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Abstract

This work is intended as an exploratory investigation
of the use of few-angle neutron scattering measurements to
assign resonance spins and parities. The cross section
shape as a function of the scattering angle is illustrated
for s,p and d-wave neutrons,

Text book examples are calculated for isolated resonances
and for interfering resonances., A specific example is given
for 4OCa and a scattering experiment which is in preparation
is outlined, It is concluded that study of the resonance
shape observed at a few scattering angles can be used pro-
fitably to assign spins and parities even for closely spaced

. interfering resonances.

Diese Arbeit stellt eine Studie fiir ein Neutronenstreu-
experiment dar, durch das Spins und Paritdten von Resonanzen
bestimmt werden kdnnen., Die Form der Anregungsfunktionen in
Abhidngigkeit des Streuwinkels wird fir s-, p- und d-Wellen
erldutert, Fir isolierte und interferierende Resonanzen werden
Anschauungsbeispiele gegeben, Ein spezielles Beispiel wird fiir

‘Ca gerechnet und ein entsprechendes Streuexperiment, das in
tung ist, umrissen. Diese Arbeit zeigt, daBl die Unter-
suchung der Resonanzformen bei einigen wenigen Winkeln vor-

teilhaft zur Bestimmung von Spins und ParitZten sogar eng

benachbarter, interferierender Resonanzen eingesetzt werden kann.
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I, Introduction

For the development of nuclear theory and models it is important

to determine the quantum numbers of excited states of the compound
nucleus, especially the total angular momentum and parity. Neutron
spectroscopy has long been one of the popular experimental methods.
In addition to the direct application of these data to fast reactor
calculations, questions of a more fundamental nature such as the J
and 1 dependence of resonance spacings and strength functions depend
upon the determination of spin parameters., The following will briefly
present some of the principal methods for obtaining such data from

neutron measurements,

The magnitude of the total angular momentum is frequently available
from total neutron cross section data. Under conditions of high resolu-
tion, the spin weighting factor g, equal to (2J+1)/2(2I+1) can be
Thus the J value can be

calculated from the observed ¢ o

max ~min®
determined, When the s-wave potential scattering is large, s-wave
resonances can be identified from an asymmetry in the resonance shape
due to interference between the resonance and the potential scattering.
In other cases an incorrect assignment can be prevented by showing that
the sum rule for neutron widths1) is violated. This technigue is

applied by dividing the observed resonance width by the penetration
factor associated with the assumed partial wave, The resulting reduced
neutron width Yi may not exceed the estimated width of a single particle

state,

The most unambiguous method used for spin and parity assignment

involves transmission measurements with polarized neutron beams or samples,

However, the necessary degree of polarization is difficult to obtain
for broad energy regions. This necessitates laborious measurements of
small changes in the transmission for the polarized and unpolarized

system;



Still other techniques have used the capture y-ray emission
spectrum to assign the parity of compound states. The spin and
parity of the initial state can be found if the spin and parity are
known for the low-lying final state and the nature of the transi-
tion is known. This method is not unambiguous since it depends on
the inherent weakness of certain types of transitions (e.g. magnetic
dipole transitions are usually favored over electric dipole and
higher order multipole transitions are unfavored,) A difficulty
arises because even those transitions of known multipolarity can
show large fluctuations in strength from different initial states.
The unscrambling of various transitions requires extensive analysis

of the data.

A powerful remaining method of analysing experimental data
for spin determination is based on the nuclear dispersion theory
formalism, such as that developed by Wigner and EisenbudZ). The
data consists of differential cross sections measured at different
angles for a number of closely spaced neutron bombarding energies
in the vicinity of a resonance. Because of the angular dependence
of the cross sections expressed in Legendre polynomials a set of
properly chosen angles allows a unique determination of the l-value
of a level by the shape of the cross section curves. The choice of
the spin parameters can easily be accomplished for different resonances
at the angles chosen in the experiment, (The general appearance of

these standard shapes does not change markedly with energy or with

choice of hard-sphere phase shifts.)

. 3-11)

This method has been used successfully in light nuclei
although in those instances it was mostly applied to relate the
results of phase shift analysis to independently deriv
parameters, The main reasons for the limitation of this method
to light nuclei are due to the difficulties of obtaining intense
neutron sources, efficient neutron detectors and acceptable energy
resolution, When these problems are overcome, partial wave assignment

2)

will clarify ambiguities as it did in a recent experiment1 .



Here the angulér dependence of interference effects in the scattering
cross section was measured to determine the l-value of the 1.15 keV
resonance in 561“e.

In this report the theory of differential neutron scattering
using the R-matrix formalism is briefly reviewed., The method of
spin and parity determination by few angle scattering measurements
is discussed at length and many illustrative examples are given,

A specific example for 40Ca(n,n) is shown and a simple scattering

experiment is proposed,

II., Review of Theory

The problem of calculating the angular dependence of scattering and
reaction processes for nuclear particles has been worked out by some

13,14)

authors in great detail . The following section will outline
the development one may follow for the particular problem at hand,
i.e. the assignment of the angular momentum and parity of the compound
state by neutron scattering, This introduction is intended to provide
a logical foundation for the scattering formulae used in the analysis
of data and a definition of the terms used. The development follows
that of Blatt and Biedenharn14).

The formalism begins with the definition of an amplitude
Us usa'stu' This represents a transition amplitude for the reaction
process as/u- a's)u'in which an incident plane wave w;thra specified
two body partition a, channel spin s and projection /u is observed
after the reaction as a plane wave in direction Qa’ with partition a',
channel spin s' and projection /u’. The primed quantities need not
be different from the unprimed ones. In the case of elastic neutron

scatteringrfor example o = a', Denoting the two nuclei by Xa and Ya
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we can define the following channel parameters

X Y
Ma = Mka+Mya s the redu§ed mass for partition «
o« a
?& = 3& -ty . the relative coordinate
a o
Ea ’ the energy of relative motion
between X and Y
a o
k = %— = (2-1\-@)1/2 y the wave number
a 2
o h
hk
V = o—
o Ma s the relative velocity
Q ,e8 . the solid angle in direction T
a oo o

and the polar angles,

For this two-body partition a the generalized incoming and outgoing

waves are given by

. 1,m . lom
J _ 1 Yl(sla) Ial J - * Yl(gza) Oa

alm 1/2 alm 1/2

1

r v r v
o - : - e



where Ia and Oa are the solutions of the free-particle radial

1
equation and Y

1

1 is the normalized spherical harmonic. The channel

is completely specified by the quantum numbers c = (alsm/u) and

wave functions

jczjmmxa%m dczgﬂmxa%m
where xas a is the wave function of nuclei Xm and Yﬂ combined to
yield angllar momentum s = J, + d, with z-component .
o Yo /

A linear combination of jc and (jc constitutes the most general
wave function in the external region which satisfies the wave

equation for energy Ea
) A (1)

where the amplitudes of the incoming waves Ac are arbitrary. The
quantity Ucc’ is the collision matrix16) and represents the probability
amplitude for a cellision from channel ¢ into channel ¢', For reac-
tions with only one open channel (e.g. pure elastic scattering), U may
be related to a phase shiftd by U = exp(2i6). In general, for N open

channels U is an N-by-N matrix which is unitary and symmetric.

In the usual development, the next step requires the expansion
of the incoming plane wave as partial waves in the spherical harmonics,

An incident beam of uncharged particles with unit flux is written as

ik =
a a
as/u e _im 1/2
v :'Lnéf1 - W chs/u Tk z (21+1) (jalo-o;lo) Xas/u (2)

o 1



b

where xas 0 is the previously introduced channel wave function, In
this expaésion m=0 has been assumed since the different spin orienta-
tions are incoherent and we are concerned only with unpolarized beams.
By comparing (2) with the total wave function given in (1), the

ampl‘ii:udes of the incoming spherical waves are given as

A = 4m X (24125
c a mo
for the channel ¢ = (a,l,s, m=0,/u).

Then the total wave function is

@8/ . 2 1/2
WEG =V iné. + a lic:' (2141) ® o -/jc Occt = Ueer O’c 7

-iﬁtkiz: (21+1)2 /5 7 X

1 ~“alo alo—~ as/u

This is the wave function of a state with unit flux incident in
channel o:,s/u and various outgoing waves, The outgoing wave in

channel a's,}u' is

a'stu’' _ _:!._{T_L 1/2
Voue! Tk 2 (21+1) /L6, B

(>3 11'm’

6
ss' 11! /u/u' n'o

- U"-ISO/H; a'l's'm)u‘f"‘ o’c'

- i o ,l=1° 1/2 7
- ?. , Vv .t (2141) [a-aa'ass' 11 Bl,u/u'ﬁm'o -
1tm? '

m'
- Ut:clsc/u.; a'l's'm)u'—7 Y].' Oa'l'



Now, the amplitude of the scattered wave is identified as,

_ s 1/2
qas/u; atsiu’ (Q ) =1 r x, T (21+1)

1l1'm!
(3)
- m!
Z-_ﬁoux' 5ss' 6ll' 6u u'ﬁmo - Uonls() u; a'l's'm! u'—-7 Yl' (Qa')
// / /
and the differential cross section is simply given by,
2
0'ccs/u; a's}u' /4 = ,qas/u; a's)u' (S?a') (%)

If the beam of incident particles is unpolarized and we do not
separately observe the spins s' or their projections /u' in the
outgoing channels we need to average equation (4) over incident
channels with s,/u and to sum over outgoing channels s',/u’.
This is most easily done by making use of the total angular mo-
mentum quantum number J, Thus, the scattering matrix UJ with
elements Ugsl,a's'l' is introduced. The relationship of UJ and U
involves the vector addition coefficients connecting the states

alsJM and alsm/u

J
= fetmiqg!
z_(lso/u | M) (1's mju [ aM) Ueslsa's'l!

U . ] 1 1 ' 1)
also u; a'l's'miu T4

Following the method of Blatt and Biedenharnjq} symmetry con= -

siderations show that the actual evaluation of the differential
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cross section formula

z ' ddas/u; a's}u'

can be simplified considerably. This can be reduced to an expression

involving no sums over magnetic quantum numbers. The necessary
15)

development is due to Racah . The final result can be written

most simply in termsof the so called Z coefficients 5(11J112J215L)

defined as

L-1_,+1
= . 1772 1/2 1/2 1/2 1/2
Z(11J112J2|sL) = i (211+1) (212+1) (2J1+1) (2J2+1)

w(l1J112JleL) . (111200|L0)

where W is a Racah coefficient15) and (1,1.0011L0) are the usual

172
vector addition coefficients, The differential cross section is

then given by the well known Biedenharn formula,

BL(a,s; a's!') PL(cosO) aQ (5)

where



1 1
. _ (-)S—S - - .
B, (as;ja's') = —f—— I 2(1,9,1,9,1sL) 2(139,15J,] sL)

J.n
171
/(5 ] 5 -0 - (b -
Re/ o' ss'! 111,; al,]s;a'l,;s') (aa'ﬁss'ﬁlala'
J.IU
- Uai g‘a'l's'l7
27 2

The sum runs over JfI1J£T21114121é and all sums are unrestricted going
from O tow . In practice, only one of these is really infinite,
The other five sums are finite because of selection rules, associated

with parity conservation,

Up to this point general expressions for reaction cross
sections have been obtained in terms of the collision matrix U.
This matrix hides all of the real physics of the problenm,
Practical applications of the theory must now deal specifically
with the collision matrix, Several methods are in general use;
we will consider only the R-matrix theory of Wigner, The basic
idea of the theory is to describe the cross section (i.e. the
collision matrix) in terms of eigenfunctions and eigenvalues
defined close to the surface of the nucleus., EBigenfunctions of
the internal region are then related to the well-known wavefunctions
of the external (potential-free) region via the logarithmic
derivative at the channel radius, This idea is common to other
reaction theories such as the method of Kapur and Peierls, but the
Wigner theory has the advantage of real eigenvalues and energy
independent parameters., In this theory the U matrix is simply
related to the R-matrix16) by simple functions defined in the

external region
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v=-0p/2. /[T-R(1-B)7~" /T_R(L*-B)7 - p=172q

whereQ, L and P are diagonal matrices defined in terms of the
external wavefunctions. Elements of the R-matrix in turn are

completely defined in terms of the two energy independent para-

meters EX and Yic

Rcc' =z chtgc'

A A
The usual difficulty with the Wigner theory lies in the inversion
of the matrix /7-R (L-B)/ which becomes difficult for the case of
several open channels, This difficulty has been avoided in the
Kapur Peierls method at the expenses of the use of energy dependent
parameters analogous fo Yic and Ek' In our present case we deal
with a single open channel (the elastic reaction channel) and the

R-matrix becomes a simple function.

IITI. Predictions of the Theory

In the previous section, a general outline of the theory of the
differential neutron scattering cross section was presented., Ons
of the useful applications of the theory is to light or closed
shell nuclei where only the elastic scattering channel needs to
be explicitly treated. This situation occurs for most of the fast

neutron analysis performed to date.

A Fortran programm+ has been written to calculate the dif-

ferential scattering cross section as a function of neutron energy

and angle. Multi-level -effects have been included, At presenty only -~

zero spin ground state nuclei can be treated, but the calculation

can be easily generalized.

* The program input consists of an arbitrary set of resonances
with assumed spins and parities., The program provides an output
list of the calculated cross sections and a Calcomp picture of
the resonance shape (energy dependence) at various laboratory
scattering angles,
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The first of the results presented in this section illustrates
the characteristic resonance shapes versus scattering angles which
occur for isolated s, p and d-wave resonances, All calculations
were performed for a resonance at 0,9 MeV, with width 30. keV and
hard sphere radius 5, fermi. However, these parameters are not of
primary importance as long as the s-wave phase shift dominates
p and d-wave, Figures 1-5 show the shape of isolated s, v and
d-wave resonances at five laboratory scattering angles (44.00,
58.8°%, 88.6°, 124,2° and 149.3°). Certain symmetries are apparent .
The s-wave resonance has qualitatively the same shape at all
scattering angles. The dominant resonance and interference parts
of the cross section are contributed by the L=0 term in the
Legendre expansion (egqn. 5) and therefore are independent of the
angle. A smaller contribution comes from the interference between
s~-wave resonance and p-wave potential scattering via the L=1 tern.
This behaves as cos © and causes a noticeable increase in the
off-resonance scattering at forward angles and a decrease at back

angles,

The p-wave resonances have a strong forward-backward scattering
asymmetry about 900 where the interference term changes sign. This
is due to the interference between p-wave resonance scattering and
s-wave potential which manifests itself through the L=1 ternm
(cos ©) of the expansion. At forward angles, the interference is
destructive below resonance and constructive above., At back angles,
the effect is reversed., These differences 1in the shape of s and
p-wave resonances at férward and backward scattering angles permit

N

he scattering cross section, For example,

ion in ©
a measurement of the scattered neutron energy spectrum at only twe
angles could be used to assign the spin state. We note that the
characteristic behaviour of s and p-wave resonances is precisely
reversed at high energies (E£~7O MeV) where the p-wave phase shift
dominates s-waves. Now the p-wave resonance shape depends largely

on the L=0 term and shows little angular dependence. At these




energies the s-wave resonance becomes asymmetric about 900 due

to the dominant L=1 term,

The shape of the d-wave resonances is slightly more compli-
cated, Here the strongest angular dependence occurs via the L=2
term from coherence between d-wave resonance and s-wave potential
scattering. This term behaves as 3c0329—1 and the interference
reverses sign at 54.7° and 125.3° in the C.M. system. At these
angles, the coherence is zero and the resonance has purely Lo-
rentzian shape. The direct resonance scattering comes from L=0
and L=2, The latter term reaches a maximum at 0° and 180° and

has symmetry about a minimum at 900.

In principle, s, p and d-wave resonances can be identified

by a three angle scattering measurement., The limiting case of

multiple-angle measurements corresponds to the standard phase

shift analysis experiment.

The second set of examples of resonance shapes presented
here concerns the coherent effects which occur in the differen-
tial scattering cross section between resonances of different
spins and parities., For the total scattering cross section, the
square of the scattering amplitude can be reduced to the real
part of the collision matrix, The total scattering matrix then
contains only diagonal elements with 11=12 and J13J2‘ Thus, in
the total cross section, interference can occur only between
resonances with the same spin and parity. The differéntial
scattering cross section, however, depends on a collision matrix
composed of diagonal elements as well as all possible cross
product terms between levels. The Legendre expansion (eqn. 5) is
only an equivalent form for the square of a sum of angular depen-
dent scattering amplitudes (eqn. 3,4). If the differential cross
section is integrated to obtain the total scattering, all terms

except L=0 integrate to zero, and this term can only contain



elements with 11z1 and J1=J

2 2°

Figures 6-9 illustrate coherence in the differential scat-
tering cross section for several combination of resonances with
different spins and parities., For demonstration, interference
between 1/27-1/27, 1/2%-3/2%, 1/27-3/2" ana 1/27-3/2% resonances
have been chosen, The coherent effects can be seen by comparison
with the single level shapes and especially with the total scat-
tering cross section. The figures also show the changing shape
of the cross section as a narfow resonance is moved across a broad

resonance,

The figures illustrate several examples in which resonance
shapes change dramatically as levels move closer and the coherence
becomes stronger., It is not the intention of this section to
discuss all of these effects, The important point is that the
coherent interactions follow directly from the theory and can be
readily calculated., Our purpose here is merely to present a

series of text book examples which can be referred to later.

The final examples deal with multi-level effects between
resonances with the same spin and parity. These are shown in
figures 10-14 for s, p and d-wave resonances, The figures also
show the effect of moving a narrow resonance across a broad
resonance. This demonstration is the counterpart in the dif-
ferential cross section of the text book examples computed by
Bowman et a1.17) for the multi-level interference in the total

scattering cross section.




IV, An Example for 4OCa

Up to this point, the theory has been briefly dicussed and
several examples have been shown.vWe now offer an illustrative
example for the application of the method to the determination
of resonance spins and parities in 410&. The total cros? seg%ion

R ; 7,1

of AOCa has previously been measured by several workers

19)

A recent analysis of high resolution data has indicated that
several large resonances in the energy range .8-1.0 MeV which

were previously assigned to s-wave neutrons are better fitted by
assuming p-waves, 1If the fit is forced with s-waves, an unrealisti-

cally small channel radius results.

We have calculated the shape of the hOCa differential scat-
for neutron energies .8-1,0 MeV. Energies

[ o i A 8 §

and widths for the major resonances have been taken from total

8)

many narrow p and d-wave resonances, but these have not been

cross section analysis, New high resolution data1 also show
included in the calculation, Figures 15-17 show the predicted

shape of the cross section at three angles. Each figure corre-
gponds to a different set of assumptions for the level spins and
parities, Table I summarizes the assumptions,. Careful examination
of the figures indicates that it should be possible to determine

if the broad resonances at 867, 886, 973 and 1009 keV are caused

by s or p-wave neutrons, Even this complicated case containing
closely spaced levels demonstrates the same features which occur
for isolated resonances. The example of 40Ca contains both coherent

and multi-level interference,

V. A Proposed Scattering Experiment

The angular dependence of resonance line shapes can be used

to unambiguously assign the spin and parity of levels of the
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compound nucleus, We have shown that certain features and sym~
metries are characteristic of s, p and d-wave resonances., Know-
ledge of these features and especially our ability to precal-
culate the resonance shapes as a function of scattering angle
leads us to propose that this method may be applied to determine
spins and parities for possibly a large number of resonances,

12)

applied to an isolated resonance., We suggest that the method can

Asami and Moxon have recently shown that the method is easily
also be used in the energy region where levels overlap and multi-
level effects occur. To this end, we have outlined below a trial

experiment for three scattering angles.

The Karlsruhe isochronous cyclotron has been used routinely
for total cross section measurements. The time-of-flight spec-
trometer at this installation could also be used to perform few-
angle scattering measurements. A three angle measurement for QOCa
is currently in preparation., Calculaticns of the expected count
rate indicate that with the present 20 KHz pulsing system, the
sample to detector distance should be less than about 25 cm,

The hGCa sample will be in the form of a right circular cylinder
with its symmetry axis perpendicular to the neutron beam. This
geometry assures uniform neutron attenuation at all scattering
angles, The incident neutron beam will be collimated to a

7 em x 14 ecm size at 50 m. The scattering sample must necessarily
be somewhat thick (.05-.1 atoms/barn) to achieve a favourable
counting rate., Data from three scattering angles and a beam
monitor will be simultaneously accumulated in an on-line computer,
The 8 region data program (sample in and sample out) required for

this measurement is in preparation,

It is important to note that this type of experiment has as

its primary objective the measurement of the shape of neutron
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resonances at various scattering angles. Thus, absolute differen-
tial scattering cross sections need not be obtained, Absclute de-
tector efficiencies and the absolute ineident neutron intensity
are not required. Functions which vary slowly with the neutron
energy, such as the incident flux shape and the energy dependent
detector efficiency, are also of secondary importance, High an-
gdlar resclution is not reguired and can be sacrificed to improve
counting rates.

For QOCa, the total cross section has previously been meas-
ured and resonance energies and widths are generally known, Thus,
the expected differential cross section can be precalculated for
several sefs of assumed level spins and parities as shown in
figures 15-17. These precalculations also permit the optimal
scattering angles to be chosen and the effects of multiple scat-

tering can be visualized before the measurements are made.

Vi, Summary

This paper is intended as an exploratory investigation of the
use of a few-angle scattering measurement to assign resonance
spins and parities. The general theory of differential scattering
cross section has been presented briefly. We have calculated
many text book examples showing the shape of the cross section
as a function of scattering angle. The figures show isolated
resonances as well as coherent effects between resonances. A

. . . 40
specific example was illustrated for resonances in Ca,

Finally, we have briefly sketched a possible scattering experi-

Multiple-angle scattering experiments have been used routinely

for phase shift analysis of generally smooth cross sections.,.



Thus far, the method has been applied to resonance scattering
only for the case~gf an isolated resonance. On the basis of the
present study, we suggest that the method will also be useful
for the case of closely spaced interfering resonances, even in

the presence of multi-level effects.
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