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Abstract

This work is intended as an exploratory investigation

of the use of few-angle neutron scattering measurements to

assign resonance spins and parities. The cross section

shape as a function of the scattering angle is illustrated

for s,p and d-wave neutrons.

Text book examples are calculated for isolated resonances

and for interfering resonances. A specific example is given

for 40Ca and a scattering experiment which is in preparation

is outlined. It is concluded that study of the resonance

shape observed at a few scattering angles can be used pro-

fitably to assign spins and parities even for closely spaced

interfering resonances.

Diese Arbeit stellt eine Studie für ein Neutronenstreu­

experiment dar, durch das Spins und Paritäten von Resonanzen

bestimmt werden können. Die Form der Anregungsfunktionen in

Abhängigkeit des Streuwinkels wird für s-, p- und d-Wellen

erläutert. Für isolierte und interferierende Resonanzen werden

Anschauungsbeispiele gegeben. Ein spezielles Beispiel wird für

408a gerechnet und ~in entsprechendes Streuexperiment, das in

Vorbereitung ist, umrissen. Diese Arbeit zeigt, daß die Unter-

suchung der Resonanzformen bei einigen wenigen Winkeln vor­

teilhaft zur Bestimmung von Spins und Paritäten sogar eng

benachbarter ,iii'Eerferierencfer .Resonanzen eingesetzt werden kann.
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X. Introduction

For the development of nuclear theory and models it is important

to determine the quantum numbers of excited states of the compound

nucleus, especially the total angular momentum and parity. Neutron

spectroscopy has long been one of the popular experimental methods.

In addition to the direct application of these data to fast reactor

calculations, questions of a more fundamental nature such as the J

and 1 dependence of resonance spacings and strength functions depend

upon the determination of spin parameters. The following will briefly

present some of the principal methods for obtaining such data from

neutron measurements.

The magnitude of the total angular momentum is frequently available

from total neutron cross section data. Under conditions of high resolu­

tion, the spin weighting factor g, equal to (2J+1)/2(2I+1) can be

calculated from the observed ~ -~.. ThUB the J value can bemax mJ.n
determined. When the s-wave potential scattering is large, s-wave

resonances can be identified from an asyrnmetry in the resonance shape

due to interference between the resonance and the potential scattering.

In other cases an incorrect assignment can be prevented by showing that

the sum rule for neutron widths1 ) is violated. This technique is

applied by dividing the observed resonance width by the penetration

factor associated with the assumed partial wave. The resulting reduced

neutron width y2 may not exceed the estimated width of a single particle
n

state.

The most unambiguous method used for spin and parity assig~ment

fnvolves transmission measurements with polarized neutron beams or sampIes.

However, the necessary d~gree of polarization is difficult to obtain

for broad energy regions. Thisnecessitates laborious measurements of

small changes in the transmission ror the p():l..Ell"~~E!<i.~ll<i ll1lJ)():J.li.!':i..z~g

system.
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Stillother techniques have used the capture y-ray emission

spectrum to assign the parity of compound states. The spin and

parity of the initial state can be found if the spin and parity are

known for the low-lying final state and the nature of the transi­

tion is known. This method is not unambiguous since it depends on

the inherent weakness of certain types of transitions (e.g. magnetic

dipole transitions are usually favored over electric dipole and

higher order multipole transitions are unfavored.) A difficulty

arises because even those transitions of known multipolarity can

show large fluctuations in strength from different initial states.

The unscrambling of various transitions requires extensive analysis

of the data.

A powerful remaining method of analysing experimental data

for spin determination is based on the nuclear dispersion theory

formalism, such as that developed by Wigner and Eisenbud2). The

data consists of differential cross sections measured at different

angles for a number of closely spaced neutron bornbarding energies

in the vicinity of aresonance. Because of the angular dependence

of the cross sections expressed in Legendre polynomials a set of

properly chosen angles allows a unique determination of the I-value

of a level by the shape of the cross section curves. The choice of

the spin parameters can easily be accomplished for different resonances

at the angles chosen in the experiment. (The general appearance of

these standard shapes does not change markedly with energy or with

choice of hard-sphere phase shifts.)

This method has been used successfully in light nuclei3- 11
)

altnough in tnose instänces it was mostly applied tb reläte ~he

results of phase shirt analysis to independently derived level

parameters. The main reasons for the limitation of this method

to light nuclei are due to the difficulties of obtaining intense

neutro~ sources, efficient neutron detectors and acceptable energy

resolution. When these problems are overcome, partial wave assignment

'lI 1 'f b' 't' 't d'd . t . t 12 )W1 c ar1 y am 19U1 1es as 1 1 1n a recen exper1men •
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Here the angular dependence of interference effects in the scattering

cross section was measured to determine the l-value of the 1.15 keV

resonance in 56Fe •

In this report the theory of differential neutron scattering

using the R-matrix formalism is briefly reviewed. The method of

spin and parity determination by few angle scattering measurements

is discussed at length and many illustrative examples are given.
40

A specific example for Ca(n,n) is shown and a simple scattering

experiment is proposed.

TT....... Review of Theory

The problem of calculating the angular dependence of scattering and

reaction processes for nuclear partiales has been worked out by some
- . 13 14)

authors in great deta1l ' • The following section will outline

the development one may follow for the particular problem at hand,

i.e. the assignment of the angular momentum and parity of the compound

state by neutron scattering. This introduction is intended to provide

a logical foundation for the scattering formulae used in the analysis

of data and adefinition of the terms used. The development follows

that of Blatt and Biedenharn14
).

The formalism begins with the definition of an amplitude

q I I I. This represents a transition amplitude for the reactioncx.sLu;cx. s u
process cx.~/u- cx.Isiu'in which an incident plane wave with a specified

two body partition cx., channel spin sand projection IU is observed

after the reaction as a plane wave in direction Q I with partition cx. ' ,cx.
channel spin s' and projection lu l

• The primed quantities need not

be different from the unprimed ones. In the case of elastic neutron

scattering for example cx. = cx. ' • Denoting the two nuclei by X and Ycx. cx.
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we can define the following channel parameters

M
a = the reduced mass for partition a

Ea

the relative coordinate

the energy of relative motion
between X and Ya a

ka

V
a.

1=r
a

hka= M
a

the wave number

the relative velocity

Q 0 ~
a' a a

the solid angle in direction r
a

and the polar angles.

For this two-body partition a the generalized incoming and outgoing

wa'\res are given by

J
alm = 1/2

r v
-(1--(1--

(J
alm =
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where I~l and O~l are the solutions of the free-partiele radial

equation and y~ is the normalized spherieal harmonie. The ehannel

is eompletely speeified by the quantum numbers e = (~lsm/u) and

wave funetions

Je =J 1 X
~ m ~s/u

\1 =6 Xe ~lm . ~s/u

where X is the wave funetion of nuelei X and Y eombined to
~sIU ..... ct a.

yield angular momentum ~ = Jx~ + Jy~ with z-eomponent /u.

A linear eombination of J and cr eonstitutes the most generale e
wave funetion in the external region whieh satisfies the wave

equation for energy E
~

(1 )

where the amplitudes of the ineoming waves Aare arbitrary. The

quantity U I is the eollision matrix16 ) anderepresents the probabilityee
amplitude for a collision from ehannel e into ehannel el. For reae-

tions with only one open channel (e.g. pure elastie seattering), U may

be related to a phase shift 5 by U = exp (2iO). In general, for N open

ehannels U is an N-by-N matrix whieh is unitary and symmetrie.

In the usual development, the next ~p requires the expansion

of the ineoming plane wave as partial waves in the spherieal harmonies.

An ineident beam of uneharged partieles with unit flux is written ~§

lIJ~s;U =
ine.

ik Z
~ ~e x

~s/u

= ifit: E (21+1) 1/2 (J -0' ) X
k a 1 ~lo ~lo ~s/u
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where X is the previously introduced channel wave function. In
«s IU

this expansion m=O has been assumed since the different spin orienta-

tions are incoherent and we are concerned only with unpolarized beams.

By comparing (2) with the total wave function given in (1), the

amplitudes of the incoming spherical waves are given as

A = iVTr. ~ (21+1)1/2 0
c « mo

for the channel c = (<<,l,s, m=o,/u).

Then the total wave function is

=\V ~s/u + ifu 7t2 I:
l.nc. « lc'

(21+1) 1/2 0 /J 0 - u er 7
mo - c ce' ce' c'-

- i VTt 7t2 I: (21+1)1/2 15 1 - U 1 7 X
a 1 - a. 0 a 0--' a.s/u

This is the wave function of astate with unit flux incident in

channel «s/u and various outgoing waves. The outgoing wave in

channel «'B/u' i5

«'s'u'
\11 out/ =

itn
k a.

11~m' (21+1) 1/2/6 ««' 0 ss' Oll'

.1-1 i. 1/2~l. (21+1) 15 ,Ö ,Ö l1 ,5 ,5,- «« ss jUjU m 0
j j

7 m'
- U 1 Nt1's'm/tu'- Ylt aNtI'a. sOIU; .... ....
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Now, the amplitude of the scattered wave is identified as,

q (Q"",) = i (;c
«s/u; o:'siu' ...

11: E (21+1) 1/2
« ll'm'

•

16 ö {) Ö 5 - u 7 ym' (Q )
- 0:«' ss' 11' /u/u' mo o:lsO/u; 0: 'l's 'm '/u ,- I' «'

and the differential cross section is simply given bYl

da'
a:s/u; «'s'u'/

/ dQ = Iqa.s u=
I /,

(X's'u'/
(4)

If the beam of incident particles is unpolarized and we do not

separately observe the spins s' or their projections /u! in the

outgoing channels we need to average equation (4) over incident

channels with s,/u and to sum over outgoing channels s',/u'.

This is most easily done by making use cf the total angular mo­

mentum quantum number J. Thus, the scattering matrix UJ with

elements U
J

1 "1' is introduced. The relationship of yJ and U«s ,0: s
involves the ~ector addition coefficients connecting the states

«lsJM and a.lsm/u

:: E (lsOjU I JM) (l's 'm/'u' I JM) U;Sl"~'S'l'
JM '

Following themethod of'Blat-tand Bi;edenhaxn1~ )symme-try con;;;,;

siderations show that the actual evaluation of the differential
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cross section formula

1 s S'

da' = 2s+1 I: I: dO' a 's 'u'aa' aSju;
jU= -s jU'= _SI j

can be simplified considerably. This can be reduced to an expression

involving no sums over magnetic quantum numbers. The necessary

development is due to Racah15 ). The final result can be written

most simply in termsof the so called Z coefficients Z(11J112J21sL)

defined as

where W is a Racah coefficient15 } and (111200ILO) are the usual

vector addition coefficients. The differential cross section is

then given by the weIl known Biedenharn formula,

da'as;a's'

where

I:
L=O
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B
L

(a.s; a. 's ,) =

J 1Tt 1
Reßt> ,5 ,5 11 , - U""l s-a.'l's') • (6 ,Öss,Ö l l' -- a.a. ss 1 1 ~ l' 1 a.a. 2 2

The sum runs over J1Tt1J2Tt21111l2l2 and all sums are unrestricted going

from 0 tom • In practice, only one ofthese is really infinite.

The other five sums are finite because of selection rules, associated

with parity conservation.

Up to this point general expressions for reaction cross

sections have been ebtained in terms cf the collision matrix ü.

This matrix hides all of the real physics of the problem.

Practical applications of the theory must now deal specifically

with the collision matrix. Several methods are in general usa;

we will consider only the R-matrix theory of Wigner. The basic

idea of the theory is to describe the cross section (i.e. the

collision matrix) in terms of eigenfunctions and eigenvalues

defined close to the surface of the nucleus. Eigenfunctions of

the internal region are then related te the well-known wavefunct10ns

of the external (potential-free) region via the logarithmic

derivative at the channel radius. This idea 18 co.~on to other

reaction theor1~s Buch as the methode! Kapurand Peierls,but the

Wigner theory has the advantage of real eigenvalues and energy

independent parameters. In this theory the U matrix is simply

related to the R_matrix16 ) by simple functions defined in the

external-region
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whereQ, Land P are diagonal matrices defined in terms of the

external wavefunctions. Elements of the R-matrix in turn are

completely defined in terms of the two energy independent para­

meters ~ and Y~c

YACYAC '
= r:

A EA-E

The usual difficulty with the Wigner theory lies in the inversion

of the matrix L1-R (L-B27 which becomes difficult for the case of

several open channels. This difficulty has been avoided in the

Kapur Peierls method at the expenses of the use of energy dependent
2parameters analogous to YAC and EA• In our present case we deal

with a single open channel (the elastic reaction channel) and the

R-matrix becomes a simple function.

III. Predictions of the Theory

In the previous section, a general outline of the theory of the

differential neutron scattering cross section was presented. One

of the useful applications of the theory is to light or closed

shell nuclei where only the elastic scattering channel needs to

be explicitly treated. This situation occurs for most of the fast

neutron analysisperformed to date.

A Fortr.an programm+ has been written to calculate the dif­

f~ntial scattering cross section as a function of neutron energy

and angle. Multi-level ef-fects have beenincluded .. A-t present,· only

zero spin ground state nuclei can be treated, but the calculation

can be easily generalized.

+ The program input consists of an arbitrary set of resonances
with assumed spins and parities. The program provides an output
list of the calculated cross sections and a Calcomp picture cf
the resonance shape (energy dependence) at various laboratory
scattering angles.
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The first of the results presented in this section illustrates

the characteristic resonance shapes versus scattering angles which

occur for isolated s, p and d-wave resonances. All calculations

were performed for a resonance at 0.9 MeV, with width 30. keV and

hard sphere radius 5. fermi. However, these parameters are not of

primary importance as long as the s~wave phase shift dominates

p and d~wave. Figures 1-5 show the shape of isolated s, p and

d-wave resonances at five laboratory scattering angles (44.0 0
,

58.8
0
,88.60 ,124.2

0
and 149.30

). Certain symmetries are apparent.

The s-wave resonance has qualitatively the same shape at all

scattering angles. The dominant resonance and interference parts

of the cross section are contributed by the L=O termin the

Legendre expansion (eqn. 5) and therefore are independent of the

angle. A smaller contribution comes from the interference between

s-wave resonance and p-wave potential scattering via the L=1 term.

This behaves as cos Q and causes a noticeable increase in the

off-resonance scattering at forward angles and a decrease at back

angles.

The p-wave resonanc~have a strong forwara-backward scattering

asymmetry about 90 0 where the interference term changes sign. This

is due to the interference between p-wave resonance scattering and

s-wave potential which manifests itself through the L=1 term

(cos Q) of the expansion. At forward angles, the interference is

destructive below resonance and constructive above. At back angles,

the effect is reversed. These differences in the shape cf sand

p-wave resonances at forward arid backward scattering angles permit

their identification in the Bcattering cross section. For example,

a measurement of the scattered neutron energy spectrum at only two

angles could be used to assign the spin state. We note that the

Cnafac-ceristicoeihaviour ors and p-wave resonances is precisely

reversed at high energies (E-.10 MeV) where the p-wave phase shiftn
dominates s-waves. Now the p-wave resonance shape depends largely

on the L=O term and shows little angular dependence. At these
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energies the s-wave resonance becomes asymmetrie about 900 due

to the dominant L=1 term.

The shape of the d-wave resonances is slight1y more comp1i­

cated. Rere the strongest angular dependence occurs via the L=2

term from coherence between d-wave resonance and s-wave potential

scattering. This term behaves as 3cos2Q-1 and the interference

reverses sign at 54.70 and 125.30 in the C.N. system. At these

ang1es, the coherence is zero and the resonance has pure1y Lo­

rentzian shape. The direct resonance scattering comes from L=O

and L=2. The 1atter term reaches a maximum at 0 0 and 1800 and

has symmetry about a minimum at 900
•

In princip1e, s, p and d-wave resonances can be identified

by a three angle scattering measurement. The 1imiting case of

multiple-angle measurements corresponds to the standard phase

shift analysis experiment.

The second set of examples of resonance shapes presented

here concerns the coherent effects which occur in the differen­

tial scattering cross section between resonances of different

spins and parities. For the total scattering cross section, the

square of the scattering amplitude can be reduced to the real

part of the co1lision matrix. The total scattering matrix then

contains only diagonal elements with 11=12 and J 1=J2 • Thus, in

the total cross section, interference can occur only between

resonances with the same spin and parity. The differential

scattering cross section, however, depends on a collision matrix

composed of diagonal elements as weIl as all possib1e cross

product terms between levels. The Legendre expansion (eqn. 5) is

only an equivalent form for the square of a sum of angular depen­

dent scattering amp1itudes (eqn. 3,4). If the differential cross

section is integrated to obtain the total scattering, all terms

except L~O integrate to zero, and this term can on1y contain
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Figures 6-9 illustrate coherence in the differential scat­

tering cross section for several combination of resonances with

different spins and parities. Für demonstration, interference

between 1/2+-1/2-, 1/2+-3/2+, 1/2--3/2- and 1/2--3/2+ resonances

have been chosen. The coherent effeets can be seen by comparison

with the single level shapes and espeeially with the total scat­

tering cross section. The figures also show the changing shape

of the cross seetion as a narrow resonance is moved aeross a broad

resonance.

The figures illustrate several examples in which resonance

shapes change dramatically as levels move closer and the coherenee

beoomes stronger. It is not the intention of this section to

discuss all of these effects. The important point is that the

coherent interactions follow directly from the theory and can be

readily calculated. Our purpose here is merely to present a

series of text book examples which can be referred to later.

The final examples deal with multi-level effects between

resonances with the same spin and parity. These are shown in

figures 10-14 for s, p and d-wave resonances. The figures also

show the effect of moving a narrow resonance across a broad

resonance. This demonstration is the counterpart in the dif­

ferential cross section of the text book examples computed by

Bowman et al. 17 ) for the multi-level interference in the total

scattering cross section.
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Up to this point, the theory has been briefly dicussed and

several examples have been shown. We now offer an illustrative

example for the applieation of the method to the determination

of resonance spins and parities in 41 Ca • The total cross section
40 17 18)

of Ca has previously been measured by several workers ' •

Arecent analysis19 ) of high resolution data has indicated that

several large resonances in the energy range .8-1.0 MeV which

were previously assigned to s-wave neutrons are better fitted by

assuming p-waves. If the fit is forced with s-waves, an unrealisti­

cally small channel radius results.

We have calculated the shape of the 40Ca differential scat­

tering cross section for neutron energies .8-1.0 MeV. Energies

and widths for the major resonances have been taken from total

cross section analysis. New high resolution data
18 ) also show

many narrow p and d-wave resonances, but these have not been

included in the calculation. Figures 15-17 show the predicted

shape of the cross section at three angles. Each figure corre­

spende to a different set of assumptions for the level spins and

parities. Table I summarizes the assumptions. Careful examination

of the figures indicates that it should be possible to determine

if the broad resonances at 867, 886, 973 and 1009 keV are caused

by s or p-wave neutrons. Even this complicated case containing

closely spaced levels demonstrates the same features which oceur

for isolated resonances. The example of 40 Ca contains both coherent

and multi-level interference.

V. A Proposed Scattering Experiment

The angular dependence of resonance line shapes can be used

to unambiguously ass1gn the spin and parity of levels of the
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compound nucleus. We have shown that certain features and sym­

metries are characteristic of s, p and d-wave resonances. Know­

ledge of these features and especially our ability to precal­

culate the resonance shapes as a function of seattering angle

leads us to propose that this method may be applied to determine

spins and parities for possibly a large number of resonances.

Asami and Moxon12 ) have recently shown that the method is easily

applied to an isolated resonance. We suggest that the method can

also be used in the energy region where levels overlap and multi­

level effects oceur. To this end, we have outlined below a trial

experiment for three scattering angles.

The Karlsruhe isochronous cyclotron has been used routinely

for total cross section measurements. The time-of-flight spec­

trometer at this installation could also be used to perform few­

angle scattering measuremente. A three angle measurement for 40Ca

is currently in preparation. Calculations of the expected count

rate indicate that with the present 20 KHz pulsing system, the

sampie to detector distance should be less than about 25 cm.
1.-

The ~uCa sampie will be in the form of a right circular cylinder

with its symmetry axis perpendicular to the neutron beam. This

geometry assures uniform neutron attenuation at all scattering

angles. The incident neutron beam will be collimated to a

7 cm x 14 cm size at 50 m. The scattering sampie must necessarily

be somewhat thick (.05-.1 atoms/barn) to achieve a favourable

counting rate. Data from three scattering angles and a beam

monitor will be simultaneously accumulated in an on-line computer.

The 8 region data program (sampie in and sampie out) required for

this measurement is in preparation.

It is important to note that this type of experiment has as

its primary objective the measurement of the shape of neutron
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resonances at various scattering angles. Thus, absolute differen­

tial scattering cross sections need not be obtained. Absolute de­

tector efficiencies and the absolute ineident neutron intensity

are not required. Functions which vary slowly with the neutron

energy, such as the incident flux shape and the energy dependent

detector efficiency, are also of secondary importance. High an­

gruarresolution is not required and can be sacrificed to improve

counting rates.

40For Ca, the total cross section has previously been meas-

ured and resonance energies and widths are generally known. Thus,

the expected differential cross section can be precalculated for

several sets of assumed level spins and parities as shown in

figures 15-17. These precalculations also permit the optimal

scattering angles to be chosen and the effects of multiple scat­

tering can be visualized before the measurements are made.

VI. Summary

This paper is intended as an exploratory investigation of the

use of a few-angle scattering measurement to assign resonance

spins and parities. The general theory of differential scattering

cross section has been presented briefly. We have calculated

many text book examples showing the shape of the cross section

as a function ofscattering angle. The figures show isolated

resonances as weIl as coherent effects between resonances. A
L~

specific example was illustrated for resonances in ~uCa.

Finally, we have briefly sketched a possible scattering experi­

m~nt to utilize the ~ethod.

Multiple-angle scattering experiments have been used routinely

for phase shift analysis of gen~rally smooth cross sections.
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Thus far, the method has been applied to resonance scattering

only for the case of an isolated resonance. On the basis of the

present study, we suggest that the method will also be useful

for the case of closely spaced interfering resonances, even in

the presence of multi-level effects.
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Fig.15 Calcium-40 All p-Waves

Fig.16 Calcium - 40 All s - Waves

Fig.17 Calcium-40 Mixed sand p-Waves (see Table I)
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Legend for Figures 15 to 17

0

0 Differential Cross Section (barns/steradian) 45.0C.M.

<> Differential Cross Section (barns/steradian) 90.0~.M.

+ Differential Cross Section (barns/steradian) 150.0~.M.

X Total Scattering Cross Section (barns)1 7.5
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Fig.14 5/2+ Resonances

Multilevel Interference




