist das Verhältnis aus experimenteller und berechneter partieller Halbwertszeit t $_{\mathcal{E}}$ des Elektroneneinfangs gegen die Neutronenzahl N der Mutternuklide aufgetragen. g-g-Kerne sind in dieser Darstellung nicht aufgeführt. Systematische Abweichungen sind aus der Abb. 3 nicht zu erkennen.

Abb. 3 Verhältnis aus experimenteller und nach Gl. 6 und 5 berechneter Halbwertszeit des Elektroneneinfangs gegen die Neutronenzahl N der Mutternuklide für g-u-, u-g- und u-u-Kerne. Für einen Kerntyp sind die Isotope eines Elements durch Geraden untereinander verbunden. Die unterschiedlichen Ordnungszahlen sind durch verschiedene Zeichen dargestellt (s. Abb. 11).

Wie man aus der Tabelle 3 ersieht, sind die Fehler im Vergleich zur Arbeit von VIOLA und SEABORG erheblich kleiner. Diese Verbesserung ist sowohl auf die allgemeinere Form der Gl. 6 als auch auf die Berücksichtigung der mittleren Anregungsenergie der Tochterkerne zurückzuführen.

- 8 -

2.2. Der α -Zerfall

Zur Berechnung der Zerfallswahrscheinlichkeiten von Grundzustandsübergängen bei g-g-Kernen haben sich einfache Barrieren-Formeln bewährt. So hat z.B. BETHE (12), vom Einteilchen-Modell mit Potentialtopf ausgehend, folgende Formel für die α -Zerfallswahrscheinlichkeit λ_{α} abgeleitet, unter der Voraussetzung, daß der Bahndrehimpuls des α -Teilchens gleich Null ist.

$$\lambda_{\alpha} = \frac{2^{1/2} \pi^{2} \pi^{2}}{\mu^{3/2} R^{3} (V(R) - Q_{eff})^{1/2}} \cdot \exp\left[-2 \cdot \frac{2 R V(R)}{\pi v} \cdot (\alpha_{o} - \sin \alpha_{o} \cdot \cos \alpha_{o})\right] Gl. 7$$

V(R): Potentialmaximum beim Kernradius R

- /u : reduzierte Masse des α-Teilchens
- v : relative Geschwindigkeit zwischen α -Teilchen und Tochterkern α_0 : definiert durch $\cos^2 \alpha_0 = \frac{Q_{eff}}{V(R)}$

 Q_{eff} : effektiver Q-Wert $Q_{eff} = Q_{\alpha} + \Delta E_{sc} (\Delta E_{sc}: Abschirmungskorrektur (13))$

Der Quotient vor dem Exponenten ist gleich dem Produkt aus der Stoßfrequenz des α -Teilchens am Potentialwall und dem Transmissionskoeffizienten beim Kernradius R, während die Exponentialfunktion die Durchdringungswahrscheinlichkeit des Coulombwalles beschreibt. Der erste Term ändert sich nur sehr wenig (innerhalb eines Faktors 1 bis 2); die Exponentialfunktion variiert dagegen für bekannte α -Emitter um über 20 Zehnerpotenzen.

Von TAAGEPERA und NURMIA (14) wurde Gl. 7 wie folgt vereinfacht:

a) Der erste Term ist konstant und wird gleich C gesetzt.

b) Im Exponentialterm werden folgende Näherungen gemacht:

1. Für den Zusammenhang zwischen Nukleonenzahl A und Kernradius R der Tochter wird die Formel aus dem Tröpfchenmodell angenommen:

$$R = R \cdot A^{1/3}$$

Im betrachteten Massenbereich gilt folgende Gleichung für die Beziehung zwischen Nukleonenzahl A und Kernladungszahl Z der Tochter bei einem Fehler von 5 %

A = 2,5.2 und damit $R = 1,36 \cdot R_{o} \cdot Z^{1/3}$

- 9 -

 2. Da V(R) groß gegen Q_{eff} ist, hat cos α_o einen sehr kleinen Wert, sin α_o ≈ 1 und α_o^π/₂ - cos α_o; der Fehler dieser Näherung beträgt 1 %.
 Bei Berücksichtigung dieser Näherungen ergibt sich für den Logarithmus der

partiellen α-Halbwertszeit folgende Gleichung:

$$\log t_{\alpha} = C_{1} + C_{2} \cdot \left(\frac{Z}{Q_{eff}} - C_{3} \cdot Z^{2/3}\right) \qquad Gl. 8$$

. 10

mit

$$C_1 = \log(\ln 2) - \log C_0$$
 Gl. 9a

$$C_2 = \frac{0,4343 \cdot 2\pi \cdot 2^{1/2} e^2 u^{1/2}}{\hbar}$$
 Gl. 9b

$$C_{3} = \frac{4 \cdot (1, 36 \cdot R_{0})^{1/2}}{2^{1/2} \pi \cdot e}$$
 G1. 9c

c) In einer weiteren Näherung werden C₁, C₂ und C₃ als konstant angenommen. Die Konstante C₃, deren Wert sich zu 1,07 ergibt, wird im folgenden gleich 1 gesetzt. Damit erhält man die lineare Gleichung

$$Y = C_2 \cdot X + C_1$$
 G1. 10

mit $Y = \log t_{\alpha}$ $X = Z \cdot Q_{eff}^{-1/2} - Z^{2/3}$

Die Konstanten obiger Gleichung lassen sich entweder nach Gl. 9 berechnen oder durch Anpassung an experimentelle α -Zerfallsdaten ermitteln, wobei nach TAAGEPERA und NURMIA (14) eine Ausgleichsgerade eine bessere Anpassung ergibt.

GALLAGHER und RASMUSSEN (15) zeigten, daß eine ähnliche halbempirische Formel in Verbindung mit Hindrance-Faktoren F zur Abschätzung von partiellen α -Halbwertszeiten geeignet ist. Danach kann die partielle Halbwertszeit t $_{\alpha}$ durch folgende Gleichung beschrieben werden:

$$\log t_{\alpha} = A_Z \cdot Q_{eff}^{-1/2} + B_Z + \log F \qquad Gl. 11$$

A_{Z}, B_{Z} : Z-abhängige Konstanten

F : Hindrance-Faktor von Kernen mit ungepaarten Nukleonen.

VIOLA und SEABORG (1) erhielten unter Benutzung dieser Beziehung und der experimentellen Daten von HYDE et al. (16) für g-g-Kerne im Bereich Z > 82 und N > 126 eine Standardabweichung vom Faktor 1,3. Für die übrigen Kerntypen bestimmten sie die in Tabelle 4 angeführten Hindrance-Faktoren. Bei vielen α -Übergängen treten jedoch erhebliche Abweichungen von den Mittelwerten der Tabelle 4 auf. So kann z.B. die Übergangswahrscheinlichkeit eines Kernes mit ungerader Massenzahl zum Grundzustand um den Faktor 10 000 kleiner sein als nach der halbempirischen Gleichung 11 erwartet wird. In vielen solchen Fällen wird die partielle Halbwertszeit t $_{\alpha}$ durch Übergänge zu angeregten Niveaus bestimmt. Zur Vorhersage von t $_{\alpha}$ ist also auch die Kenntnis der Anregungsenergie der Tochterkerne notwendig. Analog zum $\hat{\mathbf{E}}$ -Zerfall wurden mittels bekannter Zerfallsschemen mittlere Anregungsener-

Tabelle 4 Mittlere	Hindrance-Faktoren	nach '	VIOLA	und	SEABORG ((1))
--------------------	--------------------	--------	-------	-----	-----------	-----	---

Kerntyp	<pre><log f=""></log></pre>	< F >
g-u	1,066	11,6
u-g	0,772	5,9
u-u	1,114	13,0

gien im Gebiet Z > 82 und N > 126 berechnet. Abb. 4 zeigt den Zusammenhang dieser Werte mit der Neutronenzahl N der Mutternuklide am Beispiel der g-gund u-u-Kerne.

Für die Beziehung zwischen bekannten partiellen Halbwertszeiten t $_{\alpha}$ und den dazugehörigen Zerfallsenergien wurde die lineare Beziehung Gl. 10 benutzt, wobei von Q_{eff} die mittlere Anregungsenergie $\langle E_A(\alpha) \rangle$ abgezogen wurde.

- 11 -

<u>Abb 4</u> Abhängigkeit der mittleren Anregungsenergien $\langle E_A(\alpha) \rangle$ der Tochterkerne von der Neutronenzahl N der Mutterkerne am Beispiel der u-u- und g-g-Kerne. Die Isotope eines Elements sind durch Geraden untereinander verbunden. Die verschiedenen Zeichen (s.Abb. 11) stehen für die unterschiedlichen Ordnungszahlen. Die Kurven stellen den interpolierten bzw. extrapolierten Verlauf zur Bestimmung unbekannter Anregungsenergien dar.

- 12 -

Da nach Abb. 5 die bekannten Werte einen sehr guten linearen Zusammenhang zeigen, wurden zur Bestimmung der Konstanten C₁ und C₂ Ausgleichsrechnungen durchgeführt. Die Ergebnisse mit Fehlern sind in Tabelle 5 zusammengestellt. Es fällt auf, daß die Konstanten für alle vier Kerntypen praktisch gleich sind.

Kerntyp	C ₁	c ₂
g-g	- 22,5 + 0,2	1,63 ± 0,01
g-u	- 22,6 + 0,3	1,66 ± 0,02
u-g	- 22,9 ± 0,4	1,68 ± 0,02
u-u	- 22,3 + 0,9	1,67 ± 0,06

<u>Tabelle 5</u> Werte der Konstanten C_1 und C_2 in Gl. 10

Wie beim ξ -Zerfall wurden die Standardabweichungen des Einzelwertes und des Mittelwertes der partiellen Halbwertszeit t berechnet und in Tabelle 6 als Faktoren angegeben.

	Fehler in der partiellen Halbwertszeit t $_{lpha}$ für den						
Kerntyp	Einzelwert	Mittelwert					
g-g	1,75	1,14					
g-u	1,61	1,15					
u-g	1,66	1,19					
u-u	2,38	1,52					

<u>Tabelle 6</u> Fehler der Ausgleichsrechnung

Bei den g-g-Kernen ist der prozentuale Fehler um den Faktor 2 besser als bei der Arbeit von VIOLA und SEABORG. Ein Vergleich der anderen Kerntypen ist nicht möglich, da von den Autoren keine Fehlerangaben gemacht werden. In Abb. 6 ist das Verhältnis aus experimenteller und nach Gl. 10 berechneter partieller Halbwertszeit t_a aufgetragen. Im Fall der g-g-Kerne ist das Ansteigen des Verhältnisses bei Annäherung an die magischen Neutronenzahlen N = 126 und 152 deutlich zu erkennen.

2.3. Der Zerfall durch Spontanspaltung

Zur Berechnung der partiellen Halbwertszeit t_f der Spontanspaltung wurden die Ergebnisse der Arbeit von VIOLA und WILKINS (3) herangezogen. Die Autoren geben für die Abhängigkeit der Spontanspaltungshalbwertszeit t_f von der Spaltschwellenenergie E_f folgende Gleichung an:

 $\log t_f = 6,884 \cdot E_f - 21,50$ Gl. 12

Setzt man die Schwellenenergie E_f in MeV ein, so erhält man die partielle Halbwertszeit t_f in a. Die Autoren berechneten auf der Grundlage des Tröpfchenmodells unter Berücksichtigung von Kernstruktureffekten die Spaltschwellen

<u>Abb. 6</u> Verhältnis aus experimenteller und berechneter partieller α-Halbwertszeit gegen die Neutronenzahl N der Mutternuklide. Für einen Kerntyp sind die Isotope eines Elements durch Geraden verbunden. Die unterschiedlichen Ordnungszahlen Z sind durch verschiedene Zeichen dargestellt (s. Abb. 11).

<u>Abb. 7</u> Die nach Gl. 12 berechneten partiellen Halbwertszeiten t_f in Abhängigkeit von der Neutronenzahl N der g-g-Kerne. Die Werte der Isotope eines Elements sind durch Geraden untereinander verbunden.

E_f für Isotope der Elemente mit $88 \leq Z \leq 108$. In Abb. 7 sind die nach Gl. 12 erhaltenen partiellen Halbwertszeiten t_f dargestellt.

Ein Vergleich mit experimentellen Werten ergab nach VIOLA und WILKINS bei g-g-Kernen für die Standardabweichung einen Faktor 3,9, bei Berücksichtigung aller Kerne einen Faktor 7,0. Die Standardabweichungen der Spaltschwellen E_f betragen 90 keV für g-g-Kerne und 220 keV für alle gemessenen Werte mit Ausnahme der Americium-Isotope.

3. Berechnung der totalen Halbwertszeiten

Die totale Halbwertszeit t eines Nuklids ergibt sich bei Berücksichtigung des Elektroneneinfangs, des α -Zerfalls und der Spontanspaltung aus Gl. 13:

$$1/t = 1/t_{g} + 1/t_{g} + 1/t_{f}$$
 Gl. 13

3700 15

Für die Berechnung der partiellen Halbwertszeit t $_{\xi}$ wurde Gl. 5 u.6 benutzt. Die Konstanten C₁ und C₂ wurden entsprechend Tabelle 2 eingesetzt. Die Q $_{\xi}$ -Werte wurden den Tabellen von VIOLA und SEABORG (7) entnommen. Unbekannte Werte wurden durch Extrapolation der Tabellenwerte erhalten, da die berechneten Q $_{\xi}$ -Werte von MYERS und SWIATECKI (18) Abweichungen bis zu 3 MeV zeigten. Die mittleren Anregungsenergien $\langle E_A(\xi) \rangle$ wurden an der ausgezogenen Kurve der Abb. 1 abgelesen.

1-05 /

<u>Abb.</u> 8 Partielle Halbwertszeiten t_E des Elektroneneinfangs in Abhängigkeit von der Neutronenzahl N der Mutternuklide. Die berechneten Werte der Isotope eines Elements sind durch Geraden verbunden, während die experimentellen durch verschiedene Zeichen dargestellt sind. Bei größeren Abweichungen zwischen berechneten und experimentellen Werten wurden letztere durch senkrechte Striche mit den berechneten Kurven verbunden.

Abb. 9 Partielle Halbwertszeiten t des α -Zerfalls und der Neutronenzahl N der Mutternuklide. Die berechneten Halbwertszeiten der Isotope eines Elements sind durch Geraden verbunden, während die experimentellen Werte durch verschiedene Zeichen dargestellt sind. Bei größeren Abweichungen zwischen berechneten und experimentellen Werten wurden letztere durch senkrechte Striche mit den berechneten Kurven verbunden.

Die Elektronenbindungsenergien stammen aus (18). Oberhalb der Ordnungszahl Z = 104 wurden sie extrapoliert. Die nach Gl. 6 erhaltenen partiellen Halbwertszeiten des K-Einfangs wurden mittels Gl. 5 in \pounds -Halbwertszeiten t \pounds umgerechnet. Abb. 8 zeigt den Verlauf dieser t \pounds -Werte für die Isotope der 4 Kerntypen gegen die Neutronenzahl N der Mutternuklide. Die experimentellen Werte sind durch verschiedene Zeichen entsprechend der Ordnungszahl Z dargestellt.

Für die Berechnung der partiellen α -Halbwertszeit t_{α} wurde Gl. 10 mit den Werten der Tabelle 5 herangezogen. Die Q_{α}-Werte wurden den Tabellen von VIOLA und SEABORG (7) entnommen; darin nicht aufgeführte Werte stammen aus der Arbeit von MYERS und SWIATECKI (17). Die mittleren Anregungsenergien E_A(α) der Tochterkerne wurden den ausgezogenen Kurven der Abb. 4 entnommen. Die berechneten partiellen Halbwertszeiten t_{α} sind in Abb. 9 dargestellt.

Die partiellen Halbwertszeiten t $_{f}$ der Spontanspaltung (Abb. 7) wurden nach Abschnitt 2.3. berechnet.

Ferner wurde die prozentuale Häufigkeit des Elektroneneinfangs, des α-Zerfalls und der Spontanspaltung berechnet. In Abb. 10 sind für die Isotope der Elemente der 4 Kerntypen diese Häufigkeiten gegen die Neutronenzahl N der Mutternuklide aufgetragen. Zusätzlich sind die experimentell bestimmten Werte eingezeichnet, die eine gute Übereinstimmung mit den berechneten zeigen.

Erläuterungen zu den Abb. 10a, b, c und d:

In diesen Abbildungen sind die prozentualen Häufigkeiten der einzelnen Zerfallsprozesse in Abhängigkeit von der Neutronenzahl N der Mutternuklide aufgetragen. Die experimentellen Werte sind durch verschiedene Zeichen dargestellt, während die berechneten durch Kurven verbunden sind.

0	bzw.	•					:	Experimentelle	bzw.	berechnete	Werte	des	α -Zerfalls
۵	bzw.	-	-	 	• •	-	•	Experimentelle	bzw.	berechnete	Werte	des	Elektronenein-
								fangs					

x bzw..... Experimentelle bzw. berechnete Werte der Spontanspaltung Δ-.-... Die experimentellen Werte des β-Zerfalls sind durch die strichpunktierte Kurve verbunden und wurden nur der Vollständigkeit halber aufgeführt.

Abb. 10 a Prozentuale Häufigkeiten für g-g-Kerne

- 20 -

Abb. 10 b Prozentuale Häufigkeiten für g-u-Kerne

- 21 -

Abb. 10 c Prozentuale Häufigkeiten für u-g-Kerne

Abb. 10 d Prozentuale Häufigkeiten für u-u-Kerne

- 23 -

Die totalen Halbwertszeiten t wurden nach Gl. 13 berechnet und in Tabelle 8 aufgelistet. Der Verlauf der totalen Halbwertszeiten t der Isotope der verschiedenen Elemente ist in Abb. 11 gegen die Neutronenzahl N der Mutternuklide aufgetragen.

Abb. 12 zeigt das Verhältnis t_{exp}/t für die verschiedenen Kerntypen. Während bei den g-u-, u-g- und u-u-Kernen kein systematischer Trend zu erkennen ist, steigt das Verhältnis bei g-g-Kernen gegen die Neutronenzahl N = 152 an. Dies ist auch zu erwarten, da der Einfluß der magischen Zahl bei der Berechnung nicht berücksichtigt wurde. Wie die Abb. zeigt, weichen bei den g-g-Kernen die Isotope Fm-244 und Cm-240 sowie Cm-241 bei den g-u-Nukliden und Bk-245 und Lr-257 bei den u-g-Kernen beträchtlich vom allgemeinen Verlauf ab. Diese großen Abweichungen sind möglicherweise darauf zurückzuführen, daß bei den genannten Kernen die experimentelle Daten oder die Zuordnung fraglich ist. Die Fehler in der totalen Halbwertszeit t wurden analog zum α - und \pounds -Zerfall berechnet und sind in Tabelle 7 als Faktoren aufgeführt.

	Fehler in der totalen Halbwertszeit t für den								
Kerntyp	Einzelwert	Mittelwert							
g-g	3,3 (3,2)	1,3 (1,3)							
g-u	77 (3,9)	14 (1,5)							
u-g	25 (5,0)	6 (1,8)							
u-u	3,8 (3,8)	1,7 (1,7)							

Tabelle 7 Fehler in der totalen Halbwertszeit t

Die in Klammern angegebenen Fehler erhält man, wenn man die Nuklide Cm-240 und Fm-244 bzw. Cm-241 bzw. Bk-245 und Lr-257 bei der Berechnung nicht berücksichtigt.

Bei g-g-Kernen läßt sich die Genauigkeit noch verbessern, wenn man den in Abb. 12 zu erkennenden Verlauf der Abweichungen heranzieht. Danach lassen sich totale Halbwertszeiten von g-g-Kernen auf einen Faktor 2,1 (Standardabweichung) genau abschätzen.

- 24 -

Abb. 11 Abhängigkeit der totalen Halbwertszeit t von der Neutronenzahl N der Mutternuklide. Die berechneten Werte sind durch Geraden untereinander verbunden, während die experimentellen durch verschiedene Zeichen dargestellt sind. Bei größeren Abweichungen zwischen berechneten und experimentellen Werten wurden letztere durch senkrechte Striche mit den berechneten Kurven verbunden.

- 25 -

<u>Abb. 12</u> Verhältnis aus experimenteller und berechneter totaler Halbwertszeit gegen die Neutronenzahl N der Mutternuklide. Isotope eines Elements sind durch Geraden verbunden. Die verschiedenen Zeichen stehen für die verschiedenen Ordnungszahlen (s.Abb.11). 4. Literaturverzeichnis

- (1) V.E. VIOLA, Jr. and G.T. SEABORG, J. Inorg. Nucl. Chem. 28, 741 (1966)
- (2) T.E. PIERCE and M. BLANN, Nucl. Phys. A106, 14 (1967)
- (3) V.E. VIOLA, Jr. and B.D. WILKINS, Nucl. Phys. 82, 65 (1965)
- (4) E.J. KONOPINSKI, The Theory of Beta Radioactivity, Oxford at the Clarendon Press (1966)
- (5) S.A. MOSZKOWSKI, Phys. Rev. 82, 35 (1951)
- (6) S.J. LIDOFSKY, Nuclear Data Tables IV, 88 (1960)
- (7) V.E. VIOLA, Jr. and G.T. SEABORG, J. Inorg. Nucl. Chem. 28, 711 (1966)
- (8) C.M. LEDERER, J.M. HOLLANDER and I. PERLMAN, Table of Isotopes, Wiley and Sons, New. York (1967)
- (9) Nuclear Data, B 1-5 (1966)
- (10) T. ERICSON, Advan. Phys. 9, 425 (1960)
- (11) A.H. WAPSTRA, G.J. NIJGH and R. VAN LIESHOUT, Nuclear Spectroscopy Tables, North Holland (1959)
- (12) H.A. BETHE, Rev. Mod. Phys. 9, 161 (1937)
- (13) R.G. THOMAS, Prog. Theor. Phys. 12, 253 (1954)
- (14) R. TAAGEPERA and M. NURMIA, Ann. Acad. Scient. Fennicae, A.VI. 78 (1961)
- (15) C. GALLACHER and J.O. RASMUSSEN, J. Inorg. Nucl. Chem. 3, 333 (1957)
- (16) E.K. HYDE, I. PERLMAN and G.T. SEABORG, Nuclear Properties of the Heavy Elements, Vol. 2 (1964)
- (17) W.D. MYERS and W.J. SWIATECKI, UCRL-11980
- (18) S. HAGSTRÖM et. al. in K. SIEGBAHN, Alpha-, Beta- and Gamma Ray Spectroscopy, Vol. 1, 855 (1965)

- 28 -

5. Tabellen

Tabelle 8

Die Tabellen sind nach Kerntypen geordnet:

g-g-Mutternuklide : S. 29 - S. 32 g-u-Mutternuklide : S. 33 - S. 36 u-g-Mutternuklide : S. 37 - S. 39 u-u-Mutternuklide : S. 40 - S. 42

Innerhalb eines Kerntyps sind die Werte nach steigender Ordnungszahl Z geordnet, für eine gegebene Ordnungszahl Z nach wachsenden Neutronenzahlen N. In den Spalten dieser Tabellen sind die im folgenden beschriebenen Größen aufgetragen:

- Z : Ordnungszahl des Mutternuklids
- N : Neutronenzahl des Mutternuklids
- A : Nukleonenzahl des Mutternuklids

QA : Q-Wert für α -Zerfall des Mutternuklids in MeV

- EAAM : Mittlere Anregungsenergie des Tochternuklids beim α -Zerfall in MeV
 - QE : Q-Wert für Elektroneneinfang des Mutternuklids in MeV
- EAEM : Mittlere Anregungsenergie des Tochternuklids beim Elektroneneinfang in MeV

T: Berechnete totale Hlabwertszeit in folgenden Zeiteinheiten:

- US : Mikrosekunden
- MS : Millisekunden
- S : Sekunden
- MIN : Minuten
 - H : Stunden
 - D : Tage
 - Y : Jahre

TEXP/T : Verhältnis aus experimenteller und berechneter totaler Halbwertszeit

PA : Prozentuale Häufigkeit des α-Zerfalls

- PE : Prozentuale Häufigkeit des Elektroneneinfangs
- PF : Prozentuale Häufigkeit der Spontanspaltung

Unbekannte Werte sind durch Sterne * dargestellt.

Z	N	Α	QA	EAAM	QE	EAEM	· T	TEXP/T	PA	PF	b E
~ ~											
90	130	220	8.9000	0.080	0.8500	0.160	1.7E 01 US	*	1.0E 02	9.0E-08	0.0
90	132	222	8.1500	0.060	0.8000	0.140	2.3E 00 MS	*	1.0E 02	1.1E-05	0.0
90	134	224	7.3055	0.043	-0.2000	*	1.4E 00 S	0.76	1.0E 02	0.0	0.0
90	136	226	6.4480	0.030	-1.1700	*	5.3E 01 MIN	0.58	1.0E 02	0.0	3.7E-20
90	138	228	5.5224	0.022	-2.1700	*	3.2E 00 Y	0.59	1.0E 02	0.0	1.3E-15
90	140	230	4.7695	0.018	-2.9000	*	1.3E 05 Y	0.59	1.0E 02	0.0	2.6E-12
90	142	232	4.0815	0.015	-4.2400	*	2.3E 10 Y	0.60	1.0E 02	0.0	8.2E-08
92	130	222	9.8540	0.080	2.4000	1.480	2.5E-01 US	*	1.0E 02	2.8F-09	0.0
92	132	224	8.5800	0.060	1.6900	0.870	5.1E 02 US	*	1.0E 02	4.2E-06	0.0
92	134	226	7.5600	0.043	1.5000	0.660	8.5E 02 MS	*	1.0E 02	7.5E-03	0.0
92	136	228	6.8045	0.030	0.3500	0.020	9.7E 00 MIN	0.95	1.0E 02	3.18-01	2.4E-12
92	138	230	5,9915	0.022	-0.4620	*	3.0E 01 D	0.69	1.0E 02	0.0	1.48-10
92	140	232	5.4145	0.018	-1.3450	*	9.8F 01 Y	0.73	1.0E 02	0.0	1.6E-09
92	142	234	4.8565	0.015	-2.2300	*	3.0E 05 Y	0.82	1.0E 02	0.0	8.55-09
92	144	236	4.5750	0.013	-3.3500	*	2.9E 07 Y	0.82	1.0E 02	0.0	8.4E-07
92	146	238	4.2680	0.011	-3.8500	*	7.2E 09 Y	0.63	1.0E 02	0.0	2.5E-05
94	130	224	10.3080	0.080	5.1500	1.550	7.5E-02 US	*	1.0E 02	2.8E-08	0.0
94	132	226	8.7860	0.060	4.1500	1.550	5.3E 02 US	*	1.0E 02	8.9E-05	0.0
94	134	228	8.2600	0.043	2.5700	1.500	1.8E 01 MS	*	1.0E 02	3.18-04	.0.0
94	136	230	7.4400	0.030	2.2500	1.390	1.0E 01 S	*	1.0E 02	9.8E-02	0.0
94	138	232	6.7000	0.022	1.2300	0.410	1.4E 00 H	0.43	5.8E 01	4.2F 01	1.6E-06
94	140	234	6.3100	0.018	0.4150	0.030	1.1E 00 D	0.35	2.0E 01	8.0E 01	5+9E-08
94	142	236	5.8680	0.015	-0.5150	*	2.3E 00 Y	1.25	1.0E 02	0.0	9.4E-08
94	144	238	5.5920	0.013	-1.2900	*	7.1E 01 Y	1.22	1.0E 02	0.0	3.05-08
94	146	240	5.2550	0.011	-2.0500	*	6.7E 03 Y	0.99	1.0E 02	0.0	9.2F-06
94	148	242	4.9825	0.010	-2.9000	*	3.7E 05 Y.	1.02	1.0E 02	0.0	5.4E-04
94	150	244	4.6280	0.009	-3.5500	*	1.2E 08 Y	0.70	1.0E 02	0.0	8.1F-02
96	130	226	10.5430	0.080	6.9500	1.550	7.4E-02 US	*	1.0E 02	7.7E-08	0.0
96	132	228	9.1890	0.060	5.9500	1.550	1.6E 02 US	*	1.0E 02	9.8E-05	0.0
96	134	230	8.6970	0.042	4.9500	1.550	3.6E 00 MS	*	1.0E 02	1.25-03	0.0
96	136	232	8.3330	0.030	4.0500	1.530	4.4E 01 MS	*	1.0E 02	6.8E-03	0.0

ł

Z	N	Α	QA	EAAM	QE	EAEM	т	TEXP/T	ΡΑ	PE	ÞF
96	138	234	7.4600	0.022	3.1400	1.550	4.1E 01 S	*	9.8E 01	2.0E 00	0.0
96	140	236	6.9600	0.018	2.0300	1.230	4.9F 01 MIN	*	7.7E 01	2.3E 01	5.0E-05
96	142	238	6.6300	0.015	1.0150	0.260	3.7E 00 H	0.67	1.4E 01	8.6F 01	1.5E-07
96	144	240	6.4000	0.013	0.2500	0.0	4.3E 00 D	6.23	3.45 01	6.6E 01	9.9E-08
96	146	242	6.2170	0.011	-0.6650	*	9.3E 01 D	1.75	1.0E 02	0.0	7.7E-07
96	148	244	5.9020	0.010	-1.4290	*	1.0E 01 Y	1.77	1.0E 02	0.0	3.6E-04
96	150	246	5.4740	0.009	-2.2900	*	2.5E 03 Y	2.16	1.0E 02	0.0	3.6E-02
96	152	248	5.1505	0.008	-3.2800	*	2.5E 05 Y	1.91	9.7E 01	0.0	3.3E 00
98	130	228	10.7890	0.080	8.6000	1.550	7.0E-02 US	*	1.05 02	1.4E-07	0.0
98	132	230	9.8580	0.060	7.6000	1.550	1.0E 01 US	*	1.0E 02	1.4E-05	0.0
98	134	232	9.4740	0.042	6.6500	1.550	9.1E 01 US	*	1.0E 02	8.3E-05	0.0
98	136	234	9.1490	0.030	5.7500	1.550	6.6E 02 US	*	1.0E 02	3.7E-04	0.0
98	138	236	8.8410	0.022	4.7000	1.550	4.9E 00 MS	*	1.0E 02	1.3E-03	0.0
98 °	140	238	8.1100	0.018	3.8600	1.560	9.7E 02 MS	*	1.0E 02	1.2E-01	0.0
98	142	240	7.7100	0.015	2.5600	1.490	2.4E 01 S	*	1.0E 02	4.0E-01	1.7E-05
98	144	242	7.4730	0.013	1.8400	1.020	2.9E 00 MIN	1.15	9.9E 01	1.4E.00	1.0E-06
98	146	244	7.2875	0.011	0.7500	0.120	1.5E 01 MIN	1.30	9.7E 01	3.4E 00	6.6E-07
98	148	246	6.8665	0.010	-0.0100	*	1.4E 01 H	2.55	1.0E 02	0.0	9.2E-06
98	150	248	6.3695	0.009	-0.6500	*	1.1E 02 D	3.26	1.0E 02	0.0	2.4E-03
98	152	250	6.1280	0.008	-1.7600	*	4.6E 00 Y	2.86	1.0E 02	0.0	6.2E-02
98	154	252	6.2170	0.007	-2.7000	*	1.5E 00 Y	1.73	9.5E 01	0.0	5.4E 00
98	156	254	5.9330	0.006	-3.5100	*	2.9E 02 D	0.21	1.7E 00	0.0	9.8E 01
100	130	230	11.1220	0.080	9.7000	1.550	4.2E-02 US	*	1.0E 02	1.2E-07	0.0
100	132	232	10.5740	0.060	8.8000	1.550	6.5E-01 US	*	1.0E 02	1.4E-06	0.0
100	134	234	10.2460	0.042	7.9000	1.550	3.5E 00 US	*	1.0E 02	5.65-06	0.0
100	136	236	9.9500	0.030	7.0500	1.550	1.8E 01 US	*	1.0F 02	2.0E-05	0.0
100	138	238	9.6620	0.022	6.1500	1.550	9.6E 01 US	*	1.0E 02	6.8E-05	0.0
100	140	240	9.3770	0.018	5.2500	1.550	5.5E 02 US	*	1.0E 02	2.3E-04	0.0
100	142	242	8.7700	0.015	4.4900	1.550	3.2E 01 MS	*	1.0E 02	7.4E-03	0.0
100	144	244	8.5400	0.013	3.4000	1.550	1.6E 02 MS	0.02	1.0E 02	1.2E-02	2.2E-05
100	146	246	8.3760	0.011	2.4400	1.470	5.5F 02 MS	2.19	1.0E 02	7.0E-03	2.25-06

X.

1

Ŧ 30 -

Z	Ν	A	QA	EAAM	QE	EAEM	т	TEXP/T	PA	ÞE	ÞF
100	148	248	7.9670	0.010	1.6900	0.870	1.3E 01 S	2.85	1.0E 02	1.1E-01	7.7E-06
100	150	250	7.5500	0.009	0.8100	0.140	7.4E 00 MIN	4.07	9.8E 01	2.0E 00	5.0E-05
100	152	2.52	7.1700	0.008	-0.2300	*	4.0E 00 H	5.71	1.0E 02	0.0	7.85-04
100	154	254	7.3120	0.007	-5.3900	*	1.1E 00 H	3.08	1.0E 02	0.0	2.3F-01
100	156	256	6.9600	0.006	-1.9300	*	1.2E 01 H	0.21	4.0E 01	0.0	6.0F 01
100	158	258	6.5400	0.006	-2.7400	*	4.7E 00 H	*	1.9E-01	0.0	1.0E 02
100	160	260	6.2200	0.005	-3.6000	*	2.0E 01 MIN	*	3.7E-04	0.0	1.0E 02
102	130	232	11.6870	0.080	11.4000	1.550	8.5E-03 US	*	1.0E 02	4.0E-08	0.0
102	132	234	11.2910	0.060	10.5500	1.550	5.2E-02 US	*	1.0E 02	2.0E-07	0.0
102	134	236	11.0020	0.042	9.7000	1.550	2.1E-01 US	*	1.0E 02	6.0E-07	0.0
102	136	238	10.7300	0.030	8.8500	1.550	8.0E-01 US	*	1.0E 02	1.8E-06	0.0
102	138	240	10.4610	0.022	7.9500	1.550	3.3E 00 US	*	1.0E 02	5.4E-06	0.0
102	140	242	10.1910	0.018	7.0500	1.550	1.5E 01 US	*	1.0E 02	1.7E-05	0.0
102	142	244	9.9199	0.015	6.1500	1.550	7.2E 01 US	*	1.0E 02	5.18-05	0.0
102	144	246	9.6450	0.013	5.2500	1.550	3.8E 02 US	*	1.0E 02	1.6E-04	0.0
102	146	248	9.3800	0.011	4.3000	1.550	2.0E 00 MS	*	1.0E 02	4.0E-04	6.1E-04
102	148	250	9.0400	0.010	3.5100	1.550	1.9F 01 MS	*	1.0E 02	1.6E-03	4.0E-04
102	150	252	8.5450	0.009	2.6900	. 1.520	6.7E 02 MS	3.43	1.0E 02	1.4E-02	4.4E-04
102	152	254	8.2850	0.008	1.6600	0.830	4.8E 00 S	11.35	1.0E 02	4.0E-02	4.05-04
102	154	256	8.5630	0.007	0.6900	0.100	5.8E 02 MS	5.20	1.0E 02	1.7E-03	8.6E-03
102	156	258	7.9700	0.006	-0.0100	*	4.2E 01 S	*	6.9E 01	0.0	3.1E 01
102	158	260	7.6500	0.006	-0.9500	*	3.9E 01 S	*	4.2E 00	0.0	9.6E 01
102	160	262	7.3300	0.005	-1.7600	*	1.3E 00 MIN	*	4.6E-01	0.0	1.0E.02
104	142	246	10.7190	0.015	7.9500	1.550	2.6E 00 US	*	1.0E 02	4.3E-06	0.0
104	144	248	10.4590	0.013	6.9500	1.550	1.1E 01 US	*	1.0E 02	1.2E-05	0.0
104	146	250	10.1950	0.011	6.1000	1.550	4.9E 01 US	*	1.0E 02	3.5E-05	0.0
104	148	252	9.9270	0.010	5.2000	1.550	2.4E 02 US	*	1.0E 02	9.9E-05	1.6E-01
104	150	254	9.5400	0.009	4.3500	1.550	2.7E 00 MS	*	1.0E 02	5.75-04	2.95-02
104	152	256	9.2100	0.008	3.3900	1.550	2.4E 01 MS	*	1.0E 02	1.75-03	6.9F-03
104	154	258	9.2900	0.007	2.4000	1.450	1.4E 01 MS	*	1.0E 02	1.75-04	8.3F-02
104	156	260	8.9100	0.006	1.5100	0.670	1.7E 02 MS	1.80	8.5E 01	1.4F-03	1.5F 01

- 31 -

Z	N	A	QA	FAAM	QE	EAEM	T	TEXP/T	PΑ	PE	PF
104	158	262	8.5900	0.006	0.8100	0.140	1.6E 02 MS	*	8.0E 00	7.25-04	9.2E 01
104	160	264	8.2700	0.005	-0.1300	*	6.1E 02 MS	*	2.5E 00	0.0	9.7E 01
104	162	266	7.9500	0.004	-0.9400	*	1.8E 01 S	*	5.2E 00	0.0	9.5E 01
104	164	268	7.6300	0.004	-1.7400	*	3.1E 00 MIN	*	3.3E 00	0.0	9.75 01
106	150	256	10.5800	0.009	5.9100	1.550	9.4E 00 US	*	5.0E 01	6.0E-06	5.0E 01
106	152	258	10.2300	0.008	4.8900	1.550	1.4E 02 US	*	9.6E 01	4.4E-05	3.9E 00
106	154	260	10.3200	0.007	3.9900	1.550	7.0E 01 US	*	8.5E 01	1.0E-05	1.5E 01
106	156	262	9.9500	0.006	3.0800	1.540	1.9E 02 US	*	2.5E 01	8.4E-06	7.5E 01
106	158	264	9.6300	0.006	2.1900	1.360	1.6E 02 US	*	2.7E 00	1.3E-06	9.7E 01
106	160	266	9.3100	0.005	1.4900	0.660	3.8E 02 US	*	7.8E-01	3.1E-06	9.9E 01
106	162	268	8.9900	0.004	0.5500	0.060	1.9E 01 MS	*	4.1E 00	3.0E-05	9.6E 01
106	164	270	8.6700	0.004	-0.2000	*	2.7E 00 S	*	5.7E 01	0.0	4.3E 01
106	166	272	8.2300	0.003	-0.9500	*	2.5E 00 MIN	*	9.7E 01	0.0	3.3E 00
108	154	262	11.3500	0.007	5.4900	1.550	7.2E-05 US	*	7.6E-03	3.6E-11	1.0E 02
108	156	264	10.9900	0.006	4.6700	1.550	1.2E-04 US	*	1.9E-03	3.3E-11	1.0E 02
108	158	266	10.6700	0.006	3.7600	1.550	8.5E-04 US	*	2.2E-03	9.85-11	1.0E 02
108	160	268	10.3500	0.005	2.8700	1.540	7.2E-03 US	*	3.0E-03	2.2E-10	1.05 02
108	162	270	10.0400	0.004	2.1800	1.360	1.9E-01 US	*	1.25-02	1.55-09	1.0F 02
108	164	272	9.7100	0.004	1.2900	0.460	1.6E 02 US	*	1.2E 00	1.3E-06	9.9E 01
108	166	274	9.2700	0.003	0.5900	0.070	2.4E 02 MS	*	9.4E 01	4.5E-04	6.1E 00

.

32

Z	N	A	QA	EAAM	QE	EAEM	T	TEXPIT	РΛ	PE	PF
90	129	219	9.5000	0.0	3.1200	1.550	4.5E-01 US	*	1.0E 02	4.3E-07	0.0
90	131	221	8.6300	0.023	2,4800	1.480	1.1E 02 US	*	1.0E 02	1.3E-05	0.0
90	133	223	7.7000	0.080	1.6500	0.820	1.4E 02 MS	6.46	1.0E 02	6.95-03	0.0
90	135	225	6.9215	0.236	0.7210	0.110	7.8E 00 MIN	1.02	9.58 01	5.2E 00	0.0
90	137	227	6.1468	0.166	-0.2420	*	9.3E 00 D	2.02	1.0E 02	0.0	4.2E-20
90	139	229	5.1550	0.026	-1.0800	*	1.3E 03 Y	5.44	1.0E.02	0.0	5.1F-17
92	131	223	8.9900	0.023	3.7700	1.550	4.4E 01 US	*	1.0E 02	2.0E-04	0.0
92	133	225	7.9800	0.080	3.1300	1.550	7.6E 01 MS	*	1.0E 02	7.6E-02	0.0
92	135	227	7.0800	0.236	2.1500	1.340	8.4E 00 MIN	0.16	7.8E 01	2.2E 01	0.0
92	137	229	6.4735	0.166	1.3390	0.490	3.0E 01 MIN	1.92	1.2E 00	9.9E 01	1.5E-15
92	139	231	5.5000	0.026	0.3600	0.020	2.4E 00 D	1.74	.6.6E-03	1.0F 02	3.58-16
92	141	233	4.9070	0.088	-0.5690	*	1.4E 06 Y	0.11	1.0E 02	0.0	9.8E-12
92	143	235	4.6790	0.193	-1.4000	*	4.0E 08 Y	1.76	1.0E 02	0.0	1.1E-09
94	131	225	9.5600	0.023	5.7000	1.550	5.2E 00 US	*	1.0E 02	3.8E-04	0.0
94	133	227	8.6600	0.080	4.5600	1.550	2.4E 00 MS	*	1.0E 02	4.3E-02	0.0
94	135	229	7.7400	0.236	3.8500	1.550	6.2E 00 S	*	6.7E 01	3.3E 01	0.0
94	137	231	7.1000	0.166	2.9300	1.540	2.7E 00 MIN	*	1.0E 01	9.0E 01	0.0
94	139	233	6.4180	0.026	2.1400	1.330	3.9E 01 MIN	0.52	6.0E-01	9.9E 01	1.2E-11
94	141	235	5.9585	0.088	1.1150	0.320	4.3E 01 MIN	0.61	1.75-03	1.0E 02	2.5E-15
94	143	237	5.7455	0.193	0.2230	0.010	3.9E 01 D	1.16	3.8E-02	1.0E 02	5.65-15
94	145	239	5.2430	0.030	-0.7240	*	3.2E 04 Y	0.75	1.0E 02	0.0	1.3E-10
96	131	227	9.7280	0.023	7.1500	1.550	7.2E 00 US	*	1.0E 02	1.95-03	0.0
96	133	229	8.9050	0.080	6.2500	1.550	1.9E 00 MS	*	1.0E 02	2.4E-01	0.0
96	135	231	8.5020	0.236	5.4000	1.550	9.9E 01 MS	*	9.5E 01	5.2F 00	0.0
96	137	233	8.1580	0.168	4.4500	1.550	7.7E 02 MS	*	8.8F 01	1.2E 01	0.0
9,6	139	235	7.0600	0.026	3.5300	1.550	3.6E 01 S	*	1.0E 00	9.9E 01	0.0
96	141	237	6.6500	0.088	2.7500	1.520	5.4E 00 MIN	*	8.0E-02	1.0E 02	9.45-12
96	143	239	6.5150	0.193	1.7300	0.900	3.5E 01 MIN	4.92	3.8E-02	1.0E 02	1.6E-13
96	¥45	241	6.1855	0.030	0.7705	0.130	2.1E 00 H	392.83	2.1E-02	1.0E 02	2.25-15
96	147	243	6.1680	0.160	0.0040	0.0	6.8E 00 Y	4.74	1.08 02	0.0	2.1E-09
96	149	245	5.6210	0.288	-0.9030	*	5.0E 04 Y	0.19	1.0E 02	0.0	1.8F-06

.

Z	Ν	A	QA	EAAM	QE	EAEM	T	TEXP/T	РА	ÞË	ÞF
96	151	247	5.3050	0.324	-1.7000	*	1.0E 07 Y	1.57	1.0E 02	0.0	3.8F-03
98	131	229	10.1330	0.023	8.3000	1.550	2.6E 00 US	*	1.0E 02	1.6E-03	0.0
98	133	231	9.6460	0.080	7.4500	1.550	6.4E 01 US	*	1.0E 02	2.2E-02	0.0
98	135	233	9.3020	0.236	6.6500	1.550	1.6E 00 MS	*	1.0F 02	2.8F-01	0.0
98	137	235	8.9880	0.168	5.7500	1.550	8.4E 00 MS	*	9.9E 01	6.4E-01	0.0
98	139	237	8.6830	0.026	4.9500	1.550	2.6E 01 MS	*	9.9E 01	8.0E-01	0.0
98	141	239	7.8100	0.088	4.0500	1.550	9.6E 00 S	*	2.5E 01	7.5E 01	0.0
98	143	241	7.4330	0.193	3.3000	1.550	1.0E 00 MIN	*	2.2E 00	9.8E 01	2.1E-10
98	145	243	7.2900	0.030	2.1800	1.360	1.9E 01 MIN	0.53	5.0E 01	5.0E 01.	1.18-11
98	147	245	7.2290	0.160	1.5205	0.680	3.0E 01 MIN	1.47	1.2E 01	8.8E 01	1.35-11
98	149	247	6.6050	0.288	0.7600	0.125	2.3E 00 H	1.07	2.1E-02	1.0E 02	5.2E-11
98	151	249	6.3025	0.324	-0.1250	*	7.0E 01 Y	5.12	1.0E 02	0.0	3.2E-06
98	153	251	5,9425	0.162	-1.4400	*	8.8E 02 Y	1.02	1.0E 02	0.0	1.55-04
100	131	231	10.7730	0.023	9.8000	1.550	2.7E-01 US	*	1.0E 02	3.9F-04	0.0
100	133	233	10.3970	0.080	9.0000	1.550	2.8E 00 US	*	1.0E 02	2.7E-03	0.0
100	135	235	10.0900	0.236	8.1500	1.550	4.2E 01 US	*	1.0E 02	2.3E-02	0.0
100	137	237	9.8000	0.168	7.2500	1.550	1.6E 02 US	*	1.0E 02	4.8E-02	0.0
100	139	239	9.5130	0.026	6.4500	1.550	4.0E 02 US	*	1.0E 02	6.2E-02	0.0
100	141	241	9.2280	0.090	5.6500	1.550	4.0E 00 MS	*	1.0E 02	2.8E-01	0.0
100	143	243	8.6600	0.193	4.6900	1.550	4.3E 02 MS	*	9.1E 01	9.3E 00	0.0
100	145	245	8.2840	0.030	3.8200	1.550	2.2E 00 \$	1.93	8.9E 01	1.1E 01	1.9F-10
100	147	247	8.0600	0.160	2.9600	1.540	3.4E 01 S	1.02	8.0E 01	2.0E 01	1.6E-09
100	149	249	7.6530	0.288	2.3800	1.450	1.7E 01 MIN	0.16	2.1E 01	7.9E 01	4.4E-09
100	151	251	6.9400	0.324	1.5300	0.690	3.5E 01 MIN	12.13	2.3E-02	1.0E 02	4.9E-09
100	153	253	7.0600	0.162	0.1870	0.005	5.1E 00 D	0.59	9.5E 01	4.7E 00	1.95-07
100	155	255	7.2425	0.083	-0.5300	*	9.4E 00 H	2.13	1.0E 02	0.0	5.45-05
100	157	257	6.8570	0.212	-1.2900	*	7.5E 01 D	1.07	9.8E 01	0.0	2.0E 00
102	131	233	11.4520	0.023	11.6000	1.550	2.7E-02 US	*	1.0E 02	9.5E-05	0.0
102	133	235	11.1360	0.080	10.8000	1.550	1.8E-01 US	*	1.0E 02	4.4E-04	0.0
102	135	237	10.8590	0.236	10.0000	1.550	1.8E 00 US	*	1.0E 02	3.0E-03	0.0
102	137	239	10.5890	0.168	9.0500	1,550	5.6E 00 US	*	1.0F 02	5.4E-03	0.0

- 34 -

Z	N	A	QA	EAAM	QF	EAEM	т	TEXP/T	ΡΑ	ÞF	ÞF
102	139	241	10.3200	0.026	8.3000	1.550	1.1E 01 US	*	1.0E 02	7.1E-03	0.0
102	141	243	10.0500	0.090	7.4000	1.550	8.2E 01 US	*	1.0E 02	2.78-02	0.0
102	143	245	9.7770	0.192	6.5500	1.550	8.4E 02 US	*	1.0E.02	1.4E-01	0.0
102	145	247	9.3700	0.030	5.4700	1.550	4.2E 00 MS	*	1.0E 02	2.4E-01	0.0
102	147	249	9.3000	0.160	4.9000	1.550	1.6E 01 MS	*	1.0E 02	4.6E-01	1.9E-08
102	149	251	8.8200	0.288	3.9700	1.550	1.2E 00 S	0.66	9.2F 01	8.1E 00	9.6E-08
10 2	151	253	8.1380	0.324	3.4500	1.550	4.0E 01 S	2.48	9.0E 00	9.1E 01	8.6E-07
102	153	255	8.2850	0.162	2.4000	1.450	3.2E 01 S	5.75	9.7E 01	2.8E 00	4.2F-07
102	155	257	8.4010	0.083	1.3100	0.480	6.9E 00 S	3.93	1.0E 02	3.1E-01	1.1F-06
102	157	259	7.8100	0.212	0.4500	0.040	4.9E 01 MIN	*	9.7E 01	3.1E 00	2.8E-02
102	159	261	7.4900	0.192	-0.3100	*	1.3E 01 H	*	.9.1E 01	0.0	8.5E 00
104	141	245	10.8410	0.090	9.3000	1.550	3.1E 00 US	*	1.0E 02	3.5E-03	0.0
104	143	247	10,5840	0.192	8.4500	1.550	2.3E 01 US	*	1.0E 02	1.6E-02	0.0
104	145	249	10.3220	0.030	7.5500	1.550	4.2E 01 US	*	1.0E 02	1.6E-02	0.0
104	147	251	10.0560	0.160	6.6200	1,550	4.5E 02 US	*	1.0E 02	8.2E-02	0.0
104	149	253	9.7300	0.288	5.7500	1.550	8.4E 00 MS	*	9.9E 01	6.6E-01	8.3E-06
104	151	255	9.3600	0.324	4.7800	1.550	1.3E 02 MS	*	9.7E 01	3.3E.00	4.5E-06
104	153	257	9.1700	0.162	3.9500	1.550	1.7E 02 MS	*	9.9E 01	1.1E 00	6.0E-06
104	155	259	9.2100	0.083	3.3600	1.550	7.3E 01 MS	*	1.0E 02	1.3E-01	1.5E-04
104	157	261	8.7500	0.212	2.1300	1.320	5.6E 00 S	*	1.0E 02	2.25-01	1.8E-03
104	159	263	8.4300	0.192	1.2700	0.450	1.0E 00 MIN	*	9.7E 01	2.5E 00.	1.1E-01
104	161	265	8.1100	0.059	0.5100	0.050	4.8E 00 MIN	*	9.8E 01	5.5E-01	9.6E-01
104	163	267	7.7900	0.160	-0.4000	*	2.8E 00 H	*	8.3E 01	0.0	1.7F 01
104	165	269	7.4100	0.225	-1.2400	*	9.7E 00 D	*	9.9E 01	0.0	1.4E 00
106	151	257	10.4000	0.324	6.4200	1.550	5.6E 02 US	*	1.0E 02	8.5E-02	2.6E-03
106	153	259	10.2100	0.162	5.1900	1.550	6.6E 02 US	*	1.0E 02	2.8E-02	4.4E-04
106	155	261	10.2400	0.083	4.7600	1.550	3.4E 02 US	*	1.0E 02	8.2E-03	1.45-02
106	157	263	9.7900	0.212	4.0400	1.550	1.4E 01 MS	*	9.9E 01	1.0E-01	5.46-01
106	159	265	9.4700	0.192	2.8100	1.530	1.1E 02 MS	*	1.0E 02	3.7E-02	6.8F-02
106	161	267	9.1500	0.059	1.9500	1.150	4.0E 02 MS	*	1.9E 02	1.4E-02	1.0F-01
106	163	269	8.8300	0.160	1.1900	0.380	9.1E 00 S	*	9.9E 01	3.46-01	3.2F-01

Z	N	A	Q A	EAAM	QE	EAEM	T	TEXP/T	ΡΑ	PF	PF
106	165	271	8.4500	0.225	0.3400	0.020	5.4E 00 MIN	*	1.0E 02	7.4E-02	1.6E-01
106	167	273	7.9500	0.065	-0.4500	*	1.7E 00 H	*	1.0E 02	0.0	1.95-05
108	155	26 3	11.2700	0.083	5.9900	1.550	1.4E 00 US	*	4.4E 01	1.4E-04	5.6E 01
108	157	265	10.8300	0.212	5.4400	1.550	1.9E 00 US	*	2.4E 00	1.15-04	9.8E 01
108	159	267	10.5100	0.192	4.7200	1.550	2.3E 01 US	*	5.0E 00	5.3E-04	9.5E 01
108	161	269	10.1900	0.059	3.4900	1.550	1.4E 00 MS	*	9.4E 01	3.4E-03	5.9E 00
108	163	271	9.8700	0.160	2.6300	1.510	2.2F 01 MS	*	9.8E 01	4.0E-03	2.2E 00
108	165	273	9.4900	0.225	1.9300	/ 1.130	4.7E 02 MS	卒	1.0E 02	1.6E-02	1.9E-01
108	167	275	9.0000	0.065	1.1400	0.340	5.3E 00 S	*	1.0E 02	1.8E-01	2.4E-04
108	169	277	8.4500	0.160	0.3500	0.020	1.5E 01 MIN	*	1.0E 02	2.35-01	0.0

7

- 36 -

Z',	N	۸	QA	EAAM	QE	EAEM	т	TEXPIT	PA	ÞE	PF
89	130	219	8.6600	0.034	2.0600	1.200	3.7E 01 US	*	1.0E 02	2.6E-06	.0•0
89	132	221	7.7500	0.039	1.6600	0.850	2.6E 01 MS	*	1.0E 02	1.4F-03	0.0
89	134	223	6.7850	0.045	0.5990	0,075	1.9E 00 MIN	1.17	9.9E 01	9.9E-01	0.1
89	136	225	5.9310	0.051	0.3500	0.020	2.4E 01 H	10.11	8.5E 00	9.1E 01	1.2E-26
 91	130	221	9.2300	0.033	3.2200	1.550	4.0E 00 US	*	1.0E 02	3.7E-06	0.0
91	132	223	8.3400	0.039	2.7800	1.530	1.5E 00 MS	*	1.0E 02	4.6E-04	0.0
91	134	225	7.3810	0.045	2.1500	1.340	2.9E 00 S	0.68	1.0E 02	1.6E-01	0.0
91	136	227	6.5805	0.051	1.0150	0.240	2.7E 01 MIN	1.43	2.8E 01	7.2E 01	6.5E-19
91	138	229	5.8370	0.061	0.2825	0.010	2.9E 00 D	0.48	9.6E-01	9.9E 01	1.4E-17
91	140	231	5.1455	0.072	-0.3860	*	1.1E 04 Y	2.90	1.0E 02	0.0	1.3E-12
93	134	227	7.8700	0.045	3.6500	1.550	2.6E 02 MS	*	9.9E 01	5.8F-01	0.0
93	136	229	7.0120	0.051	2.7800	1.530	3.35 00 MIN	1.21	4.0E 01	6.0E 01	3.7F-10
93	138	231	6.4000	0.061	1.8800	1.070	3.1E 01 MIN	1.59	6.8E-01	9.95 01	1.3F-12
93	140	233	5.6330	0.072	1.0700	0.280	3.5E 01 MIN	1.00	6.4E-05	1.0E 02	7.8E-17
93	142	235	5.1870	0.087	0.1240	0.0	1.6E 02 D	2.52	6.2E-04	1.0E 02	7.4E-15
93	144	237	4.9560	0.106	-0.5140	*	3.6E 06 Y	0.59	1.0E 02	0.0	1.9E-09
95	132	227	8.9100	0.039	6.1500	1.550	5.6E 02 US	*	1.0E 02	2.3E-02	0.0
95	134	229	8.3080	0.045	5.2500	1.550	4.3E 01 MS	*	9.9E 01	7.8E-01	0.0
95	136	231	7.9160	0.051	4.3500	1.550	9.0E 02 MS	*	9.4E 01	5.9E 00	0.0
95	138	233	7.0700	0.061	3.5100	1.550	5.7E 01 S	*	3.1E 00	9.7E 01	0.0
95	140	235	6.4600	0.072	2.4600	1.470	1.4E 01 MIN	*	7.8E-02	1.0E 02	6. 2E-11
95	142	237	6.1215	0.087	1.4400	0.600	2.8E 01 MIN	2.82	2.6E-03	1.0E 02	2+18-15
95	144	239	5.9290	0.106	0.8100	0.145	1.2E 00 H	9.87	5.1E-04	1.0E 02	1.65-15
95	146	241	5.6400	0.154	-0.0210	*	2.4E 03 Y	0.18	1.0E 02	0.0	5.8E-09
95	148	243	5.4395	0.218	-0.5640	*	1.1E 05 Y	0.07	1.0E 02	0.0	2.2E-05
97	134	231	9.0790	0.045	6.9500	1.550	7.9E 02 US	*	1.0E 02	5.9E-02	0.0
97	136	233	8.7360	0.051	6.0500	1.550	8.8E 00 MS	*	1.0E 02	3.4E-01	0.0
97	138	235	8.4160	0.061	5.2000	1.550	9.8E 01 MS	*	9.8E 01	1.7F 00	0.0
97	140	237	7.6000	0.072	4.4600	1.550	1.1E 01 S	*	1.3E 01	8.7E 01	0.9
97	142	239	7.2900	0.087	3.3000	1.550	1.4E 00 MIN	*	5.2E 00	9.5E 01	2.4E-09
97	144	241	7.0500	0.106	2.3900	1.450	1.7E 01 MIN	*	5.0E 00	9.5E 01	3.8F-12

.

1 37 -

z	N	A	QA	EAAM	QE	EAEM	т	TEXP/T	ΡA	PE	ÞF
97	146	243	6.8570	0.154	1.4975	0.650	2.7E 01 MIN	10.04	6.8E-01	9.9E 01	1.1E-11
9 7	148	245	6.4710	0.218	0.8295	0.150	1.1E 00 H	104.59	1.2E-02	1.0E 02	1.0E-11
97	150	247	5.8670	0.227	-0.0200	*	2.4E 03 Y	0.57	1.0E 02	0.0	2.7E-04
9 9	136	235	9.5460	0.051	7.7000	1.550	1.6E 02 US	*	1.0E 02	1.9E-02	.0.0
9 9	138	237	9.2480	0.061	6.7500	1.550	1.2E 00 MS	*	1.0E 02	7.7E-02	0.0
99	140	239	8.9540	0.072	5.9000	1.550	9.5E 00 MS	*	1.0E 02.	3.2E-01	0.0
99	142	241	8.2500	0.087	5.5100	1.550	1.4E 00 S	*	6.7E 01	3.3E 01	0.0
99	144	243	8.0200	0.106	4.1100	1.550	9.1E 00 S	*	5.7E 01	4.3E 01	6.7E-08
99	146	245	7.7900	0.154	2.9500	1.540	1.6E 00 MIN	0.82	5.5E 01	4.5E 01	3.8E-10
99	148	247	7.4500	0.218	2.3400	1.430	1.7E 01 MIN	0.29	1.5E 01	8.5E 01	2.3E-08
9 9	150	249	6.8785	0.227	1.4030	0.560	2.8E 01 MIN	4.27	6.4E-02	1.0E 02	3.7E-10
99	152	251	6.5905	0.094	0.6300	0.080	3.0E 00 H	12.15	7.4E-02	1.0E 02	6.2E-09
99	154	253	6.7470	0.041	-0.2700	*	1.7E_01 D	1.21	1.0E 02	0.0	1.5E-03
101	138	239	10.0590	0.061	7.7500	1.550	2.7E 01 US	*	1.0E 02	3.4E-03	0.0
101	140	241	9.7810	0.072	6.9000	1.550	1.6E 02 US	*	1.0E 02	1.2E-02	0.0
10 I	142	243	9.5020	0.087	6.1000	1.550	1.1E 00 MS	*	1.0E 02	4.2E-02	0.0
101	144	245	8.8600	0.106	5.7400	1.550	1.0E 02 MS	*	9.7E 01	3.0E 00	0.0
101	146	247	8.5900	0.154	4.5400	1.550	1.0E 00 S	*	9.1E 01	8.8E 00	2.9E-07
101	148	249	8.2200	0.218	3.5000	1.550	2.3E 01 \$	*	6.1E 01	3.9E 01	3.9E-09
101	150	251	7.7800	0.227	2.8400	1.530	4.1E 00 MIN	*	1.3E 01	8.7E 01	7.2E-08
101	152	253	7.4500	0.094	1.8800	1.070	2.9E 01 MIN	*	1.4E 01	8.6E 01	3.7E-09
101	154	255	7.4600	0.041	0.8500	0.160	4.2E 01 MIN	0.64	3.7E 01	6.3E 01	2.9E-07
101	156	257	7.1920	0.031	0.1800	0.010	2.2E 01 H	0.22	9.8E 01	2.1E 00	1.4F-02
101	158	259	6.8300	0.036	-0.5700	*	2.0E 01 D	*	4.9E 01	0.0	5.1E 01
103	148	251	9.3200	0.218	5.0700	1.550	3.7E 01 MS	*	9.9E 01	5.7E-01	1.5E-06
103	150	2 53	8.8800	0.227	3.8600	1.550	9.6E 02 MS	*	9.7E 01	3.1E 00	5.7E-09
103	152	255	8.5500	0.094	3.1400	1.540	4.4E 00 S	*	9.7E 01	3.4E 00	2.9E-08
103	154	257	8.7500	0.041	2.2800	1.400	6.5E 02 MS	54.03	1.0E 02	4.5E-02	1.3F-08
103	156	259	8.2500	0.031	1.2900	0.460	3.0E 01 S	0.26	9.8E 01	1.6E 00	1.6E-06
103	158	261	7.9300	0.036	0.6200	0.080	7.8E 00 MIN	*	9.6E 01	3.8E 00	3.8E-03
103	160	263	7.6100	0.041	-0.1300	*	2.5E 00 H	*	9.9E 01	0.0	1.0E 00

.

Z	N	A	QA	EAAM	QE	EAEM	T	TEXP/T	РА	PF	PE
102	1/2	275	7 2000	0.040	0 7000		0 05 00 D				
105	102	200	1+2900	0.049	-0.7000	ጙ	2.0E 00 D	*	8.05 01	0.0	2.05 01
105	150	255	10.0600	0.227	5.7700	1.550	1.1E 00 MS	*	1.0E 02	3.4E-02	6.75-05
10,5	152	257	9.7300	0.094	4.4200	1.550	3.9E 00 MS	*	1.0E 02	2.95-02	2.35-08
105	154	259	9.8000	0.041	3.7300	1.550	1.7E 00 MS	*	1.0E 02	4.5E-03	2.35-06
105	156	261	9.4300	0.031	2.9600	1.540	1.9E 01 MS	*	1.0E 02	9.35-03	5.9E-06
105	158	263	9.1100	0.036	1.9700	1.170	1.9E 02 MS	*	1.0E 02	8.7E-03	1.6E-05
105	160	265	8.7900	0.041	1.3000	0.470	2.1E 00 S	*	1.0E 02	1.1E-01	2.68-03
105	162	267	8.4700	0.049	0.5500	0.060	2.8E 01 S	*	1.0E 02	1.4E-01	3.7E-02
105	164	269	8.1500	0.057	0.0400	0.0	7.2E 00 MIN	*	1.0E 02	0.0	4.55-02
105	166	271	7.7100	0.069	-1.0200	*	6.9E 00 H	*	1.0E 02	0.0	1.1F-01
107	152	259	10.7700	0.094	6.3300	1.550	2.4E 01 US	*	1.0E 02	1.2E-03	4.9F-02
107	154	261	10.8300	0.041	5.0100	1.550	1.2E 01 US	*	1.0E 02	1.8E-04	2.95-04
107	156	263	10.4700	0.031	4.4100	1.550	9.5E 01 US	*	1.0E 02	6.9F-04	4.6E-02
107	158	265	10.1500	0.036	3.6400	1.550	7.0E 02 US	*	1.0E 02	1.5E-03	8.8E-03
107	160	267	9.8300	0.041	2.6500	1.510	5.6E 00 MS	*	1.0E 02	1.1E-03	1.5E-03
107	162	269	9.5100	0.049	1.9800	1.180	5.2E 01 MS	*	1.0E 02	2.3E-03	1.3E-02
107	164	271	9.1900	0.057	1.2900	0.460	5.3E 02 MS	*	1.0E 02	2.8E-02	9.1E-03
107	166	273	8.7500	0.069	0.8400	0.160	1.6E 01 S	*	1.0E 02	3.6E-01	3.1E-04
107	168	275	8.2000	0.085	-0.2200	*	3.0E 01 MIN	*	1.0E 02	0.0	5.2E-06
107	170	277	7.6500	0.117	-0.0400	*	4.4E 00 D	*	1.0E 02	0.0	0.0

•

Z	N	Α	QA	EAAM	QE	EAEM	т	TEXP/T	РД	PE	ρF
89	131	220	8.3000	0.029	3.5400	1.550	1.3E 00 MS	*	1.0E 02	2.75-04	0.0
89	133	222	7.0900	0.042	2.2200	1.400	2.0E 01 S	0.21	1.0E 02	5.5E-02	0.0
91	129	220	9.6900	0.018	5.5800	1.550	8.0E-01 US	*	1.0E 02	4.55-06	0.0
91	131	222	8.8900	0.029	5.0200	1.550	1.1E 02 US	*	1.0E 02	3.0E-04	0.0
91	133	224	7.8100	0.042	4.0500	1.550	2.5E 02 MS	2.37	1.0E 02	1.6E-01	0.0
91	135	226	6.9630	0.060	2.7425	1.520	6.5E 00 MIN	0.28	9.2E 01	7.8E 00	0.0
91	137	228	6.2405	0.081	2.0995	1.300	1.1E 01 H	2.37	4.8E 00	9.5E 01	3.5E-22
.93	131	224	9.4730	0.029	6.6000	1.550	1.1E 01 US	*	1.0E 02	1.8E-04	0.0
93	133	226	8.2700	0.042	5.7300	1.550	3.7E 01 MS	*	1.0E 02	2.5E-01	0.0
93	135	228	7.3800	0.060	4.7000	1.550	2.7E 01 S	*	5.1E 01	4.9E 01	0.0
93	137	230	6.7770	0.081	3.4900	1.550	8.8E 00 MIN	0.52	2.8E 00	9.7E 01	1.76-17
93	139	232	5.7400	0.095	2.5100	1.480	3.3E 00 H	0.07	4.1E-04	1.0E 02	1.56-19
93	141	234	5.4200	0.102	1.8100	0.980	9.7E 00 H	10.85	1.5E-05	1.0E 02	1.9E-21
95	131	226	9.6330	0.029	6.9880	1.550	1.7E 01 US	*	1.0E 02	3.85-04	0.0
95	133	228	8.5470	0.042	6.2690	1.550	2.2E 01 MS	*	1.0E 02	2.6E-01	0.0
95	135	230	8.0960	0.060	5.5510	1.550	7.1E 02 MS	*	9.6E 01	3.9E 00	0.0
95	137	232	7.4500	0.081	4.6500	1.550	4.5E 01 S	*	2.4E 01	7.6E 01	0.0
95	139	234	6.5700	0.095	3.8300	1.550	4.2E 00 MIN	*	2.2E-02	1.0E 02	5.8E-16
95	141	236	6.1600	0.102	2.8800	1.530	5.2E 01 MIN	*	2.46-03	1.0E 02	4.98-19
95	143	238	5.9500	0.103	2.2600	1.400	8.3E 00 H	0.23	1.7E-03	1.0E 02	2.6E-19
95	145	240	5.5600	0.099	1.3000	0.470	9.9E 00 H	5.14	1.3E-05	1.0E 02	1.8E-20
9 7	131	228	9.8640	0.029	8.2850	1.550	1.6E 01 US	*	1.0E 02	9.9E-04	0.0
97	133	230	9.2660	0.042	7.5570	1.550	7.0E 02 US	*	1.0E 02	2.5E-02	0.0
97	135	232	8.8970	0.060	6.8330	1.550	9.3E 00 MS	*	1.0E 02	1.9E-01	0.0
97	137	234	8.5680	0.081	6.1200	1.550	1.1E 02 MS	*	9.9E 01	1.1E 00	0.0
97	139	236	7.8000	0.095	5.3500	1.550	1.6E 01 S	*	3.0E 01	7.0E 01	0.0
97	141	238	7.3900	0.102	4.6700	1.550	5.6E 01 S	*	2.6E 00	9.7E 01	1.3E-14
97	143	240	7.1800	0.103	3.7400	1.550	5.0E 00 MIN	*	1.9E 00	9.8E 01	5.9E-17
97	145	242	6.6800	0.099	2.8000	1.530	1.2E 00 H	*	1.8E-01	1.0E 02	7.5E-18
97	147	244	6.7830	0.092	2.1900	1.360	9.7E 00 H	0.47	4.6E 00	9.5E 01	3.4F-15
99	131	230	10.4370	0.029	9.5620	1.550	2.2E 00 US	*	1.0E 02	3.1E-04	0.0

Z	N	A	QA	EAAM	QE	EAEM	т	TEXP/T	РД	PF	ÞF
99	133	232	10.0150	0.042	8.8270	1.550	2.7E 01 US	*	1.0E 02	2.3E-03	0.0
99	135	234	9.6920	0.060	8.0990	1.550	2.1E 02 US	*	1.0E 02	1.1E-02	0.0
99	137	236	9.3900	0.081	7.3830	1.550	1.6E 00 MS	*	1.0E 02	5.2E-02	0.0
99	139	238	9.09 50	0.095	6.6770	1.550	1.3E 01 MS	*	1.0E 02	2.35-01	0.0
99	141	240	8.3600	0.102	6.1000	1.550	2.3E 00 S	*	7.7E 01	2.3E 01	0.0
9 9	143	242	8.1400	0.103	5.3200	1.550	9.9E 00 S	*	5.8E 01	4.2E 01	2.3E-13
99	145	244	7.7000	0.099	4.2400	1.550	1.6E 00 MIN	*	1.4E 01	8.6F 01	8.5E-16
99	147	246	7.4510	0.092	3.6500	1.550	5.9E 00 MIN	1.25	5.8E 00	9.4E 01	4.8E-15
99	149	248	6.9910	0.085	2.8100	1.530	1.1E 00 H	0.37	8.3E-01	9.9E 01	1.45-14
99	151	250	6.6600	0.078	2.0700	1.270	1.3E 01 H	0.64	3.0F-01	1.05 02	2.55-13
101	135	236	10.4710	0.060	9.3480	1.550	7.7E 00 US	*	1.0E 02	9.4E-04	0.9
101	137	238	10.1920	0.081	8.6280	1.550	4.4E 01 US	*	1.0E 02	3.4E-03	0.0
101	139	240	9.9140	0.095	7.9200	1.550	2.5E 02 US	*	1.0E 02	1.2E-02	0.0
101	141	242	9.6360	0.102	7.2230	1.550	1.5E 00 MS	*	1.0E 02	4.3E-02	0.0
10 1	143	244	8.9800	0.103	6.3000	1.550	1.3E 02 MS	*	9.8E 01	1.6E 00	0.0
101	145	246	8.6765	0.099	5.3600	1.550	1.1E 00 S	*	9.5E 01	4.9E 00	2.8E-16
101	147	248	8.4800	0.092	4.8600	1.550	4.4E 00 S	*	9.0E 01	1.0E 01	4.8E-15
101	149	250	7.9700	0.085	4.1400	1.550	1.6E 00 MIN	*	3.2E 01	6.8E 01	2.2E-14
101	151	252	7.6000	0.078	3.3200	1.550	1.3E 01 MIN	0.63	1.0E 01	9.0E 01	2.2E-14
101	153	254	7.4100	0.073	2.2500	1.390	5.0E 00 H	*	4.3E 01	5.7E 01	4.8E-12
101	155	256	7.4560	0.068	1.7900	0.970	4.4E 00 H	0.30	6.1E 01	3.9E 01	1.7E-08
103	141	244	10.4450	0.102	8.2000	1.550	4.1E 01 US	*	1.0E 02	2.4E-03	0.0
103	143	246	10.1790	0.103	7.4500	1.550	2.0E 02 US	*	1.0E 02	6.7E-03	0.0
103	145	248	9.9090	0.099	6.7000	1.550	1.0E 00 MS	*	1.0E 02	1.9E-02	0.0
103	147	250	9.5800	0.092	5.9000	1.550	8.1E 00 MS	*	1.0E 02	6.7E-02	9.5E-16
103	149	252	9.0700	0.085	5.3300	1.550	2.5E 02 MS	*	9.9E 01	1.1E 00	1.25-14
103	151	254	8.7000	0.078	4.5800	1.550	3.5E 00 S	*	9.5E 01	5.4E 00	1.95-14
103	153	256	8.5100	0.073	3.4600	1.550	1.5E 01 S	2.30	9.7E 01	2.6E 00	5.3E-14
103	155	258	8.5500	0.068	2.8300	1.530	1.1E 01 S	0.73	1.0E 02	2.8E-01	2.25-11
103	157	260	8.0900	0.065	2.2300	1.380	7.4E 00 MIN	*	9.9E 01	1.3F 00	6.8F-08
103	159	262	7.7700	0.069	1.4900	0.660	1.8E 00 H	*	8.4E 01	1.6E 01	1.3E-06

Z	N	A	QA	ЕААМ	QE	EAEM	т	TEXP/T	ΡΑ	ÞF	ÞF
105	143	248	10.9640	0.103	8.9500	1.550	7.7E 00 US	*	1.0E 02	7.5E-04	0.0
105	145	250	10.7120	0.099	8.1500	1.550	3.1E 01 US	*	1.0E 02	1.8E-03	0.0
105	147	252	10.4540	0.092	7.3500	1.550	1.3E 02 US	*	1.0E 02	4.2E-03	0.0
105	149	254	10.2500	0.085	6.6100	1.550	4.3E 02 US	*	1.0E 02	7.25-03	1.1E-13
105	151	256	9.8800	0.078	6.0000	1.550	4.1E 00 MS	*	1.0E 02	3.8E-02	2.3E-13
105	153	258	9.6900	0.073	4.9800	1.550	1.4E 01 MS	*	1.0E 02	3.8E-02	2.75-13
105	155	260	9.7200	0.068	4.2700	1.550	1.1E 01 MS	*	1.05.02	1.0E-02	1.16-11
105	157	262	9.2700	0.065	3.5100	1.550	2.3E 02 MS	*	1.0E 02	4.3E-02	2.75-09
105	159	264	8.9500	0.069	2.9100	1.540	2.4E 00 S	*	1.0E 02	7.85-02	1.9E-07
105	161	266	8.6300	0.073	2.1700	1.350	2.8E 01 S	*	1.0E 02	6.6E-02	2.0E-07
105	163	268	8.3100	0.080	1.4200	0.590	6.5E 00 MIN	*	9.9E 01	9.8E-01	5.3E-07
107	153	260	10.7300	0.073	6.4100	1.550	8.4E 01 US	*	1.0E 02	1.2E-03	5.8E-10
107	155	262	10.7500	0.068	5.7800	1.550	7.2E 01 US	*	1.0E 02	5.4E-04	1.18-08
107	157	264	10.3100 -	0.065	4.9500	1.550	9.7E 02 US	*	1.0E 02	2.6F-03	1.4F-07
107	159	266	9.9900	0.069	4.1900	1.550	7.4E 00 MS	*	1.0E 02	5.9F-03	8.9F-07
107	161	268	9.6700	0.073	3.5900	1.550	6.2E 01 MS	*	1.0F 02	1-4E-02	3-4E-06
107	163	270	9.3500	0.080	2.8500	1.530	6.0F 02 MS	*	1.0E 02	1.65-02	2.35-07
107	165	272	8,9700	0.088	2.1600	1.350	1.0F 01 S	*	1.0F 02	2.25-02	2.45-08
107	167	274	8.4800	0.092	1.5200	0.680	8.3E 00 MIN	*	9.9E 01	1.3E 00	1.45-11

- 42 -