

Oktober 1970

KFK 1342

Institut für Angewandte Kernphysik

Thermal Neutron Capture in ¹⁵¹Eu

W. Michaelis

THERMAL NEUTRON CAPTURE IN ¹⁵¹Eu

3.A

W. MICHAELIS

Institut für Angewandte Kernphysik, Kernforschungszentrum Karlsruhe, Karlsruhe, Germany

Received 13 April 1970 (Revised 20 July 1970)

Abstract: The γ -ray spectrum from the radiative capture of thermal neutrons in 96.83 % enriched ¹⁵¹Eu has been investigated in the energy range 150 keV to 880 keV using a Ge(Li) detector in Compton suppression technique. The structure of the spectrum was found to be extremely complex. 273 full-energy peaks have been resolved in the energy interval studied. The data are believed to provide a useful contribution to the still unsettled problem of constructing a reliable transition diagram for the odd nucleus ¹⁵²Eu.

E NUCLEAR REACTIONS ¹⁵¹Eu(n, γ), E = th; measured E_{γ} , I_{γ} . ¹⁵²Eu deduced transitions. Enriched target, Ge(Li) detector.

1. Introduction

The nucleus ${}^{152}_{63}$ Eu is of particular interest in nuclear structure studies, since it belongs to the transition region between deformed and spherical nuclei. In ${}^{152}_{64}$ Gd the first 2⁺ state occurs at 344 keV and the energy ratio $E(4^+_1)/E(2^+_1)$ is 2.2 which is close to the properties of a spherical vibrational nucleus. On the other hand, the isobaric nucleus ${}^{152}_{62}$ Sm is characterized by $E(2^+_1) = 122$ keV and a clear rotational structure with $E(4^+_1)/E(2^+_1) = 3.0$. Thus it may be expected that ${}^{152}_{63}$ Eu exhibits both deformed and spherical states.

Theoretical predictions on such nuclei are very difficult and the theory is still in an early stage. The experimental knowledge of excited states in ¹⁵²Eu is also very poor. The main reason for this lack of information is the extremely complex level structure. In addition, the doubly odd nucleus ¹⁵²Eu cannot be studied by radioactive decay. It is attractive to investigate the structure of ¹⁵²Eu by radiative neutron capture, since ¹⁵¹Eu has a large cross section for thermal neutrons.

The neutron capture process has already been studied by various techniques, and results and references have been summarized ¹). The most precise published data on the low-energy γ -ray spectrum have come from measurements with a crystal diffraction instrument in the energy range up to 225 keV [refs. ², ³)]. The high-energy spectrum has been examined using a Ge(Li) pulse-height spectrometer ⁴). Earlier measurements of the internal conversion-electron spectrum by means of a magnetic spectrometer are reported in refs. ⁵, ⁶). Recently the low-energy part of this spectrum has been reinvestigated with very high resolution ⁷). All these studies have shown that the capture spectrum of Eu has an extremely complex structure.

21

Research on the isomeric states and the conversion-electron data have led to first efforts in constructing a level scheme for 152 Eu [refs. $^{8-12}$)]. At present attempts are being made in several laboratories to reinvestigate the capture reaction with improved techniques 7,13). Though the new data have not yet been published, it is already obvious that the earlier decay schemes have to be revised in several respects. Reliable information on the level scheme is available at present only up to 150 keV excitation energy 7).

It is the purpose of this article to report on precision measurements of the capture γ -ray spectrum in the energy range 150 keV to 880 keV by means of a Ge(Li) anti-Compton spectrometer. No attempt has been made to construct an extended transition diagram, since reliable conclusions will only be possible when additional information from other techniques is available.

2. Experimental procedure

A thermal neutron beam produced by a graphite scatterer in the tangential throughhole of the reactor FR 2 was used to irradiate a sample of enriched ¹⁵¹Eu in external target geometry. The abundances of the isotopes and the relative cross-section contributions are summarized in table 1. Due to the enrichment and the high capture cross section of ¹⁵¹Eu interference from capture in ¹⁵³Eu was negligible. Moreover the

Isotope	Atomic %	Capture cross section ^a) for thermal neutrons (b)	Relative cross- section contribution (%)	
¹⁵¹ Eu	96.83	8800+100	99.86±0.04	
¹⁵³ Eu	3.17	390 ± 80	0.14 ± 0.04	

 TABLE 1

 Isotopic composition of the target and relative cross-section contributions

^a) Ref. ¹).

 γ -ray spectrum from capture in ¹⁵³Eu was well known from a separate study of the reaction ¹⁵³Eu(n, γ)¹⁵⁴Eu which will be published elsewhere ¹⁴). The data were also examined for the possibility of contributions from likely chemical contaminants. Results of a spectrographic analysis of the sample material ensured that in general interference from other elements was well below the detection threshold. The relative cross-section contributions of the large cross-section elements Cd, Sm, Gd and Dy were definitely less than 0.02, 0.04, 0.15 and 0.01 %, respectively. Nevertheless, from these elements the well-known capture lines at 181.94 keV, 199.28 keV (Gd), 333.94 keV, 439.39 keV (Sm) and 558.29 keV (Cd) which possess outstanding intensities in photons per capture may have contributed to the pertinent structures in the γ -ray spectrum.

Energy ^a)		Intensity ^b)		Remarks °)	
E (keV)	$\pm \Delta E$ (eV)	Ī	$\pm \Delta I$		
1 50.67	90	0.20	0.04		
153.64	250	0.22	0.04		
154.35	250	0.22	0.04		
156.13	150	0.04	0.02		
157.46	70	0.19	0.04		
158.55	100	0.12	0.03		
160.19	40	0.16	0.03	doublet?	
63.17	180	0.09	0.02		
163.86	120	0.15	0.03		
65.85	300	0.04	0.02		
66.92	50	0.26	0.05		
68.78	60	0.58	0.13		
69.45	100	0.38	0.11		
70.62	250	0.17	0.04	doublet?	
71.78	220	0.43	0.09	-	
72.47	350	0.13	0.02		
75.22	250	0.03	0.01		
76.35	180	0.07	0.02		
78.43	100	0.07	0.02		
79.78	40	0.25	0.04		
81.04	100	0.09	0.02		
82.22	40	0.28	0.04	181.94 Gd(n, ν) possibly contributes	
83.63	100	0.085	0.020	1010;(-,,,,, F-2010;	
86.73	80	0.26	0.05		
87.77	80	0.25	0.05		
90.43	100	0.16	0.04		
91.38	100	0.18	0.04		
92.90	70	0.36	0.11		
94.13	90	0.21	0.05		
95.54	300	0.055	0.020		
96.59	300	0.11	0.020		
97.75	150	0.20	0.05		
99.15	60	0.33	0.07	199.28 Gd(n, ν) possibly contributes	
203.16	150	0.19	0.04	doublet?	
204.07	500	0.075	0.025		
205.09	400	0.12	0.03		
206.37	70	0.73	0.13		
207.49	100	0.25	0.05	doublet ?	
208.68	150	0.21	0.04		
209.93	200	0.12	0.02		
212.53	200	0.11	0.02		
14.47	100	0.25	0.04		
215.2	500	≈ 0.015	0.04		
216.75	1.50	0.08	0.02		
219.13	300	0.05	0.02		
221.16	60	1.25	0.02		
223.00	300	0.08	0.20		
774.89	100	0.00	0.02		

Energy Intensity Intensity Keinarks \vec{L} (keV) $\pm \Delta E$ (eV) \vec{I} $\pm \Delta I$ 226.00 350 0.08 0.02 227.06 250 0.12 0.03 228.15 300 0.12 0.03 232.29 150 0.16 0.03 233.22 150 0.15 0.03 234.54 250 0.11 0.03 237.90 150 0.15 0.03 237.90 150 0.15 0.03 240.81 200 0.20 0.03 244.70 200 0.34 0.09 245.63 250 0.25 0.07 250.06 300 0.044 0.03 254.41 200 0.07 0.02 255.97 150 0.14 0.03 260.31 80 0.10 0.02 263.10 100 0.16 0.03 264.24 200 <t< th=""><th></th><th>n ouror: 8)</th><th colspan="2">Intensity ^b)</th><th>Domostra ()</th></t<>		n ouror: 8)	Intensity ^b)		Domostra ()
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		nergy)			Remarks)
226.00 350 0.08 0.02 227.06 250 0.12 0.03 228.51 300 0.12 0.03 232.29 150 0.23 0.05 234.24 250 0.11 0.03 234.25 150 0.23 0.05 234.44 250 0.11 0.03 237.90 150 0.15 0.03 244.71 200 0.11 0.03 244.72 0.0 0.15 0.03 244.70 200 0.34 0.09 245.63 250 0.25 0.07 246.79 250 0.05 0.02 250.06 300 0.045 0.015 251.1 150 0.09 0.03 254.13 200 0.16 0.03 254.13 200 0.16 0.02 255.97 150 0.16 0.02 256.96 250 0.05 0.02 263.10 100 0.16 0.03 273.75	<i>E</i> (keV)	$\pm \Delta E (eV)$	I	±41	
227.06 250 0.12 0.03 228.51 300 0.12 0.03 232.29 150 0.16 0.03 233.22 150 0.23 0.05 234.54 250 0.11 0.03 236.06 400 0.06 0.02 237.90 150 0.15 0.03 239.35 120 0.18 0.03 244.70 200 0.20 0.03 244.70 200 0.24 0.09 245.63 250 0.25 0.07 246.89 200 0.19 0.03 244.70 200 0.44 0.09 255.97 150 0.045 0.015 255.97 150 0.14 0.03 255.97 150 0.14 0.03 261.49 180 0.10 0.02 263.10 100 0.16 0.03 264.24 200 0.10 0.02 265.65 400 0.065 0.020 177.35 <	226.00	350	0.08	0.02	
228.51 300 0.10 0.03 229.28 300 0.12 0.03 233.29 150 0.23 0.05 233.21 150 0.23 0.05 234.54 250 0.11 0.03 236.06 400 0.06 0.02 237.90 150 0.15 0.03 240.81 200 0.11 0.03 244.74 150 0.15 0.03 244.70 200 0.20 0.03 244.70 200 0.34 0.09 245.63 250 0.25 0.07 246.89 200 0.19 0.03 250.06 300 0.045 0.015 255.97 150 0.14 0.03 255.96 250 0.05 0.02 263.10 100 0.16 0.03 264.24 200 0.10 0.02 265.55 400 0.05 0.20 265.65 400 0.065 0.20 273.14	227.06	250	0.12	0.03	
229.283000.120.03232.291500.160.03234.542500.110.03236.064000.060.02237.901500.150.03239.351200.180.03244.411500.150.03242.441500.150.03244.702000.200.03244.712000.250.07246.892000.190.03245.632500.250.07246.792500.0650.020250.063000.0450.015253.211500.090.03254.132000.070.02255.971500.140.03261.491800.100.02265.654000.0650.020265.654000.0650.020265.654000.0650.020267.081500.100.02267.442000.100.02267.554000.0650.020270.91800.120.02277.354000.0150.010277.354000.0150.010277.354000.0150.010277.354000.0150.010277.354000.0150.010277.354000.0150.01028.742000.130.02277.35400	228.51	300	0.10	0.03	
232.29 150 0.16 0.03 233.22 150 0.23 0.05 234.54 230 0.11 0.03 236.06 400 0.06 0.02 237.90 150 0.15 0.03 239.35 120 0.18 0.03 240.81 200 0.15 0.03 244.70 200 0.22 0.03 244.70 200 0.25 0.07 246.89 200 0.19 0.03 244.70 200 0.045 0.015 250.06 300 0.045 0.015 253.21 150 0.065 0.020 254.13 200 0.07 0.02 255.97 150 0.14 0.03 264.49 180 0.10 0.02 265.96 250 0.05 0.02 265.40 0.00 0.16 0.03 264.24 200 0.10 0.02 265.46 450 0.02 \approx 277.35 </td <td>229.28</td> <td>300</td> <td>0.12</td> <td>0.03</td> <td></td>	229.28	300	0.12	0.03	
233.22 150 0.23 0.05 234.54 250 0.11 0.03 237.90 150 0.15 0.03 239.35 120 0.18 0.03 244.81 200 0.11 0.03 242.44 150 0.15 0.03 244.70 200 0.20 0.03 244.70 200 0.25 0.07 246.89 200 0.19 0.03 244.70 200 0.19 0.03 245.63 250 0.065 0.020 250.06 300 0.045 0.015 255.97 150 0.14 0.03 256.96 250 0.05 0.02 260.31 80 0.12 0.02 263.10 100 0.16 0.03 264.24 200 0.10 0.02 265.65 400 0.065 0.020 265.65 400 0.065 0.020 265.65 400 0.015 0.010 270.9	232.29	150	0.16	0.03	
234,54 250 0.11 0.03 236,06 400 0.06 0.02 237,90 150 0.15 0.03 239,35 120 0.18 0.03 240,81 200 0.15 0.03 242,44 150 0.15 0.03 244,70 200 0.20 0.03 244,70 200 0.25 0.07 246,89 200 0.19 0.03 248,79 250 0.065 0.020 250,06 300 0.045 0.015 251,07 150 0.14 0.03 255,97 150 0.14 0.03 266,31 80 0.18 0.03 261,49 180 0.10 0.02 263,11 100 0.16 0.03 264,24 200 0.10 0.02 265,65 400 0.065 0.020 264,24 200 0.10 0.02 273,75 250 0.19 0.07 273,75 <td>233.22</td> <td>150</td> <td>0.23</td> <td>0.05</td> <td></td>	233.22	150	0.23	0.05	
236.06 400 0.06 0.02 237.90 150 0.15 0.03 239.35 120 0.18 0.03 240.81 200 0.11 0.03 242.44 150 0.15 0.03 244.70 200 0.34 0.09 245.63 250 0.25 0.07 246.89 200 0.19 0.03 248.79 250 0.065 0.020 250.06 300 0.045 0.015 253.21 150 0.14 0.03 256.96 250 0.05 0.02 263.1 80 0.18 0.03 264.24 200 0.10 0.02 263.10 100 0.16 0.03 264.24 200 0.10 0.02 265.65 400 0.065 0.020 267.08 150 0.10 0.02 270.91 80 0.12 0.02 26/271.0 from β^- decay ^{152m} 1Eu 273.75 250 0.19 <	234.54	250	0.11	0.03	
237.901500.150.03239.351200.180.03240.812000.110.03242.441500.150.03243.642000.200.03244.702000.340.09245.632500.250.07246.892000.190.03248.792500.0650.020250.063000.0450.015253.211500.070.02255.971500.140.03263.662500.050.020263.101000.160.03264.242000.100.02265.554000.0650.020263.101000.160.03264.242000.100.02265.654000.0650.020273.752500.190.07273.752500.190.07273.752500.190.07275.99700.160.02277.354000.0150.010279.761500.080.02281.361500.180.03285.41800.32287.420.000.13282.402500.110.03283.962500.100.03283.962500.100.03283.962500.100.03283.962500.110.03 <t< td=""><td>236.06</td><td>400</td><td>0.06</td><td>0.02</td><td></td></t<>	236.06	400	0.06	0.02	
239.35 120 0.18 0.03 240.81 200 0.11 0.03 242.44 150 0.15 0.03 243.64 200 0.20 0.03 243.64 200 0.25 0.07 246.89 200 0.19 0.03 248.79 250 0.065 0.020 250.06 300 0.045 0.015 253.21 150 0.19 0.03 254.13 200 0.07 0.02 255.97 150 0.14 0.03 256.96 250 0.05 0.02 260.31 80 0.18 0.03 264.24 200 0.10 0.02 265.65 400 0.065 0.020 267.08 150 0.10 0.02 268.46 450 0.02 $\approx 25\% 271.0$ from β^- decay $^{152m} 1Eu$ 273.75 250 0.19 0.07 277.35 400 0.015 0.010 277.76 150 0.08 0.02<	237.90	150	0.15	0.03	
240.812000.110.03242.441500.150.03243.642000.200.03244.702000.340.09245.632500.250.07246.892000.190.03248.792500.0650.020250.063000.0450.015253.211500.090.03254.132000.070.02255.962500.050.020260.31800.180.03261.491800.100.02265.564000.0650.020265.654000.0650.020265.64500.100.02265.654000.0650.020267.081500.100.02267.081500.100.02273.143000.100.03273.752500.190.07275.99700.160.02277.354000.0150.010279.761500.080.02281.361500.180.03283.962500.100.03285.742000.130.02291.614000.020.01293.313500.080.02294.374500.080.03285.401500.190.04295.77900.360.03295.741500.19 <td>239.35</td> <td>120</td> <td>0.18</td> <td>0.03</td> <td></td>	239.35	120	0.18	0.03	
242.44 150 0.15 0.03 243.64 200 0.20 0.03 245.63 250 0.25 0.07 246.79 250 0.065 0.020 250.06 300 0.045 0.015 253.21 150 0.07 0.02 255.97 150 0.14 0.03 255.97 150 0.14 0.03 256.66 250 0.05 0.02 263.11 80 0.18 0.03 264.24 200 0.10 0.02 263.10 100 0.16 0.03 264.24 200 0.10 0.02 265.65 400 0.065 0.020 265.65 400 0.065 0.020 264.24 200 0.10 0.02 270.91 80 0.12 0.02 $\approx 25 \% 271.0$ from β^- decay 152m 1Eu 273.14 300 0.10 0.03 275.99 70 0.16 0.02 277.35 400 0.015 0.010	240.81	200	0.11	0.03	
243.64 200 0.20 0.03 244.70 200 0.34 0.09 245.63 250 0.25 0.07 246.89 200 0.19 0.03 248.79 250 0.065 0.020 250.06 300 0.045 0.015 253.21 150 0.09 0.03 254.13 200 0.07 0.02 255.97 150 0.14 0.03 256.96 250 0.05 0.02 260.31 80 0.18 0.03 261.49 180 0.10 0.02 263.10 100 0.16 0.03 264.24 200 0.10 0.02 265.55 400 0.065 0.020 267.08 150 0.10 0.02 269.46 450 0.02 0.01 270.91 80 0.12 0.02 $\approx 25 \% 271.0 \text{ from } \beta^{-} \text{ decay }^{152m} 1 \text{ Eu}$ 273.14 300 0.016 0.03 277.35 250 0.19 0.07 275.99 70 0.16 0.02 277.35 400 0.015 0.010 279.76 150 0.08 0.02 281.36 150 0.18 0.03 283.40 250 0.11 0.03 283.41 80 0.32 0.07 275.99 70 0.16 0.02 277.35 400 0.015 0.010 279.76 150 0.08 0.02 285.11 80 0.32 0.07 287.26 200 0.18 0.03 283.74 200 0.13 0.02 291.61 400 0.02 0.01 293.31 350 0.08 0.02 294.37 450 0.08 0.03 295.40 150 0.19 0.03 285.11 80 0.32 0.07 287.26 200 0.18 0.03 287.74 50 0.08 0.02 294.37 450 0.08 0.02 294.37 450 0.08 0.03 295.40 150 0.19 0.03 295.40 150 0.19 0.04 295.77 90 0.36 0.06 295.70 600 0.075 0.035 298.0 600 0.090 0.045 297.77 90 0.36 0.06 303.69 400 0.065 0.025	242.44	150	0.15	0.03	
244,70 200 0.34 0.09 245,63 250 0.25 0.07 246,89 200 0.19 0.03 248,79 250 0.065 0.020 250.06 300 0.045 0.015 253.21 150 0.09 0.03 255.97 150 0.14 0.03 266.31 80 0.18 0.03 261.49 180 0.10 0.02 263.10 100 0.16 0.03 264.24 200 0.10 0.02 265.65 400 0.065 0.020 265.65 400 0.065 0.020 267.08 150 0.10 0.02 270.91 80 0.12 0.02 $\approx 25 \% 271.0 \text{ from } \beta^- \text{ decay } ^{152m} + Eu 273.14 300 0.10 0.03 273.75 250 0.19 0.07 275.99 70 0.16 0.02 277.35 400 0.015 0.010 273.75 250 0.11 0.03 $	243.64	200	0.20	0.03	
245.63 250 0.25 0.07 246.89 200 0.19 0.03 248.79 250 0.065 0.020 250.06 300 0.045 0.015 253.21 150 0.09 0.03 254.13 200 0.07 0.02 255.97 150 0.14 0.03 260.14 80 0.18 0.02 263.1 80 0.18 0.03 264.44 200 0.10 0.02 267.08 150 0.10 0.02 267.08 150 0.10 0.02 267.08 150 0.10 0.02 267.08 150 0.10 0.02 267.08 150 0.10 0.02 273.75 250 0.19 0.07 273.75 250 0.19 0.07 277.35 400 0.015 0.010 283.96 250 0.11 0.03 284.40 250 0.11 0.03 284.74	244.70	200	0.34	0.09	
246.892000.190.03248.792500.0650.020250.063000.0450.015251.211500.090.03254.132000.070.02255.971500.140.03256.962500.050.02260.31800.180.03261.491800.100.02263.101000.160.03264.242000.100.02265.654000.0650.020267.081500.100.02270.91800.120.02273.143000.100.03273.752500.190.07275.99700.160.02277.354000.0150.010279.761500.080.02281.361500.180.03282.402500.110.03283.962500.130.02291.614000.020.01293.313500.080.02294.374500.080.03295.401500.190.04295.401500.190.04295.41800.320.07287.262000.180.03295.401500.190.04295.401500.190.04295.414500.080.02295.401500.190	245.63	250	0.25	0.07	
248.792500.0650.020250.063000.0450.015253.211500.090.03255.971500.140.03256.962500.050.02260.31800.180.03261.491800.100.02263.101000.160.03264.242000.100.02265.654000.0650.020267.081500.100.02263.443000.100.02263.454500.020.01270.91800.120.02273.143000.160.03273.752500.190.07275.99700.160.02277.354000.0150.010279.761500.080.02281.361500.180.03283.962500.110.03283.742000.130.02291.614000.020.01293.313500.080.02294.374500.080.03295.401500.190.04296.76000.0900.045295.7900.360.020301.492000.0650.020303.694000.0650.020	246.89	200	0.19	0.03	
250.063000.0450.015253.211500.090.03254.132000.070.02255.971500.140.03256.962500.050.02260.31800.180.03261.491800.100.02263.101000.160.03264.242000.100.02265.554000.0650.020265.644500.020.01270.91800.120.02273.752500.190.07273.752500.190.07277.754000.0150.010279.761500.080.02281.361500.180.03283.962500.100.03285.11800.320.07287.262000.180.03288.742000.130.02291.614000.020.01293.313500.080.02294.374500.190.04295.401500.190.04295.401500.190.04295.401500.190.04295.401500.190.04295.401500.190.04295.401500.190.04295.401500.190.04295.401500.190.04295.401500.190.	248.79	250	0.065	0.020	
253.211500.090.03254.132000.070.02255.971500.140.03256.962500.050.02260.31800.180.03261.491800.100.02263.101000.160.03264.242000.100.02265.654000.0650.020267.081500.100.02270.91800.120.02273.143000.160.03277.354000.0150.010277.354000.0150.010277.354000.0150.010278.761500.180.03283.462500.110.03283.462500.100.03283.762000.180.02291.614000.020.01293.313500.080.02294.374500.090.04295.401500.190.04295.401500.190.04295.401500.0900.045295.401500.0900.045295.401500.190.04295.401500.0900.045295.401500.0900.045295.401500.0900.045295.401500.0900.045295.401500.0650.020303.69400 <t< td=""><td>250.06</td><td>300</td><td>0.045</td><td>0.015</td><td></td></t<>	250.06	300	0.045	0.015	
254.132000.070.02255.971500.140.03256.962500.050.02260.31800.180.03261.491800.100.02263.101000.160.03264.242000.100.02265.654000.0650.020267.081500.100.02269.464500.020.01270.91800.120.02273.752500.190.07275.99700.160.02277.354000.0150.010279.761500.080.02281.361500.110.03283.962500.110.03283.962500.100.03287.262000.130.02291.614000.020.01293.313500.080.02294.374500.090.04295.401500.190.04295.401500.190.04295.401500.0900.045299.77900.360.02303.694000.0650.025	253.21	150	0.09	0.03	
255.971500.140.03256.962500.050.02260.31800.180.03261.491800.100.02263.101000.160.03264.242000.100.02265.654000.0650.020269.464500.020.01270.91800.120.02273.752500.190.07275.99700.160.02277.354000.0150.010279.761500.180.05282.402500.110.03283.11800.320.07285.11800.320.07285.143000.130.02291.614000.020.01293.313500.080.02294.374500.080.02294.374500.080.02294.374500.080.02294.374500.080.03295.401500.190.04296.76000.0750.035298.06000.0900.045299.77900.360.02303.694000.0650.025	254.13	200	0.07	0.02	
256.962500.050.02260.31800.180.03261.491800.100.02263.101000.160.03264.242000.100.02265.654000.0650.020267.081500.100.02269.464500.020.01273.143000.100.03273.752500.190.07277.354000.0150.10279.761500.080.02281.361500.180.05282.402500.110.03283.962500.100.03287.262000.130.02291.614000.020.01293.313500.080.02294.374500.080.03295.401500.190.04295.401500.080.02291.614000.020.01293.313500.080.03294.374500.080.03295.401500.190.04296.76000.0750.035298.06000.0900.045299.77900.360.02303.694000.0650.025	255.97	150	0.14	0.03	
260.31 80 0.18 0.03 261.49 180 0.10 0.02 263.10 100 0.16 0.03 264.24 200 0.10 0.02 265.65 400 0.065 0.020 267.08 150 0.10 0.02 269.46 450 0.02 0.01 270.91 80 0.12 0.02 273.75 250 0.19 0.07 273.75 250 0.19 0.07 277.35 400 0.015 0.010 279.76 150 0.08 0.02 281.36 150 0.18 0.05 282.40 250 0.11 0.03 283.96 250 0.10 0.03 288.74 200 0.13 0.02 291.61 400 0.02 0.01 293.31 350 0.08 0.02 294.37 450 0.08 0.03 295.40 150 0.19 0.04 296.7 600 0.075 0.035 298.0 600 0.090 0.045 299.77 90 0.36 0.02 299.77 90 0.36 0.02 301.49 200 0.065 0.020 303.69 400 0.065 0.025	256.96	250	0.05	0.02	
261.491800.100.02263.101000.160.03264.242000.100.02265.654000.0650.020269.464500.020.01270.91800.120.02 $\approx 25 \% 271.0 \text{ from } \beta^- \text{ decay } ^{152m} \text{Eu}$ 273.743000.100.03277.752500.190.07277.99700.160.02279.761500.080.02281.361500.180.05282.402500.110.03285.11800.320.07287.262000.130.02291.614000.020.01293.313500.080.02294.374500.190.04295.401500.190.04296.76000.0750.035298.06000.0900.045299.77900.360.02303.694000.0650.025	260.31	80	0.18	0.03	
263.101000.160.03264.242000.100.02265.654000.0650.020267.081500.100.02269.464500.020.01270.91800.120.02 $\approx 25 \% 271.0 \text{ from } \beta^- \text{ decay } ^{152m} 1 \text{Eu}$ 273.143000.100.03277.352500.190.07275.99700.160.02279.761500.080.02281.361500.180.05282.402500.110.03285.11800.320.07287.262000.130.02291.614000.020.01293.313500.080.03295.401500.190.04296.76000.0750.035298.06000.0900.045299.77900.360.020303.694000.0650.025	261.49	180	0.10	0.02	
264.24 200 0.10 0.02 265.65 400 0.0655 0.020 267.08 150 0.10 0.02 269.46 450 0.02 0.01 270.91 80 0.12 0.02 $\approx 25 \% 271.0 \text{ from } \beta^- \text{ decay } {}^{152m} {}_{-}\text{Eu}$ 273.75 250 0.19 0.07 275.99 70 0.16 0.02 277.35 400 0.015 0.010 279.76 150 0.08 0.02 281.36 150 0.18 0.05 282.40 250 0.11 0.03 283.96 250 0.10 0.03 285.11 80 0.32 0.07 291.61 400 0.02 0.01 293.31 350 0.08 0.02 294.37 450 0.08 0.03 295.40 150 0.19 0.04 296.7 600 0.075 0.035 298.0 600 0.090 0.045 299.77 90 0.36 0.020 301.49 200 0.0655 0.025	263.10	100	0.16	0.03	
265.654000.0650.020267.081500.100.02269.464500.020.01270.91800.120.02 $\approx 25\% 271.0 \text{ from } \beta^- \text{ decay } {}^{152m} {}^{1}\text{Eu}$ 273.143000.100.03275.99700.160.02277.354000.0150.010279.761500.080.02281.361500.180.05282.402500.110.03285.11800.320.07287.262000.180.03287.262000.130.02291.614000.020.01293.313500.080.02294.374500.080.03295.401500.190.04296.76000.0750.035298.06000.0900.045299.77900.360.06301.492000.0650.025	264.24	200	0.10	0.02	
267.081500.100.02269.464500.020.01270.91800.120.02 $\approx 25 \% 271.0 \text{ from } \beta^- \text{ decay } ^{152m} \text{Eu}$ 273.143000.100.03273.752500.190.07275.99700.160.02277.354000.0150.010279.761500.080.02281.361500.180.05282.402500.110.03285.11800.320.07287.262000.180.03288.742000.130.02291.614000.020.01293.313500.080.03295.401500.190.04296.76000.0750.035298.06000.0900.045299.77900.360.02303.694000.0650.025	265.65	400	0.065	0.020	
269.464500.020.01270.91800.120.02 $\approx 25 \% 271.0 \text{ from } \beta^- \text{ decay } ^{152m} \text{Eu}$ 273.143000.100.03273.752500.190.07275.99700.160.02277.354000.0150.010279.761500.080.02281.361500.180.05282.402500.110.03285.11800.320.07287.262000.180.03288.742000.130.02291.614000.020.01293.313500.080.02294.374500.190.04296.76000.0750.035298.06000.0900.045299.77900.360.02301.492000.0650.020	267.08	150	0.10	0.02	
270.91800.120.02 $\approx 25 \% 271.0$ from β^- decay 152m 1Eu273.143000.100.03273.752500.190.07275.99700.160.02277.354000.0150.010279.761500.080.02281.361500.180.05282.402500.110.03285.11800.320.07287.262000.180.02291.614000.020.01293.313500.080.02294.374500.080.03295.401500.190.04296.76000.0750.035298.06000.0900.045299.77900.360.02303.694000.0650.025	269.46	450	0.02	0.01	
273.14 300 0.10 0.03 273.75 250 0.19 0.07 275.99 70 0.16 0.02 277.35 400 0.015 0.010 279.76 150 0.08 0.02 281.36 150 0.18 0.05 282.40 250 0.11 0.03 283.96 250 0.10 0.03 285.11 80 0.32 0.07 287.26 200 0.18 0.03 288.74 200 0.13 0.02 291.61 400 0.02 0.01 293.31 350 0.08 0.02 294.37 450 0.08 0.03 295.40 150 0.19 0.04 296.7 600 0.075 0.035 298.0 600 0.090 0.045 299.77 90 0.36 0.02 301.49 200 0.0655 0.025	270.91	80	0.12	0.02	$\approx 25 \% 271.0$ from β^- decay ^{152m} ¹ Eu
273.75 250 0.19 0.07 275.99 70 0.16 0.02 277.35 400 0.015 0.010 279.76 150 0.08 0.02 281.36 150 0.18 0.05 282.40 250 0.11 0.03 283.96 250 0.10 0.03 285.11 80 0.32 0.07 287.26 200 0.18 0.03 288.74 200 0.13 0.02 291.61 400 0.02 0.01 293.31 350 0.08 0.02 294.37 450 0.090 0.04 296.7 600 0.075 0.035 298.0 600 0.090 0.045 299.77 90 0.36 0.02 301.49 200 0.0655 0.025	273.14	300	0.10	0.03	
275.99700.160.02 277.35 4000.0150.010 279.76 1500.080.02 281.36 1500.180.05 282.40 2500.110.03 283.96 2500.100.03 285.11 800.320.07 287.26 2000.130.02 291.61 4000.020.01 293.31 3500.080.02 294.37 4500.080.03 295.40 1500.190.04 296.7 6000.0750.035 299.77 900.360.06301.492000.0650.025	273.75	250	0.19	0.07	
277.35 400 0.015 0.010 279.76 150 0.08 0.02 281.36 150 0.18 0.05 282.40 250 0.11 0.03 283.96 250 0.10 0.03 285.11 80 0.32 0.07 287.26 200 0.18 0.03 288.74 200 0.13 0.02 291.61 400 0.02 0.01 293.31 350 0.08 0.02 294.37 450 0.08 0.03 295.40 150 0.19 0.04 296.7 600 0.075 0.035 298.0 600 0.090 0.045 299.77 90 0.36 0.02 301.49 200 0.0655 0.025	275.99	70	0.16	0.02	
279.76 150 0.08 0.02 281.36 150 0.18 0.05 282.40 250 0.11 0.03 283.96 250 0.10 0.03 285.11 80 0.32 0.07 287.26 200 0.18 0.03 288.74 200 0.13 0.02 291.61 400 0.02 0.01 293.31 350 0.08 0.02 294.37 450 0.08 0.03 295.40 150 0.19 0.04 296.7 600 0.075 0.035 298.0 600 0.090 0.045 299.77 90 0.36 0.02 301.49 200 0.065 0.025	277.35	400	0.015	0.010	
281.36 150 0.18 0.05 282.40 250 0.11 0.03 283.96 250 0.10 0.03 285.11 80 0.32 0.07 287.26 200 0.18 0.03 288.74 200 0.13 0.02 291.61 400 0.02 0.01 293.31 350 0.08 0.02 294.37 450 0.08 0.03 295.40 150 0.19 0.04 296.7 600 0.075 0.035 298.0 600 0.090 0.045 299.77 90 0.36 0.02 301.49 200 0.0655 0.025	279.76	150	0.08	0.02	
282.40 250 0.11 0.03 283.96 250 0.10 0.03 285.11 80 0.32 0.07 287.26 200 0.18 0.03 288.74 200 0.13 0.02 291.61 400 0.02 0.01 293.31 350 0.08 0.02 294.37 450 0.08 0.03 295.40 150 0.19 0.04 296.7 600 0.075 0.035 298.0 600 0.090 0.045 299.77 90 0.36 0.02 301.49 200 0.0655 0.025	281.36	150	0.18	0.05	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	282.40	250	0.11	0.03	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	283.96	250	0.10	0.03	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	285.11	80	0.32	0.07	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	287.26	200	0.18	0.03	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	288.74	200	0.13	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	291.61	400	0.02	0.01	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	293.31	350	0.08	0.02	
295.401500.190.04296.76000.0750.035298.06000.0900.045299.77900.360.06301.492000.0650.020303.694000.0650.025	294.37	450	0.08	0.03	
296.76000.0750.035298.06000.0900.045299.77900.360.06301.492000.0650.020303.694000.0650.025	295.40	150	0.19	0.04	
298.06000.0900.045299.77900.360.06301.492000.0650.020303.694000.0650.025	296.7	600	0.075	0.035	
299.77900.360.06301.492000.0650.020303.694000.0650.025	298.0	600	0.090	0.045	
301.49 200 0.065 0.020 303.69 400 0.065 0.025	299.77	90	0.36	0.06	
303.69 400 0.065 0.025	301.49	200	0.065	0.020	
	303.69	400	0.065	0.025	

TABLE 2 (continued)

TABLE 2 (continued)

Energy ^a)		Intensity ^b)		Remarks °)	
E (keV)	$\pm \Delta E$ (eV)	Ī	$\pm \Delta I$		
304.37	400	0.065	0.025		
306.7	600	≈ 0.02			
307.65	350	0.045	0.020		
309.36	100	0.13	0.02		
310.24	250	0.06	0.02		
313.20	300	0.04	0.01		
314.49	350	0.06	0.02		
315.89	180	0.11	0.02		
316.9	500	0.045	0.020		
318.9	600	0.12	0.02		
319.8	500	0.035	0.02		
321.09	350	0.11	0.020		
322 53	380	0.08	0.02		
325.28	180	0.14	0.02		
326.50	180	0.13	0.02		
330 34	150	0.15	0.02		
331.68	300	0.06	0.02		
333 72	450	0.00	0.01	333.04 Sm(n y) probably contributes	
221 66	450	0.03	0.02	555.94 Sin(ii,) probably contributes	
227 16	130	0.12	0.02		
220 02	280	0.03	0.01		
220.92	430	0.033	0.010		
340.24	230	0.005	0.020	at 100 B/ 244 24 Gran R= 4 area 152m E-	
344.27	60	0.73	0.07	$\approx 100\%$ 344.24 from p decay ¹⁻² Eu	
346.0	600	0.035	0.020		
348.58	350	0.12	0.02		
350.26	450	0.05	0.02		
352.6	500	0.045	0.020		
354.9	650	0.065	0.020		
355.1	500	0.08	0.02		
358.10	400	0.09	0.02		
359.4	700	0.05	0.02		
360.1	600	0.030	0.015		
364.77	150	0.12	0.02		
366.52	150	0.14	0.02		
369.21	250	0.08	0.02		
370.63	150	0.14	0.02		
372.5	700	0.03	0.01		
374.1	500	0.04	0.01		
376.75	180	0.12	0.02		
379.03	250	0.085	0.020		
381.55	300	0.08	0.02		
384.4	1000	≈ 0.01			
387.6	500	0.055	0.020		
388.5	1000	≈ 0.02			
389 .9	600	0.06	0.02		
390.8	500	0.075	0.020		
392.2	600	0.060	0.025		
393.3	600	0.075	0.030		
395.78	400	0.055	0.020		
397.27	350	0.09	0.02		

W. MICHAELIS

TABLE 2 (continued)

Energy ^a)		Intensity ^b)		Remarks °)	
E (keV)	$\pm \Delta E \text{ (eV)}$	Ι	$\pm \Delta I$		
399.75	450	0.045	0.020		
401.33	400	0.05	0.02		
403.76	400	0.08	0.02		
404.91	400	0.09	0.02		
406.72	450	0.045	0.020		
408.76	300	0.06	0.02		
411.21	250	0.065	0.020		
413.09	350	0.08	0.02		
414.64	300	0.12	0.02		
417.6	500	0.03	0.01		
418.7	600	≈ 0.02	0101		
422.40	350	0.07	0.02		
423.73	300	0.15	0.03		
426.54	250	0.09	0.02		
427.78	350	0.06	0.02		
432.75	200	0.13	0.02		
434.39	350	0.055	0.020		
436.6	500	0.04	0.02		
438.1	600	0.055	0.020		
439.5	600	0.07	0.02	439.39 Sm (n, ν) possibly contributes	
441.27	400	0.09	0.02		
443.4	500	0.05	0.02		
445.01	300	0.085	0.020		
446.97	250	0.07	0.02		
449.44	400	0.080	0.025		
450.1	600	0.080	0.025		
452.0	700	0.035	0.010		
453.7	600	0.06	0.02		
455.47	400	0.10	0.02		
456.6	700	0.05	0.02		
458.09	450	0.065	0.020		
459.69	200	0.14	0.02		
461.55	300	0.065	0.020		
465.75	450	0.045	0.010		
468.1	600	≈ 0.025	01010		
472.37	300	0.09	0.02		
474.12	450	0.055	0.020	Energy and intensity determination	
478.1	500	0.02	0.01	possibly affected by background from	
479.6	500	0.035	0.010	$^{10}B(n, \alpha)$	
481.82	300	0.05	0.01		
483.9	600	≈ 0.015	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
485.9	600	≈ 0.015			
488.73	350	0.035	0.010		
491.2	800	≈ 0.01	0.010		
492.9	800	≈ 0.03			
494.13	350	0.045	0.020		
496.8	600	0.03	0.02		
498.5	500	0.04	0.02		
500.08	400	0.05	0.02		
501.7	500	≈ 0.025			

TABLE 2 (continued)

Energy ^a)		Intensity ^b)		Remarks °)	
E (keV)	$\pm \Delta E$ (eV)	Ι	$\pm \Delta I$		
505.84	400	0.055	0.020		
507.8	500	0.065	0.020		
509.4	1000	0.06	0.02		
510.86	300	0.16	0.07	$e^+(e^-, \gamma)$ contributes	
512.19	450	0.10	0.03		
517.6	500	0.03	0.01		
520.11	200	0.08	0.02		
522.5	800	0.02	0.01		
523.9	600	0.03	0.01		
526.35	200	0.07	0.02		
531.7	800	≈ 0.01	0.02		
539.44	350	0.045	0.020		
541.86	450	0.035	0.015		
545.9	600	~ 0.015	0.015		
549.94	400	~ 0.015	0.015		
554 5	500	0.055	0.015		
555 8	500	0.05	0.02		
558.00	400	0.00	0.02	559 20 (Id(n a) possibly contributes	
561.07	400	0.05	0.02	558.29 $Cu(n, \gamma)$ possibly contributes	
562.95	450	0.00	0.02	a 100 8/ 562 2 from EC doory 152m Ev	
566 72	350	0.09	0.02	$\approx 100 \% 303.2$ from EC decayiEu	
569 5	430	0.03	0.02		
500.5	800	0.035	0.015		
570.5	600	≈ 0.02	0.015		
574.70	450	0.035	0.015		
574.70	430	0.035	0.015		
570.93	300	≈ 0.035	0.00		
5/9.82	450	0.04	0.02		
582.2	700	0.02	0.01		
588.2	500	0.03	0.01		
592.0	1000	≈ 0.01	0.00		
595.43	400	0.05	0.02		
599.4	600	≈ 0.02	0.01		
603.9	500	0.03	0.01		
609.00	400	0.05	0.02		
616.16	350	0.05	0.02		
620.83	450	0.035	0.010		
624.1	700	0.02	0.01		
628.84	350	0.045	0.020		
031.2	600	0.02	0.01		
633.4	600	0.025	0.010		
639.9	800	0.025	0.010		
660.9	700	0.025	0.010		
663.4	1000	≈ 0.01			
668.1	500	0.025	0.010		
670 .7	500	0.025	0.010		
676.80	400	0.03	0.01		
688.56	400	0.04	0.01		
691.7	500	0.03	0.01		
697.5	600	0.03	0.01		
699.83	450	0.045	0.020	$\approx 40 \%$ 700.0 from β^- decay $^{152m_1}Eu$	

W. MICHAELIS

TABLE 2 (continued)					
Energy ^a)		Intensity ^b)		Remarks °)	
E (keV)	$\pm \Delta E$ (eV)	Ι	$\pm \Delta I$		
703.1	500	0.055	0.020		
705.0	600	0.035	0.015		
709.6	600	0.030	0.015		
713.4	600	0.045	0.015		
721.0	900	0.025	0.015		
723.2	1000	≈ 0.015			
726.2	700	pprox 0.02			
730.5	600	0.040	0.015		
732.3	600	0.045	0.020		
740.6	500	0.045	0.020		
743.4	500	0.04	0.02		
750.8	800	0.030	0.015		
776.0	800	pprox 0.02			
779.2	500	0.040	0.015		
799.7	600	0.035	0.015		
802.2	700	≈ 0.025			
815.2	500	0.04	0.02		
825.1	500	≈ 0.025			
841.57	50	4.58		EC decay ^{152m} 1Eu	
850.0	700	≈ 0.025			
852.3	600	0.030	0.015		
860.1	1000	< 0.015			
863.8	700	0.030	0.015		
869.9	500	0.04	0.02		
877.3	500	0.045	0.020		

^a) In the case of unresolved complex structures the energy given refers to the centroid. Before making use of the data it is important to notice the comments in the text.

^b) The intensities listed are relative intensities. They were normalized to a value of 4.58 for the 841.57 keV γ -ray from the ^{152m}₁Eu EC decay. On the basis of the hitherto known cross section and decay data, the intensities given in column 3 are expected to deviate not more than 30 % from the absolute intensities in photons per 100 captures. In the case of unresolved complex structures the intensity quoted refers to the total intensity of the components.

°) The γ -ray energies for the ¹⁵²Eu EC and β^- decay have been adopted from the compilation ref. ¹⁶).

High-resolution measurements have been performed using the Karlsruhe Ge(Li) anti-Compton spectrometer[†]) which during these measurements consisted of a 5 cm³ Ge(Li) diode, a 50 cm $\emptyset \times 40$ cm plastic scintillator of type NE 102A and a 10.16 cm $\emptyset \times 15.24$ cm NaI(Tl) detector. The energy resolution including long-term instabilities was 1.96 keV FWHM for the 841.57 keV γ -ray from the ^{152m1}Eu (9.3 h) EC decay. The response function of the spectrometer was determined with a set of absolutely calibrated γ -ray sources. Details on the experimental arrangement and the procedures applied in spectrum stabilization, spectrum analysis, energy and intensity calibration and nonlinearity correction may be found in ref. ¹⁵) and the literature given there.

[†]) See ref. ¹⁵) and the literature cited there.

3. Experimental results and discussion

The capture γ -ray spectrum has been investigated between 150 keV and 880 keV. The data were taken with a channel width of about 230 eV. A typical sectional display of the pulse-height distribution is shown in fig. 1a. The spectrum was found to be extremely complex. 273 γ -ray lines have been identified in the energy interval studied. In the lower part of the spectrum the average distance between resolved peaks is about 1.5 keV. In order to obtain optimum accuracy in the energy determination, a method using overlapping energy intervals has been applied in the computer analysis, i.e. each peak has been fitted at least once with the greatest possible accuracy. This is illustrated in fig. 1b for a small section of the spectrum shown in fig. 1a. The results of the measurement are summarized in table 2.

In view of the high line density it is reasonable to assume that many of the γ -rays listed in the table represent closely spaced doublets or complex structures. In such cases the energy given refers to the centroid and the intensity is the total intensity of the components. It should be stressed that no previous data were available to help resolve the spectrum. For determining the quoted uncertainties in the energy values consideration was given to: (i) the uncertainty in the height of the Compton background under the peaks, (ii) the statistical fluctuations in the pulse-height distribution, (iii) the goodness of fit obtained in the spectrum analysis, (iv) possible errors in the nonlinearity correction function and (v) the uncertainties associated with the energy standards.

The y-ray intensities listed in table 2 are relative intensities. They were normalized to a value of 4.58 for the 841.57 keV y-ray from the ^{152m}Eu EC decay. This value was calculated from the total radiative capture cross section 17) (8800+100 b), the cross section for production of the 9.3 h isomeric state $(3100 \pm 400 \text{ b})$ and the γ -ray intensity ¹⁶) $I(841.57) = 13 \pm 1$ % reported for the ^{152m1}Eu EC decay. Taking into account a proper half-life correction and assuming[†] that the very pronounced 841.57 keV peak is essentially a transition in ¹⁵²Sm one may deduce from these data the absolute intensities of the capture lines in photons per 100 captures. On the basis of the above cross-section and decay data it is therefore expected that the intensities listed in column 3 of table 2 do not deviate more than about 30 % from the absolute values. In the energy range from 150 keV to 225 keV the results can be compared with the previous crystal diffraction data ³). While there is excellent agreement in the γ -ray energies, the intensities from table 2 are systematically lower than those from ref.³) by about a factor of 3. This result is somewhat confusing and throws some doubt on the absolute intensities given in ref.³), since it is unlikely that the cross-section and decay data are subject to errors in this order of magnitude.

The errors quoted for the intensities in table 2 include uncertainties arising from the Compton background, the statistics, the fitting procedure and the spectrometer

[†] The line shape and the result of a control measurement after irradiation of the target strongly support this assumption. It is in contrast to the compilation ref. ¹) where a γ -ray with 841.4 keV and $I_{\gamma} = 1.61$ is assigned to ¹⁵²Eu.

W. MICHAELIS

response function. In general, the main contribution comes from the possible errors in the determination of the background under the peaks.

Though the present research has brought about very detailed information on the capture γ -ray spectrum, it would be unreasonable to make any attempt in establishing a transition diagram on the basis of these data alone. The Ritz combination principle has proved to be very successful in many cases. However, one can easily show that the number of chance combinations is of the order of $n^3 \Delta E/E$, where *n* is the number of lines in the energy interval *E* and ΔE the mean energy error. In the present case one may obtain nearly 10⁴ combinations by chance. The situation does not change substantially, when the primary transition data from ref. ⁴) are taken into account. Additional information from other techniques, in particular from conversion electron and coincidence measurements, is therefore highly desirable. At present efforts are being made to further improve the performance of the anti-Compton spectrometer used in this study. The new version will allow both a considerable improvement of the quality and detail of the data in the energy interval studied and an extension of the research to higher γ -ray energies.

The author gratefully acknowledges the assistance of Mr. H. Küpfer in collecting and evaluating the data.

References

- 1) L. V. Groshev, A. M. Demidov, V. I. Pelekhov, L. L. Sokolovskii, I. V. Kurchatov, G. A. Bartholomew, A. Doveika, K. M. Eastwood and S. Monaro, Nucl. Data A5 (1968) 1
- 2) O. Schult, Z. Phys. 158 (1960) 444
- 3) O. W. B. Schult, Z. Naturf. 16a (1961) 927
- 4) E. B. Shera and D. W. Hafemeister, private communication in Nucl. Data A5 (1968) 1
- 5) V. A. Bondarenko, P. T. Prokofjev and L. I. Simonova, Sov. J. Nucl. Phys. 5 (1967) 662
- 6) P. T. Prokofjev, M. K. Balodis, J. J. Bersin, V. A. Bondarenko, N. D. Kramer, E. J. Lure, G. L. Rezvaya and L. I. Simonova, Atlas of conversion electron spectra from thermal neutron capture in nuclei with A = 143 to A = 197 and nuclear level schemes (Sinatne, Riga, 1967)
- 7) W. Kaiser, Z. Naturf., to be published
- 8) P. Kirby and T. M. Kavanagh, Nucl. Phys. 49 (1963) 300
- 9) A. M. Berestovoi, D. M. Kaminker and I. A. Kondurov, JETP (Sov. Phys.) 18 (1964) 613
- A. M. Berestovoi, I. A. Kondurov and J. E. Loginov, Bull. Akad. Sci. USSR (phys. ser.) 28 (1964) 1593
- 11) K. Takahashi, M. McKeown and G. Scharff-Goldhaber, Phys. Rev. 137 (1965) B763
- 12) A. V. Borovikov, V. S. Grozdev and G. D. Porsev, Sov. J. Nucl. Phys. 7 (1968) 694
- 13) H. R. Koch, H. A. Baader, D. Breitig, K. Mühlbauer, U. Gruber, B. P. K. Maier and O. W. B. Schult, Neutron capture gamma-ray spectroscopy (IAEA, Vienna, 1969) p. 65
- 14) W. Michaelis, to be published
- 15) W. Michaelis, F. Weller, U. Fanger, R. Gaeta, G. Markus, H. Ottmar and H. Schmidt, Nucl. Phys. A143 (1970) 225
- 16) C. M. Lederer, J. M. Hollander and I. Perlman, Table of isotopes, 6th ed. (Wiley, New York, 1967)
- 17) Neutron Cross Sections BNL-325, 2nd edition, Suppl. 2, August 1966