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Abstract

The attempt to increase the time utilization of the reactor beam in
time-of-flight experiments has resulted in the construction of pseudo­
statistical chopping devices in some laboratories. So far choppers
with an average transmission of about one half have been used. In
this paper the problem of choosing an optimal chopping mechanism is
attacked by minimizing a suitable defined statistical error of the
time-of-flight distribution. This condition leads to a whole class
of choppers with different time utilization of the reactor beam. An
extensive error analysis for these choppers is given.

Frequently the analysis of scattering experiments requires integra­
tion over a certain part of the time-of-flight distribution. It is
shown that the gaussian law of error propagation is not strictly
valid when the spectrum is obtained by a correlation methode However,
in most practical cases the deviations are small.

Some consideration is given to the feasibility of a pseudostatistical
double chopper for slow neutrons, which allows to use all energies
in the incident beam and measure all scattered energies simultaneously.
The statistical accuracy for such an experiment is discussed. Some
experiments were simulated on a computer in order to back up the
theoretical investigations.

Zusammenfassung

Der Versuch, die Zeitausnutzung des ReaktorstrahIs für Flugzeitex­
perimente zu verbessern, führte an einigen Reaktoren zur Aufstellung
von pseudostatistischen Neutronenmodulatoren. Die Durchlässigkeit
dieser Neutronenchopper betrug bisher 50 %. In diesem Report wird
die Frage nach einem optimalen pseudostatistischen Chopper unter­
sucht, in dem ein geeignet definierter statistischer Fehler der
Flugzeitverteilung zum Minimum gemacht wird. Diese Fragestellung
führt zu einer natürlichen Erweiterung der bisher bekannten Systeme,
insbesondere zu solchen mit einer Durchlässigkeit, die von 50 %
verschieden ist. Eine ausführliche Fehlerdiskussion dieser Chopper
wird durchgeführt.

Des öfteren muß bei der Auswertung von Streuexperimenten über einen
bestimmten Bereich der Flugzeitverteilung integriert werden. Es wird
gezeigt, d~ß das Gauß'sche Fehlerfortpflanzungsgesetz für Spektren,
die über die Korrelationsmethode erhalten wurden, nicht mehr gilt.
Für die meisten praktischen Fälle sind die Abweichungen jedoch klein.

Weiterhin wird ein pseudostatistischer Doppelchopper für langsame
Neutronen untersucht, der es ermöglicht, alle Energien des ein­
fallenden ReaktorstrahIs zu benutzen und gleichzeitig sämtliche
gestreuten Energien zu messen. Mit Hilfe eines Computers wurden
einige Experimente simuliert, die die theoretischen Untersuchungen
bestätigen.





1. Introduction

Pseudorandom pulsing of the reactor beam has proved to be a

powerful method in slow neutron scattering experiments, especially

when the signal to background ratio is small and the time-of-flight

spectrum consists of a small number of peaks. Mechanical and mag­

netic choppers with a time utilisation of about one have been built

at some laboratories ;-17 /-27 ;-37. The mechanical chopper at the-- -- --
FR 2 was put into operation about 1 1/2 years aga and has since been

applied successfully to powder diffraction and phonon measurements

L!!:7 I-V.

In this paper we want to present various recent investigations

about the application of the correlation method to slow neutron

time-of-flight experiments.

In the first part (section 2) the extension of the present

systems to a wider class of choppers with different time utilization

of the reactor beam is dealt with. In section 3 an error analysis is

given for integral intensities when the spectrum is obtained by a

correlation methode Finally we shall investigate the possibility

to apply the correlation technique to a double chopper system

(section 4).

As this report comprises quite different subjects we shall treat

the corresponding sections largely independent from each other.
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2. Pseudo-Statistical Neutron Beam Modulation with different
Time Utilization*

2.1 Formulation of the problem

A sequence of pulses can be generated from a neutron beam by a

rotating disc of constant angular frequency made from neutron

absorbing material and having a pattern of slits and bridges**.

The width of both slits and bridges is assumed to be an integral

multiple of the width of a unit slit. Moreover we assume in our

idealized model an infinitely small neutron beam which is perio­

dically chopped by the rotating disc into a sequence of rectangu­

lar pulses. If the period of the measurement is T, the following

relation holds for the counting rate Z(t) at the detector and the

background U(t)

T
Z(t) = J F(s) S(t-s) ds + U(t)

o

In this equation F(t) is the product of the scattering propability

and the intensity of the beam which we will call time-of-flight

distribution for short. The function Set) is periodical with the

period T and describes the modulation of the intensity of the

neutron beam taking only the values 1 and O. In practical applica­

tion Z(t) is counted in a multichannel analyzer, whose width

~t = TIN has been selected according to the width of a unit slit

of the chopper. Thus (2.1) results in the following system of

linear equations

(2.1)

Z.
J

U =
j

N
L:

i=1
S .. F. =
J-~ ~

N
L:

i=1
S .. F.
~J ~

(j = 1,2, ••••• ,N)

* A more detailed discussion on this subject is given in Ref. ~~7.

**
In the following we shall use the example of a mechanical chopper.
Gf course, these considerations are valid for any kind of chopping
device.
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The matrix

SN SN-1 SN_2 ·...... S1

S1 SN SN_1 ·...... S2

S = (S ji) = (S. .) =
J-J.

•

SN_1 SN_2 SN_3 ·...... SN

is a circulant. In equation (2.2) the counting rates Z. and U.
J J

are directly measured physical quantities and we assume that

they are poisson distributed with a standard deviation of~
...r;;-- J

and rU~ • When (2.2) has been solved for the F., the standard
J J.

deviation of Z. and U. will generate a standard deviationLlF.
J J J.

of the time-of-flight distribution F .• It seems logical to ask
J.

for a function S(t) which minimizes the sum EAF. 2.
J.

We call a chopper a binary chopper, if S. takes only the values 0
J.

(bridge) and 1 (slit). If there are exactly N unit slits and unit

bridges and K unit slits, the time utilization will be x = KIN.

For a (N,K)-chopper the total counting rate Ztot = E Zj is

with a = Uj/Ftot and Ftot=E Fi is the total time-of-flight distribution

of a conventional chopper with the length N.
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2.2 Error Minimization for Binary Choppers

The system (2.2) has a unique solution for F. if the inverse of3-
the matrix S = (S .. ) exists. In ;-~7 we have indicated necessary

J-3-
and sufficient conditions for the existence of the inverse

S-1 = (~lj) of the circulant S and prove that the inverse is a

circulant too. In the following we shall assume that the inverse

S-1 = (~l.) = (~l .) exists. In this case we get the solution
J -J

of (2.2)

N
Fl = E

. 1 ~l . (Z.J= -J J
U. )

J
(2.4 )

As F
l

is a linear combination of the Zj and Uj l it is poisson

distributed with a standard deviation

= ( ~ ~l .2 (Z. + U.))1/2
. 1 -J J JJ=.

'vIe now define

which can easily be calculated

'vIe now ask for binary choppers which can minimize~ • This leads

to the following problem: Given the integers N,K with K ZN,

(2.6)



-5-

which sequence ~sil ,i = 1,2, •••• ,N consisting of N-K zeros and K
'lI ' .. ~ 2ones w~ m~n~m~ze ~ cr .•

~ . 2
As derived in ~~ it can be shown that ~ cr i is a minimum if

1/K

1 - K
K(N-K)

for SN . = 1
-~

for SN . = 0
-~

(2.8)

For the minimum we obtain

Min

For certain combinations of the parameters (N,K) the solution of

this minimum problem is given by L7, Chapter 27 in form cf difference

sets.

2.3 ?seudo-Statistical Binary Sequences ror different Duty Cycles

In 1956 Marshall Hall, Jr. L-§7 presented a survey of difference

sets for 0 <, K <. 50. For N ,,1000 there are 127 different parameters

for which difference sets are known today. Out of these, 94 have a

time utilization x <,~, 4 have x <,~, 10 have xL ~, 3 have x< 3­
etc •• The pseudostatistical choppers used to this day correspond to

one type of difference sets called Hadamard difference sets. They

play a special role in the error analysis of pseudo-statistical

choppers, as wc will see in section 2.4. As an example the difference

set (40,13) is used for a chopper shown in Fig. 1. In ~~7 we gave

a survey of all known difference sets for N ~1000.
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2.4 Error Analysis of Pseudo-Statistical Choppers

After a rather lengthy calculation that will be omitted here we

arrive at the following relation for the absolute error ~FI for

the general class of statistical choppers

AF
2

1
K-1 rN-2K+1 ( KN-2K+1 -

= K(N-K) - K-1 FI + Ft ot 1 + 2~ K(K-1) 1/

or approximately

AF 2~ 1
~ I """ =N-r(1~--x~) r 1- 2x F + F (1 + 2~) 7

- x I tot x-

It is easily seen from (2.10) that for K N+1=~ the error ~FI is

independent of FI•
However in cases where FI~ Ft ot and x is not too small ~FI

varies only slightly over the spectrum and therefore can be

approximated rather weIl by

1where F = N • Ft ot

From Eq. (2.12) we

is the average of the F .•
1.

obtain the following table of ~-intervals and

corresponding optimum time utilizations of pseudo-statistical choppers.

~-Interval

1/2 <. ~

2/10 c ~ <. 1/2

1/22 c: ~ c: 1/10

1/46 ~ ~ c: 1/22

1/82 ~ ~ L.... 1/46

•

Optimum x

1/2

1/3

1/4

1/5

1/7
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If slits and bridges are interchanged a class of chopper with
1

x > 2 can be constructed. However it does not seem to be

meaningful to use such choppers, since it can be shown, that
1

the error ~Fl is always smaller for x <2 than for the

complementary chopper with x> ~ •

The error ~F. for a conventional chopper experiment is given by
J

Pseudo-statistical pulsing will be superior to the conventional

method if

or

F.
J s t a t

Jf~
J conv

= <1 (2.14)

F. U. 1 2U.
--l + 2 .....J. :> -1 (1 + --l) (2.15)
F F -x K.F

Eq. (Z.15) is illustrated in Fig. 2. The different straight lines

separate the regions, where a conventional chopper (inside) or a

pseudostatistical (N,K) chopper (outside) will be better.

The reciprocal square cf Bq. (2.14) is just the gain factor y,

which indicates the reduction in measuring time of a correlation

experiment compared with the conventional methode Fig. 3 shows

this gain factor for N = 100 as a function of ~ for same values

of K. A number of gain factors for ~ = 0.1 and N = 100 is

given below.



x

y

1/2

7.14 8.33
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1/4

8.33

1~

8.0

1/10

6.00

In this example the chopper with x = 1/3 or x - 1/4 is about 17 %
better than the one with x = 1/2.

In the limit of extremely high background we obtain

x

25 22.22

1/4

18.75

1~

16

1/10

9

This teIls us that the optimum is to choose a chopper with a time

utilization 1/2 if the background is high.

3. Error analysis for Integrated Intensities

In certain applications of the time-of-flight method it is neces­

sary to determine the integrated intensities of different parts of

the measured spectrum. We shall call the total intensity of a o
adjacent channels beginning at channel number k

a
F 0 _

k - Fk+a

a
and the corresponding absolute statistical error is L1FkO .

In an experiment with a conventional chopper the spectrum of

interest is directly given by the channel contents of the time

analyzer. As the counting rates in different channels are
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a.
indepent, ~FkO is given by

a.
F 0

k

If the same experiment is performed with the correlation technique

the F
k

are obtained by a complicated evaluation procedure from the

measured spectrum Z.• Therefore we cannot assume apriori that they
~

can be treated as independent quantities.
a.o

This rises the question how ~Fk can be calculated for a pseudo-

statistical chopper experiment.

As in the previous section we shall assume a rectangular signal

sequence S .• However we will consider only the special case of
~

zero background and a time utilization of N~1 • Then the counting

rate in the time analyzer is given by

N
r;

1=1

*where S. satisfies the conditions
~

N
r; S. = 1

i=1 ~

and

N

=[:1 k = 0
r; S. S. k

i=1 ~ ~+
k ~ 0

The time-of-flight distribution F
k

is obtained as

2
N

F
k = N+1

I: S. Z. k
i=1 ~ ~+

*Contrary to the previous section S. assumes the values + 1.
J.

0.4)

0.5 )
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with an absolute statistica1 error of

Inserting Eqs. (3.6) into (3.1) yie1ds

a.
F 0 2

k = N+1

Hence

N a. o 2
~ ~ S. Z. k = N+1

i=1 a.=0 1 1+ +a.

N
~

i=1
S. Z. k1-a. 1+

<3.8 )

a.
F 0

k

2 [ N a.o-1 2] 1/2
= ---N1 ~ Z. k (~ S. )

+ i=1 1+ a.=0 1-a.

12 r - N a.o-1 2 N N a.-1 21 1/2
= -- NF l: (l: S . ) + ~ l: S F (~ S . )

N+1 L i=1 a.=0 1-a. 1=1 i=1 i-1+k· 1 a=O 1-a. •

In the second 1ine of (3.9) expression (3.3) was inserted.

Using the relations·

N N
~ ~ Si_1_k F1 = NF

1=1 i=1

and

N a.o-1 2
~ (~ S. ) = a. . (N+1-a. )

i=1 a.=0 1-a. 0 0

we obtain

<3.11)



a.
~Fo

k

where

t:
= N+1
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N N oco-2 oc -1
G = ~ Fl ~ 8 i _l +k ~ o~ 8. 8. ,

1=1 i=1 oc=O a. '=1 l.-a. l.-a.

a.<.a.'

For further simplification of expression 3.13 we make use of the

relation

8. 8. I = -8. ß (, ) oc I a.' I ß (a. '-a. )l.-a. 1.-a. 1.- a.-a,
0.14)

This relation is valid at least for those sequences we are considering

in this section ;-27. An example for Eq. (3.14) is given in Fig. 4

for N=15 elements. One recognizes that when a.'-oc runs through all

possible values, so does ß, however in a quasirandöm way.

Applying (3.14) to (3.13) and using (3.5) yields

N a. 0 - 2 a. 0 - 1 N a.0 - 2 a.0-1
= ~ ~ ~ F

l - (N+1 ) ~ ~ ~ F
l 0.15)

1=1 a=O er. '=1 1=1 a.=o a. '=1

l=k+ß(a.'-a.)

..
The double sum over a. and a.' contains i a. (a. -1) terms. When we

0 1 0

introduce a new index m(ß) to label those -2 a. (a. -1) values of F
o 0

for which l=k+ß(a.'-a.) is fullfilled we finally get

1 -G = - a. (a. -1).NF - (N+1)
200

1
2

a. (a. - 1 )
o 0

~

m=1
Fk+m(ß) 0.16)
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or

The termbefore the brackets is just the error for one channel.

If we neglect the surn inside the brackets we get the usual law

of error propagation for independent Fk• In general ~F~o depends

on the shape of the spectrum and has to be worked out for each

measurement. However, two special cases can be derived easily

from Eq. <3. 17 )

a) F
k

= const = F

a
AF o

k
N ­

N+1 F [
a -1 ]1/2a (1 __0_)

o N 0.18)

ß) a =N, which rneans integration over the total spectrum.
o

As in the sum over m each value Fk appears i(N-1) times

we obtain

Of course, this result could have been obtained in a much simpler

way: If one is only interested in the total intensity it is not

necessary to do a time-of-flight analysis at all. The use of a

conventional or pseudostatistical chopper just reduces the inten-
a4+u ft9 +kQ _aB~+~~ ~aam ~u a ~a~+~~ 1 ~~ 1 N+1 ~~~"~~tivplv w...h.'_·c.h.
~..L. ""J V..L U.LJ"V ... v~'" VV.L V_fOAIU -J ~ ... """,,_.u_ ... N -- '2 N ...........1:'--- v_ • .....-lI , -

means that the ratio of the statistical errors must be

N
N+1 F

This is identical to Eq. 0.19).
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Fig. 5 shows the absolute error of the integrated intensity as

a function of the interval width for an experiment with N=15 and

Fk=const. according to Eq. (3.18). The dashed line would have

been obtained under the assumption that the F
k

are independent.

The circles and crosses were calculated for spectra consisting

of one single peak and two peaks respectively. It is seen that

Eq. (3.18) will be a rather good approximation for most practical

c aae s ,

4. Investigations on a Pseudorandom Double Chopper

4.1 Principle of the Measurement

The successful application of the pseudorandom beam modulation

technique to slow neutron time-of=flight experiments suggests the

idea to use this principle twice in order to determine the energies

of incident and scattered neutron simultaneously. Fig. 6 shows the

scheme of such an experimental setup where two mechanical choppers

with pseudorandom absorption patterns are used. The counting rate

in the detector recorded as a function of time and relative phase

between the two rotors, is then given by

T
1

Z(t'f) == l f dt1
o

(4,1)

where

Io<t;) is the intensity of the reactor beam and~t1 and,6t2are the

smallest slid-widths of the first and second rotor. F(r1 ,t; ) is

proportional to the double differential cross-section (1 (E1 --.., E2'~)'

(4.2)
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With definition (4.2) the transfer function Io(t;) F(t"1''t2) is

identical to the counting rate obtained with a conventional double

chopper, where each of the two rotors has a single slid of width

~ t
1

and ~t2 respectively. The transmissionsfunctions

are characterised by the periods T1 2 which are integral multiples,
N1 2 of At

1
2. n measures the distance of the sampIe from the seco~d

" -rotor in units of the distance L1 between the two rotors, and U is

a time-independent background. L
1,

L
2,

T
1,

T
2,

N
1,

N
2

have to be

chosen suitably that overlap is avoided and the required time

resolution is obtained.

In principle Fet
1
,T2) can be obtained from the two dimensional

field Zet,'f) by an inversion of Eq. (4.1).

For the following considerations we restrict ourselves to the case

of two identical rotors spinning at the same angular velocity. The

phase is changed either continuously or in small steps, however,

one has to ensure, that all possible phase differences occur equally

frequent during the course of the experiment. In this case it is

possible to reconstruct Ioe~1) F(~1'~2) from zet'f) by the cross

correlation technique.

4.2 Reconstruction of the Transferfunction

For simplicity we shall assume that the absorption pattern on the

individual rotor has an ~ver~~e transmission of ~ N~1 and that-- -- -0- -- --------------- - -- ~ N

the reactor beam is infinitely small e.g. the signalfunction Set)

is rectangular. Furthermore we neglect at the moment the small

distance between the sampIe and the second rotor (a=O).
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Then Z(t'f) is given by

T T

Z(t'f) :: ~ rd!1 f dt2 F(l:"1,'t'2) S(t-'1:2+tf) S(t-'Z2-'t;) + U

o 0

with

Fet1 ' 'C2 ) :: -L2 I ( 1::1 ) F ('l":1 ' t"2)Lh - 0 .•

We shall need the following relations:

TrSet) dt :: At..,
o

T

!i(t) :: i J S(t+'t) S(t) d'L

o

(4.4)

(4.5)

(4.6)

T

J ri(t)

o

N+1
dt :: N li t

riet) is the resolution funotion 6f a single pseudostatistical

chopper L-"?? e

,....
In orderto obtain F(t'1''L2) the cross correlation procedure is

applied twice:

T

Y1(t'f1) :: ~ I Z(t'f) S(Y+f,) 't
o

(4.8)
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Inserting (4.3) into (4.8) yields

T

~1 (t,r1 ) = ~ f
o

and from (4.9) and (4.10) we get

T T

= ~ f dt; f dr2 F(r1 ,t"2 ) !ö'(t-'t2) !ö'(t+r2-'l2-i1)+
o 0

The second cross correlation is essentially the time-of-flight,.,
distribution F(!1,1r2) folded with the resolution functions of the

two rotors •

....
If F(f1'f2) is variing only slightly within a time interval ~t,

it can be taken out of the integrals and we obtain

whence

(4.11)

• (4.12)

Performing the same calculations without the neglection of a yields

It is seen from Eq. (4.12) that the influence of a time independent

background is reduced by a factor (N:1)2 compared with a conventional

double chopper experiment. This is simply caused by the much better

time utilization of the reactor beam, which is increased by a factor
N+1
--2- for each rotor.
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If we insert Eqse C4.8) and C4.9) into C4.12) we obtain the

final relation between the transfer function FC~1'12) and the

counting rate at the detector:

T

!drZCt+f1'fl SC'f+f1) So/1-'j2l
o

C4.14)

In practical applications the recording of the counting events is

done by a two dimensional time analyser with a finite channel

width, which we shall assume to be ~t. Therefore ZCt,y) will

consist of N.N discrete values and all integrals in the calcula­

tions above have to be replaced by sums.

Eq. C4.14) has then to be rewritten as

I (,.;) FC' .)... . ~,J
o

4.3 Error Analysis

From Eq. C4.15) the absolute statistical error is obtained as

= 4 [
I ..T." \2
1,.!11" I )

2 ] 1/2
Ztot + N U C4.16)

The total counting rate Ztot can be determined from Eq. (4.3), which

yields
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where

r-:F = 1- E E I (i) F(i,j)
o N2 i j 0

is the average of I (i) F(i,j) over the total range of the incidento
and scattered energies.

Hence

(4.17)

(4.18)

6.(1 (i) F(i,j»
o

N [ 8 U ] 1/2
= 2 N+1 1 0 F + 2

(N+1) •
(4.19 )

If the same experiment is carried out with a conventional double

chopper the statistical error is given by

1/2
A (I (i) , F ( i , j » = [I (a ) F ( i ,.:1) + 2 U]
00.

(4.20 )

Therefore we obtain for the ratio of statistical errors ofboth types

of experiments

~eudostat. =
~conv.

N
2 N+1

8 U 11
/ 2

(N+1 )2

F(i,j)+2U
(4.21)

An experiment with pseudorandom pulsing will therefore be superior

to the conventional method if

I (i) F(i,j) ;> 4 I F - 2 U
o 0

valid for N~ 1.

(4.22)
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The same experiment can also be performed with a single pseudo­

statistical chopper for the energy analysis of the scattered

neutrons, whereas the energies of the stationary incident neutron

beam are selected by a monochromator. If y(i)~ 1 characterizes

the intensity 1055 due to the monochromatisation process, the

error for this case is given by

Comparison of (4.23) and (4.19) shows that for extremeiy high back­

ground the pseudostatistical double chopper is clearly preferable.

For moderate to high background the choice will depend on the

shape of the distribution and which parts of the spectrum are of

main interest.

The advantage of the strong background reduction by a pseudo­

statistical double chopper device with an average transmission of

about one half for each rotor is somewhat opposed by its limitations

for small background. The system may become more flexible if rotors

with a smaller time utilization (say 1/4 or 1/5) are used. We have

not yet performed an error analysis for this case, however, extra­

polation of the above results and those of section 2.4 suggest an

approximate relation

. .. N [- 2U]1/2
(I (~) F (~ , J ) ) (N K) t ~ N KIF + -2o , -sys em . - 0 k

which should be valid for K;;» 1 and N/K ~ 5. This yields far

N/K = 4

(4.24)
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For negl1gible background this system will be superior to the

conventional double chopper as soon as

-I F
o

In order to check the above theoretical investigations experiments

with a pseudostatistical chopper were simulated on a computer.

Fig. 7 shows the results of a calculation assuming quasielastic

scattering from the sampIe. The solid line is the calculated

cross-section whereas the points are the results of the "measurement".

Due to the small counting rate the points scatter widely. The

dashed lines indicate the standard deviation of the statistical

error given by Eq. (4.19).

5. Conclusions

It was shown that all sequences out of the class of difference sets

can be used to modulated the reactor beam in time-of-flight ex­

periments. This leads to chopping systems with different time

utilization. The choppers used so far with an average transmission

of about one half are especially useful if the background is very

high. As choppers with a smaller time utilization reduce the

statistical errors in the low parts of the spectrum they may be

advantageous in cases of moderate background. Thus a chopper with

a time utilization of 1/3 should be a reasonable compromise for

low and high background situations.

If in addition monochromatization of the pulsed beam is required

magnetic systems are more flexible than mechanical choppers. However

the spin flip system suffers from a very low efficiency of about 1 %.
Pulsing the beam with a ferrite crystal L127 seems to be the most

promissing method to fully exploit the advantage of the correlation

technique, as it allows to choose the best suited chopping pattern

for each application.
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An expression was derived for the statistical error of integrals

over parts of the time-of-flight spectrum when a chopper with time

utilization of 1/2 is used. Whereas the statistical error in the

individual channels is constant over the whole spectrum, the error

of integrated intensities depends on the shape of the distribution.

It is generally smaller than the error obtained for independent

quantities. If the integration has to be performed over narrow

peaks as it is required for structur analysis, the deviations are

negligible.

The principle features of a correlation double chopper were

discussed for a system consisting of two rotors with identical

absorption patterns running at the same speed. If the average

transmission of each rotor is one half an extremely good back­

ground reduction is obtained, however, in cases of low background

the applications are limited to spectra consisting of a number

of narrow peaks. It is therefore proposed to use rotors with an

average transmission of about 1/4. This system has a wider range

of applications if the background is small and still reduces

strongly the influence of a large background. It is intended to

perform a more tiorough analysis of double choppers with different

time utilization.
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